Molecular and structural transition mechanisms in long-term volume overload

2016 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Molecular and structural transition mechanisms in long-term volume overload​
Mohamed, B. A. ; Schnelle, M. ; Khadjeh, S. ; Lbik, D.; Herwig, M.; Linke, W. A.   & Hasenfuß, G.  et al.​ (2016) 
European Journal of Heart Failure18(4) pp. 362​-371​.​ DOI: https://doi.org/10.1002/ejhf.465 

Details

Authors
Mohamed, Belal A. ; Schnelle, Moritz ; Khadjeh, Sara ; Lbik, Dawid; Herwig, Melissa; Linke, Wolfgang A. ; Hasenfuß, Gerd ; Toischer, Karl 
Abstract
AimWe have previously reported that early phase (1week) of experimental volume overload (VO) has an adaptive phenotype while wall stress-matched pressure overload (PO) is maladaptive. Here we investigate the transition from adaptation to heart failure (HF) in long-term VO. Methods and resultsFVB/N wild-type mice were subjected to VO induced by aortocaval shunt, and were followed by serial echocardiography until in vivo left ventricular ejection fraction was below <50% (13535days). Heart failure was evident from increased lung and liver weight and increased mortality compared with sham. Maladaptive remodelling resulted in significantly reduced sarcomeric titin phosphorylation (causing increased sarcomeric stiffness), whereas interstitial fibrosis was not increased. This was paralleled by re-expression of the fetal gene program, activation of calcium/calmodulin-dependent protein kinase II (CaMKII), decreased protein kinase B (Akt) phosphorylation, high oxidative stress, and increased apoptosis. Consistently, development of HF and mortality were significantly aggravated in Akt-deficient mice. ConclusionTransition to HF in VO is associated with decreased Akt and increased CaMKII signalling pathways together with increased oxidative stress and apoptosis. Lack of interstitial fibrosis together with sarcomeric titin hypophosphorylation indicates an increased stiffness at the sarcomeric but not matrix level in VO-induced HF (in contrast to PO). Transition to HF may result from myocyte loss and myocyte dysfunction owing to increased stiffness.
Issue Date
2016
Journal
European Journal of Heart Failure 
Project
SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz 
SFB 1002 | A08: Translationale und posttranslationale Kontrolle trunkierter Titinproteine in Kardiomyozyten von Patienten mit dilatativer Kardiomyopathie 
SFB 1002 | D01: Erholung aus der Herzinsuffizienz – Einfluss von Fibrose und Transkriptionssignatur 
Working Group
RG Hasenfuß (Transition zur Herzinsuffizienz) 
RG Linke (Kardiovaskuläre Physiologie) 
RG Toischer (Kardiales Remodeling) 
ISSN
1388-9842
eISSN
1879-0844
Language
English

Reference

Citations


Social Media