A nitrogen-vacancy spin based molecular structure microscope using multiplexed projection reconstruction.

2015 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​A nitrogen-vacancy spin based molecular structure microscope using multiplexed projection reconstruction.​
Lazariev, A. & Balasubramanian, G.​ (2015) 
Scientific reports5 art. 14130​.​ DOI: https://doi.org/10.1038/srep14130 

Documents & Media

srep14130.pdf496.15 kBAdobe PDF

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
Lazariev, Andrii; Balasubramanian, Gopalakrishnan
Abstract
Methods and techniques to measure and image beyond the state-of-the-art have always been influential in propelling basic science and technology. Because current technologies are venturing into nanoscopic and molecular-scale fabrication, atomic-scale measurement techniques are inevitable. One such emerging sensing method uses the spins associated with nitrogen-vacancy (NV) defects in diamond. The uniqueness of this NV sensor is its atomic size and ability to perform precision sensing under ambient conditions conveniently using light and microwaves (MW). These advantages have unique applications in nanoscale sensing and imaging of magnetic fields from nuclear spins in single biomolecules. During the last few years, several encouraging results have emerged towards the realization of an NV spin-based molecular structure microscope. Here, we present a projection-reconstruction method that retrieves the three-dimensional structure of a single molecule from the nuclear spin noise signatures. We validate this method using numerical simulations and reconstruct the structure of a molecular phantom β-cyclodextrin, revealing the characteristic toroidal shape.
Issue Date
2015
Journal
Scientific reports 
ISSN
2045-2322
Language
English

Reference

Citations


Social Media