4Pi-RESOLFT nanoscopy

2016 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​4Pi-RESOLFT nanoscopy​
Böhm, U.; Hell, S.   & Schmidt, R. ​ (2016) 
Nature Communications7 art. 10504​.​ DOI: https://doi.org/10.1038/ncomms10504 

Documents & Media

document.pdf1.98 MBAdobe PDF

License

GRO License GRO License

Details

Authors
Böhm, Ulrike; Hell, Stefan ; Schmidt, Roman 
Abstract
By enlarging the aperture along the optic axis, the coherent utilization of opposing objective lenses (4Pi arrangement) has the potential to offer the sharpest and most light-efficient point-spread-functions in three-dimensional (3D) far-field fluorescence nanoscopy. However, to obtain unambiguous images, the signal has to be discriminated against contributions from lobes above and below the focal plane, which has tentatively limited 4Pi arrangements to imaging samples with controllable optical conditions. Here we apply the 4Pi scheme to RESOLFT nanoscopy using two-photon absorption for the on-switching of fluorescent proteins. We show that in this combination, the lobes are so low that low-light level, 3D nanoscale imaging of living cells becomes possible. Our method thus offers robust access to densely packed, axially extended cellular regions that have been notoriously difficult to super-resolve. Our approach also entails a fluorescence read-out scheme that translates molecular sensitivity to local off-switching rates into improved signal-to-noise ratio and resolution.
Issue Date
2016
Journal
Nature Communications 
ISSN
2041-1723
Language
English

Reference

Citations


Social Media