The BCL-2 pathway preserves mammalian genome integrity by eliminating recombination-defective oocytes

2020 | journal article

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​The BCL-2 pathway preserves mammalian genome integrity by eliminating recombination-defective oocytes​
ElInati, E.; Zielinska, A. P.; McCarthy, A.; Kubikova, N.; Maciulyte, V.; Mahadevaiah, S. & Sangrithi, M. N. et al.​ (2020) 
Nature Communications11(1) art. 2598​.​ DOI: https://doi.org/10.1038/s41467-020-16441-z 

Documents & Media

document.pdf4.9 MBAdobe PDF

License

GRO License GRO License

Details

Authors
ElInati, Elias; Zielinska, Agata P.; McCarthy, Afshan; Kubikova, Nada; Maciulyte, Valdone; Mahadevaiah, Shantha; Sangrithi, Mahesh N.; Ojarikre, Obah; Wells, Dagan; Niakan, Kathy K.; Turner, James M. A.
Abstract
Abstract DNA double-strand breaks (DSBs) are toxic to mammalian cells. However, during meiosis, more than 200 DSBs are generated deliberately, to ensure reciprocal recombination and orderly segregation of homologous chromosomes. If left unrepaired, meiotic DSBs can cause aneuploidy in gametes and compromise viability in offspring. Oocytes in which DSBs persist are therefore eliminated by the DNA-damage checkpoint. Here we show that the DNA-damage checkpoint eliminates oocytes via the pro-apoptotic BCL-2 pathway members Puma , Noxa and Bax . Deletion of these factors prevents oocyte elimination in recombination-repair mutants, even when the abundance of unresolved DSBs is high. Remarkably, surviving oocytes can extrude a polar body and be fertilised, despite chaotic chromosome segregation at the first meiotic division. Our findings raise the possibility that allelic variants of the BCL-2 pathway could influence the risk of embryonic aneuploidy.
Abstract DNA double-strand breaks (DSBs) are toxic to mammalian cells. However, during meiosis, more than 200 DSBs are generated deliberately, to ensure reciprocal recombination and orderly segregation of homologous chromosomes. If left unrepaired, meiotic DSBs can cause aneuploidy in gametes and compromise viability in offspring. Oocytes in which DSBs persist are therefore eliminated by the DNA-damage checkpoint. Here we show that the DNA-damage checkpoint eliminates oocytes via the pro-apoptotic BCL-2 pathway members Puma , Noxa and Bax . Deletion of these factors prevents oocyte elimination in recombination-repair mutants, even when the abundance of unresolved DSBs is high. Remarkably, surviving oocytes can extrude a polar body and be fertilised, despite chaotic chromosome segregation at the first meiotic division. Our findings raise the possibility that allelic variants of the BCL-2 pathway could influence the risk of embryonic aneuploidy.
Issue Date
2020
Journal
Nature Communications 
eISSN
2041-1723
Language
English

Reference

Citations


Social Media