Chalcone‐Supported Cardiac Mesoderm Induction in Human Pluripotent Stem Cells for Heart Muscle Engineering
2021 | journal article; research paper. A publication with affiliation to the University of Göttingen.
Jump to:Cite & Linked | Documents & Media | Details | Version history
Cite this publication
Chalcone‐Supported Cardiac Mesoderm Induction in Human Pluripotent Stem Cells for Heart Muscle Engineering
Raad, F. S. ; Khan, T. A. ; Esser, T. U.; Hudson, J. E. ; Seth, B. I.; Fujita, B. & Gandamala, R. et al. (2021)
ChemMedChem, 16(21) art. cmdc.202100222. DOI: https://doi.org/10.1002/cmdc.202100222
Documents & Media
License
Details
- Authors
- Raad, Farah S. ; Khan, Taukeer A. ; Esser, Tilman U.; Hudson, James E. ; Seth, Bhakti Irene; Fujita, Buntaro ; Gandamala, Ravi; Tietze, Lutz F. ; Zimmermann, Wolfram H.
- Abstract
- Abstract Human pluripotent stem cells (hPSCs) hold great promise for applications in cell therapy and drug screening in the cardiovascular field. Bone morphogenetic protein 4 (BMP4) is key for early cardiac mesoderm induction in hPSC and subsequent cardiomyocyte derivation. Small‐molecular BMP4 mimetics may help to standardize cardiomyocyte derivation from hPSCs. Based on observations that chalcones can stimulate BMP4 signaling pathways, we hypothesized their utility in cardiac mesoderm induction. To test this, we set up a two‐tiered screening strategy, (1) for directed differentiation of hPSCs with commercially available chalcones (4’‐hydroxychalcone [4’HC] and Isoliquiritigen) and 24 newly synthesized chalcone derivatives, and (2) a functional screen to assess the propensity of the obtained cardiomyocytes to self‐organize into contractile engineered human myocardium (EHM). We identified 4’HC, 4‐fluoro‐4’‐methoxychalcone, and 4‐fluoro‐4’‐hydroxychalcone as similarly effective in cardiac mesoderm induction, but only 4’HC as an effective replacement for BMP4 in the derivation of contractile EHM‐forming cardiomyocytes.
Have a little heart: A screen for mesoderm inducing chalcones in human pluripotent stem cell cultures identified 4’‐hydroxychalcone (4’HC) as an effective replacement for bone‐morphogenetic protein 4 (BMP4) in supporting the derivation of engineered heart muscle (EHM)‐formation competent cardiomyocytes. image - Issue Date
- 2021
- Journal
- ChemMedChem
- Project
- EXC 2067: Multiscale Bioimaging
- Working Group
- RG Zimmermann (Engineered Human Myocardium)
- External URL
- https://mbexc.uni-goettingen.de/literature/publications/432
- ISSN
- 1860-7179
- eISSN
- 1860-7187
- Language
- English
- Sponsor
- German Center for Cardiovascular Research
German Federal Ministry for Science and Education
German Research Foundation http://dx.doi.org/10.13039/501100001659
Fondation Leducq http://dx.doi.org/10.13039/501100001674