Electromechanical vortex filaments during cardiac fibrillation

2018 | journal article; research paper

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Electromechanical vortex filaments during cardiac fibrillation​
Christoph, J. ; Chebbok, M. ; Richter, C. ; Schröder-Schetelig, J. ; Bittihn, P.; Stein, S. & Uzelac, I. et al.​ (2018) 
Nature555(7698) pp. 667​-672​.​ DOI: https://doi.org/10.1038/nature26001 

Documents & Media

License

GRO License GRO License

Details

Authors
Christoph, J. ; Chebbok, M. ; Richter, C. ; Schröder-Schetelig, J. ; Bittihn, P.; Stein, S.; Uzelac, I.; Fenton, F. H.; Hasenfuß, G. ; Gilmour Jr., R. F.; Luther, S. 
Abstract
The self-organized dynamics of vortex-like rotating waves, which are also known as scroll waves, are the basis of the formation of complex spatiotemporal patterns in many excitable chemical and biological systems1,2,3,4. In the heart, filament-like phase singularities5,6 that are associated with three-dimensional scroll waves7 are considered to be the organizing centres of life-threatening cardiac arrhythmias7,8,9,10,11,12,13. The mechanisms that underlie the onset, maintenance and control14,15,16 of electromechanical turbulence in the heart are inherently three-dimensional phenomena. However, it has not previously been possible to visualize the three-dimensional spatiotemporal dynamics of scroll waves inside cardiac tissues. Here we show that three-dimensional mechanical scroll waves and filament-like phase singularities can be observed deep inside the contracting heart wall using high-resolution four-dimensional ultrasound-based strain imaging. We found that mechanical phase singularities co-exist with electrical phase singularities during cardiac fibrillation. We investigated the dynamics of electrical and mechanical phase singularities by simultaneously measuring the membrane potential, intracellular calcium concentration and mechanical contractions of the heart. We show that cardiac fibrillation can be characterized using the three-dimensional spatiotemporal dynamics of mechanical phase singularities, which arise inside the fibrillating contracting ventricular wall. We demonstrate that electrical and mechanical phase singularities show complex interactions and we characterize their dynamics in terms of trajectories, topological charge and lifetime. We anticipate that our findings will provide novel perspectives for non-invasive diagnostic imaging and therapeutic applications.
Issue Date
2018
Journal
Nature 
Project
SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz 
SFB 1002 | C03: Erholung nach Herzinsuffizienz: Analyse der transmuralen mechano-elektrischen Funktionsstörung 
SFB 1002 | D01: Erholung aus der Herzinsuffizienz – Einfluss von Fibrose und Transkriptionssignatur 
Working Group
RG Hasenfuß (Transition zur Herzinsuffizienz) 
RG Luther (Biomedical Physics) 
ISSN
0028-0836
Language
English

Reference

Citations


Social Media