Pre‐exascale HPC approaches for molecular dynamics simulations. Covid‐19 research: A use case
2022 | journal article; research paper. A publication with affiliation to the University of Göttingen.
Jump to:Cite & Linked | Documents & Media | Details | Version history
Cite this publication
Pre‐exascale HPC approaches for molecular dynamics simulations. Covid‐19 research: A use case
Wieczór, M.; Genna, V.; Aranda, J.; Badia, R. M.; Gelpí, J. L.; Gapsys, V. & de Groot, B. L. et al. (2022)
Wiley Interdisciplinary Reviews. Computational Molecular Science,. DOI: https://doi.org/10.1002/wcms.1622
Documents & Media
Details
- Authors
- Wieczór, Miłosz; Genna, Vito; Aranda, Juan; Badia, Rosa M.; Gelpí, Josep Lluís; Gapsys, Vytautas ; de Groot, Bert L. ; Lindahl, Erik; Municoy, Martí; Hospital, Adam; Orozco, Modesto
- Abstract
- Exascale computing has been a dream for ages and is close to becoming a reality that will impact how molecular simulations are being performed, as well as the quantity and quality of the information derived for them. We review how the biomolecular simulations field is anticipating these new architectures, making emphasis on recent work from groups in the BioExcel Center of Excellence for High Performance Computing. We exemplified the power of these simulation strategies with the work done by the HPC simulation community to fight Covid-19 pandemics. This article is categorized under: Data Science > Computer Algorithms and Programming Data Science > Databases and Expert Systems Molecular and Statistical Mechanics > Molecular Dynamics and Monte-Carlo Methods
- Issue Date
- 2022
- Journal
- Wiley Interdisciplinary Reviews. Computational Molecular Science
- Organization
- Max-Planck-Institut für Multidisziplinäre Naturwissenschaften
- Working Group
- RG de Groot (Computational Biomolecular Dynamics)
- ISSN
- 1759-0876
- eISSN
- 1759-0884
- Language
- English
- Sponsor
- European Commission https://doi.org/10.13039/501100000780
Instituto de Salud Carlos III https://doi.org/10.13039/501100004587
Ministerio de Ciencia e Innovación https://doi.org/10.13039/501100004837