CDK5 protects from caspase-induced Ataxin-3 cleavage and neurodegeneration

2014 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​CDK5 protects from caspase-induced Ataxin-3 cleavage and neurodegeneration​
Liman, J. ; Deeg, S. ; Voigt, A. ; Voßfeldt, H.; Dohm, C. P. ; Karch, A.   & Weishaupt, J.  et al.​ (2014) 
Journal of Neurochemistry129(6) pp. 1013​-1023​.​ DOI: https://doi.org/10.1111/jnc.12684 

Documents & Media

License

GRO License GRO License

Details

Authors
Liman, Jan ; Deeg, S. ; Voigt, A. ; Voßfeldt, H.; Dohm, C. P. ; Karch, A. ; Weishaupt, Jochen ; Schulz, J. B. ; Bähr, M. ; Kermer, P. 
Abstract
Spinocerebellar ataxia type 3 (SCA3) is one of at least nine inherited neurodegenerative diseases caused by an expansion of a polyglutamine tract within corresponding disease-specific proteins. In case of SCA3, mutation of Ataxin-3 results in aggregation of misfolded protein, formation of intranuclear as well as cytosolic inclusion bodies and cell death in distinct neuronal populations. Since cyclin-dependent kinase-5 (CDK5) has been shown to exert beneficial effects on aggregate formation and cell death in various polyglutamine diseases, we tested its therapeutic potential for SCA3. Our data show increased caspase-dependent Ataxin-3 cleavage, aggregation, and neurodegeneration in the absence of sufficient CDK5 activity. This disease-propagating effect could be reversed by mutation of the caspase cleavage site in Ataxin-3. Moreover, reduction of CDK5 expression levels by RNAi in vivo enhances SCA3 toxicity as assayed in a Drosophila model for SCA3. In summary, we present CDK5 as a potent neuroprotectant, regulating cleavage and thereby toxicity of Ataxin-3 and other polyglutamine proteins. We propose that increased caspase-dependent cleavage of mutated Ataxin-3, because of missing CDK5 shielding, leads to aggregation and cell death. Moreover, reduction of CDK5 expression levels by RNAi in vivo enhances SCA3 toxicity as assayed in a Drosophila model for SCA3. We think that CDK5 functions as a shield against cleavage-induced toxification and thereby is an interesting target for therapeutic intervention in polyQ disease in general.
Issue Date
2014
Journal
Journal of Neurochemistry 
ISSN
0022-3042
eISSN
1471-4159
Language
English

Reference

Citations


Social Media