Intersubunit Coupling Enables Fast CO2-Fixation by Reductive Carboxylases

2022 | journal article. A publication with affiliation to the University of Göttingen.

Jump to:Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Intersubunit Coupling Enables Fast CO2-Fixation by Reductive Carboxylases​
DeMirci, H.; Rao, Y.; Stoffel, G. M.; Vögeli, B.; Schell, K.; Gomez, A. & Batyuk, A. et al.​ (2022) 
ACS Central Science8(8) pp. 1091​-1101​.​ DOI: https://doi.org/10.1021/acscentsci.2c00057 

Documents & Media

License

Published Version

GRO License GRO License

Details

Authors
DeMirci, Hasan; Rao, Yashas; Stoffel, Gabriele M.; Vögeli, Bastian; Schell, Kristina; Gomez, Aharon; Batyuk, Alexander; Gati, Cornelius; Sierra, Raymond G.; Hunter, Mark S.; Wakatsuki, Soichi
Abstract
Enoyl-CoA carboxylases/reductases (ECRs) are some of the most efficient CO2-fixing enzymes described to date. However, the molecular mechanisms underlying the extraordinary catalytic activity of ECRs on the level of the protein assembly remain elusive. Here we used a combination of ambient-temperature X-ray free electron laser (XFEL) and cryogenic synchrotron experiments to study the structural organization of the ECR from Kitasatospora setae. The K. setae ECR is a homotetramer that differentiates into a pair of dimers of open- and closed-form subunits in the catalytically active state. Using molecular dynamics simulations and structure-based mutagenesis, we show that catalysis is synchronized in the K. setae ECR across the pair of dimers. This conformational coupling of catalytic domains is conferred by individual amino acids to achieve high CO2-fixation rates. Our results provide unprecedented insights into the dynamic organization and synchronized inter- and intrasubunit communications of this remarkably efficient CO2-fixing enzyme during catalysis.
Issue Date
2022
Journal
ACS Central Science 
Organization
Max-Planck-Institut für Multidisziplinäre Naturwissenschaften 
ISSN
2374-7943
eISSN
2374-7951
Language
English

Reference

Citations


Social Media