A state-based, proportional myoelectric control method: online validation and comparison with the clinical state-of-the-art

2014 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​A state-based, proportional myoelectric control method: online validation and comparison with the clinical state-of-the-art​
Jiang, N.; Lorrain, T. & Farina, D.​ (2014) 
Journal of NeuroEngineering and Rehabilitation11 art. 110​.​ DOI: https://doi.org/10.1186/1743-0003-11-110 

Documents & Media

1743-0003-11-110.pdf711.04 kBAdobe PDF

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
Jiang, Ning; Lorrain, Thomas; Farina, Dario
Abstract
Background: Current clinical myoelectric systems provide unnatural prosthesis control, with limited functionality. In this study, we propose a proportional state-based control method, which allows switching between functions in a more natural and intuitive way than the traditional co-contraction switch method. Methods: We validated the ability of the proposed system to provide precise control in both position and velocity modes. Two tests were performed with online visual feedback, involving target reaching and direct force control in grasping. The performance of the system was evaluated both on a subject with limb deficiency and in 9 intact-limbed subjects, controlling two degrees of freedom (DoF) of the hand and wrist. Results: The system allowed completion of the tasks involving 1-DoF with task completion rate >96% and of those involving 2-DoF with completion rate >91%. When compared with the clinical/industrial state-of-the-art approach and with a classic pattern recognition approach, the proposed method significantly improved the performance in the 2-DoF tasks. The completion rate in grasping force control was >97% on average. Conclusions: These results indicate that, using the proposed system, subjects were successfully able to operate two DoFs, and to achieve precise force control in grasping. Thus, the proposed state-based method could be a suitable alternative for commercial myoelectric devices, providing reliable and intuitive control of two DoFs.
Issue Date
2014
Status
published
Publisher
Biomed Central Ltd
Journal
Journal of NeuroEngineering and Rehabilitation 
ISSN
1743-0003
Sponsor
European Commission [251555, 280778]

Reference

Citations


Social Media