SAMBADENA Hyperpolarization of 13C-Succinate in an MRI: Singlet-Triplet Mixing Causes Polarization Loss

2019 | journal article

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​SAMBADENA Hyperpolarization of 13C-Succinate in an MRI: Singlet-Triplet Mixing Causes Polarization Loss​
Berner, S.; Schmidt, A. B.; Zimmermann, M.; Pravdivtsev, A. N.; Glöggler, S.; Hennig, J. & Elverfeldt, D. von et al.​ (2019) 
ChemistryOpen8(6) pp. 728​-736​.​ DOI: https://doi.org/10.1002/open.201900139 

Documents & Media

License

GRO License GRO License

Details

Authors
Berner, Stephan; Schmidt, Andreas B.; Zimmermann, Mirko; Pravdivtsev, Andrey N.; Glöggler, Stefan; Hennig, Jürgen; Elverfeldt, Dominik von; Hövener, Jan-Bernd
Abstract
The signal enhancement provided by the hyperpolarization of nuclear spins of biological molecules is a highly promising technique for diagnostic imaging. To date, most 13C-contrast agents had to be polarized in an extra, complex or cost intensive polarizer. Recently, the in situ hyperpolarization of a 13C contrast agent to >20 % was demonstrated without a polarizer but within the bore of an MRI system. This approach addresses some of the challenges of MRI with hyperpolarized tracers, i. e. elevated cost, long production times, and loss of polarization during transfer to the detection site. Here, we demonstrate the first hyperpolarization of a biomolecule in aqueous solution in the bore of an MRI at field strength of 7 T within seconds. The 13C nucleus of 1-13C, 2,3-2H2-succinate was polarized to 11 % corresponding to a signal enhancement of approximately 18.000. Interesting effects during the process of the hydrogenation reaction which lead to a significant loss of polarization have been observed.
Issue Date
2019
Journal
ChemistryOpen 
ISSN
2191-1363
Language
English

Reference

Citations


Social Media