De novo mutations in FBRSL1 cause a novel recognizable malformation and intellectual disability syndrome

2020 | journal article; research paper. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​De novo mutations in FBRSL1 cause a novel recognizable malformation and intellectual disability syndrome​
Ufartes, R.; Berger, H.; Till, K.; Salinas, G. ; Sturm, M.; Altmüller, J. & Nürnberg, P. et al.​ (2020) 
Human Genetics139(11) pp. 1363​-1379​.​ DOI: https://doi.org/10.1007/s00439-020-02175-x 

Documents & Media

s00439-020-02175-x.pdf3.5 MBAdobe PDF439_2020_2175_MOESM1_ESM.pdf454.76 kBAdobe PDF439_2020_2175_MOESM2_ESM.pdf283.44 kBAdobe PDF439_2020_2175_MOESM3_ESM.pdf234.67 kBAdobe PDF439_2020_2175_MOESM4_ESM.pdf535.05 kBAdobe PDF439_2020_2175_MOESM5_ESM.pptx10.39 MBMicrosoft Powerpoint XML

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
Ufartes, Roser; Berger, Hanna; Till, Katharina; Salinas, Gabriela ; Sturm, Marc; Altmüller, Janine; Nürnberg, Peter; Thiele, Holger; Funke, Rudolf; Apeshiotis, Neophytos; Langen, Hendrik; Wollnik, Bernd ; Borchers, Annette; Pauli, Silke 
Abstract
We report truncating de novo variants in specific exons of FBRSL1 in three unrelated children with an overlapping syndromic phenotype with respiratory insufficiency, postnatal growth restriction, microcephaly, global developmental delay and other malformations. The function of FBRSL1 is largely unknown. Interestingly, mutations in the FBRSL1 paralogue AUTS2 lead to an intellectual disability syndrome (AUTS2 syndrome). We determined human FBRSL1 transcripts and describe protein-coding forms by Western blot analysis as well as the cellular localization by immunocytochemistry stainings. All detected mutations affect the two short N-terminal isoforms, which show a ubiquitous expression in fetal tissues. Next, we performed a Fbrsl1 knockdown in Xenopus laevis embryos to explore the role of Fbrsl1 during development and detected craniofacial abnormalities and a disturbance in neurite outgrowth. The aberrant phenotype in Xenopus laevis embryos could be rescued with a human N-terminal isoform, while the long isoform and the N-terminal isoform containing the mutation p.Gln163* isolated from a patient could not rescue the craniofacial defects caused by Fbrsl1 depletion. Based on these data, we propose that the disruption of the validated N-terminal isoforms of FBRSL1 at critical timepoints during embryogenesis leads to a hitherto undescribed complex neurodevelopmental syndrome.
Issue Date
2020
Journal
Human Genetics 
Project
EXC 2067: Multiscale Bioimaging 
Organization
Institut für Humangenetik ; NGS-Serviceeinrichtung für Integrative Genomik (NIG) 
Working Group
RG Wollnik 
ISSN
0340-6717
eISSN
1432-1203
Language
English
Sponsor
Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659

Reference

Citations


Social Media