Modular architecture of Munc13/calmodulin complexes: dual regulation by Ca²⁺ and possible function in short-term synaptic plasticity

2010 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to:Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Modular architecture of Munc13/calmodulin complexes: dual regulation by Ca²⁺ and possible function in short-term synaptic plasticity​
Rodriguez-Castaneda, F.; Maestre-Martinez, M.; Coudevylle, N.; Dimova, K.; Junge, H. J.; Lipstein, N. & Lee, D.  et al.​ (2010) 
EMBO Journal29(3) pp. 680​-691​.​ DOI: https://doi.org/10.1038/emboj.2009.373 

Documents & Media

License

GRO License GRO License

Details

Authors
Rodriguez-Castaneda, Fernando; Maestre-Martinez, Mitcheell; Coudevylle, Nicolas; Dimova, Kalina; Junge, Harald J.; Lipstein, Noa; Lee, Donghan ; Becker, Stefan ; Brose, Nils ; Jahn, Olaf ; Carlomagno, Teresa ; Griesinger, Christian 
Abstract
Ca²⁺ signalling in neurons through calmodulin (CaM) has a prominent function in regulating synaptic vesicle trafficking, transport, and fusion. Importantly, Ca²⁺–CaM binds a conserved region in the priming proteins Munc13‐1 and ubMunc13‐2 and thus regulates synaptic neurotransmitter release in neurons in response to residual Ca2+ signals. We solved the structure of Ca²⁺₄–CaM in complex with the CaM‐binding domain of Munc13‐1, which features a novel 1‐5‐8‐26 CaM‐binding motif with two separated mobile structural modules, each involving a CaM domain. Photoaffinity labelling data reveal the same modular architecture in the complex with the ubMunc13‐2 isoform. The N‐module can be dissociated with EGTA to form the half‐loaded Munc13/Ca²⁺₂–CaM complex. The Ca²⁺ regulation of these Munc13 isoforms can therefore be explained by the modular nature of the Munc13/Ca²⁺–CaM interactions, where the C‐module provides a high‐affinity interaction activated at nanomolar [Ca²⁺]i, whereas the N‐module acts as a sensor at micromolar [Ca²⁺]i. This Ca²⁺/CaM‐binding mode of Munc13 likely constitutes a key molecular correlate of the characteristic Ca²⁺‐dependent modulation of short‐term synaptic plasticity.
Issue Date
2010
Publisher
Nature Publishing Group
Journal
EMBO Journal 
ISSN
0261-4189

Reference

Citations


Social Media