Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions.

2018 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions.​
Fornasiero, E. F.; Mandad, S.; Wildhagen, H.; Alevra, M.; Rammner, B.; Keihani, S. & Opazo, F. et al.​ (2018) 
Nature Communications9(1) art. 4230​.​ DOI: https://doi.org/10.1038/s41467-018-06519-0 

Documents & Media

s41467-018-06519-0.pdf3.18 MBAdobe PDFdocument.pdf3.18 MBAdobe PDF

License

Published Version

Special user license Goescholar License

Details

Authors
Fornasiero, Eugenio F.; Mandad, Sunit; Wildhagen, Hanna; Alevra, Mihai; Rammner, Burkhard; Keihani, Sarva; Opazo, Felipe; Urban, Inga; Ischebeck, Till; Sakib, M. Sadman; Fard, Maryam K.; Kirli, Koray; Centeno, Tonatiuh Pena; Vidal, Ramon O.; Rahman, Raza-Ur; Benito, Eva; Fischer, André ; Dennerlein, Sven; Rehling, Peter ; Feussner, Ivo; Bonn, Stefan; Simons, Mikael; Urlaub, Henning ; Rizzoli, Silvio O. 
Abstract
The turnover of brain proteins is critical for organism survival, and its perturbations are linked to pathology. Nevertheless, protein lifetimes have been difficult to obtain in vivo. They are readily measured in vitro by feeding cells with isotopically labeled amino acids, followed by mass spectrometry analyses. In vivo proteins are generated from at least two sources: labeled amino acids from the diet, and non-labeled amino acids from the degradation of pre-existing proteins. This renders measurements difficult. Here we solved this problem rigorously with a workflow that combines mouse in vivo isotopic labeling, mass spectrometry, and mathematical modeling. We also established several independent approaches to test and validate the results. This enabled us to measure the accurate lifetimes of ~3500 brain proteins. The high precision of our data provided a large set of biologically significant observations, including pathway-, organelle-, organ-, or cell-specific effects, along with a comprehensive catalog of extremely long-lived proteins (ELLPs).
Issue Date
2018
Journal
Nature Communications 
Project
info:eu-repo/grantAgreement/EC/FP7/339580/EU//MITRAC
info:eu-repo/grantAgreement/EC/FP7/614765/EU//NEUROMOLANATOMY
SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente 
SFB 1190 | P09: Proteinsortierung in der Synapse: Prinzipien und molekulare Organisation 
SFB 1286: Quantitative Synaptologie 
SFB 1286 | A03: Dynamische Analyse der Remodellierung der extrazellulären Matrix (ECM) als Mechanismus der Synapsenorganisation und Plastizität 
Organization
Institut für Neuro- und Sinnesphysiologie ; DFG Forschungszentrum Molekularphysiologie des Gehirns und Exzellenzcluster Mikroskopie im Nanometerbereich ; Institut für Klinische Chemie ; Max-Planck-Institut für Biophysikalische Chemie ; Center for Biostructural Imaging of Neurodegeneration ; Abteilung Biochemie der Pflanze ; Albrecht-von-Haller-Institut für Pflanzenwissenschaften ; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) ; Klinik für Psychiatrie und Psychotherapie ; Institut für Zellbiochemie 
Working Group
RG Rehling (Mitochondrial Protein Biogenesis) 
RG Rizzoli (Quantitative Synaptology in Space and Time) 
RG Urlaub (Bioanalytische Massenspektrometrie) 
ISSN
2041-1723
Language
English

Reference

Citations


Social Media