Alpha-synuclein mutations impair axonal regeneration in models of Parkinson's disease

2014 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Alpha-synuclein mutations impair axonal regeneration in models of Parkinson's disease​
Tönges, L. ; Szegö, E. M. ; Hause, P.; Saal, K.-A. ; Tatenhorst, L. ; Koch, J. C.   & D'Hedouville, Z. et al.​ (2014) 
Frontiers in Aging Neuroscience6 art. UNSP 239​.​ DOI: https://doi.org/10.3389/fnagi.2014.00239 

Documents & Media

fnagi-06-00239.pdf3.84 MBAdobe PDF

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
Tönges, L. ; Szegö, E. M. ; Hause, P.; Saal, K.-A. ; Tatenhorst, L. ; Koch, J. C. ; D'Hedouville, Z.; Dambeck, V. ; Kügler, Sebastian ; Dohm, C. P. ; Bähr, M. ; Lingor, P. 
Abstract
The dopaminergic (DAergic) nigrostriatal tract has an intrinsic regenerative capacity which can be impaired in Parkinson's disease (PD). Alpha-synuclein (aSyn) is a major pathogenic component in PD but its impact on DAergic axonal regeneration is largely unknown. In this study, we expressed pathogenic variants of human aSyn by means of recombinant adeno-associated viral vectors in experimental paradigms of DAergic regeneration. In a scratch lesion model in vitro, both aSyn(A30P) and aSyn(A53T) significantly reduced DAergic neurite regeneration and induced loss of TH-immunopositive cells while aSyn(WT) showed only minor cellular neurotoxic effects. The striatal density of TH-immunopositive axons in the striatal 6-OHDA lesion mouse model was attenuated only by aSyn(A30P). However, striatal expression levels of the regeneration marker GAP-43 in TH-immunopositive fibers were reduced by both aSyn(A30P) and aSyn(A53T), but not by aSyn(WT), which was associated with an activation of the ROCK signaling pathway. Nigral DAergic cell loss was only mildly enhanced by additional overexpression of aSyn variants. Our findings indicate that mutations of aSyn have a strong impact on the regenerative capacity of DAergic neurons, which may contribute to their pathogenic effects.
Issue Date
2014
Journal
Frontiers in Aging Neuroscience 
ISSN
1663-4365
Extent
10
Language
English
Sponsor
Open-Access Publikationsfonds 2014

Reference

Citations


Social Media