Monitoring ATP dynamics in electrically active white matter tracts

2017 | journal article. A publication with affiliation to the University of Göttingen.

Jump to: Cite & Linked | Documents & Media | Details | Version history

Cite this publication

​Monitoring ATP dynamics in electrically active white matter tracts​
Trevisiol, A.; Saab, A. S.; Winkler, U.; Marx, G.; Imamura, H.; Möbius, W.   & Kusch, K. et al.​ (2017) 
eLife6 art. e24241​.​ DOI: https://doi.org/10.7554/eLife.24241 

Documents & Media

e24241-download.pdf4.69 MBAdobe PDF

License

Published Version

Attribution 4.0 CC BY 4.0

Details

Authors
Trevisiol, Andrea; Saab, Aiman S.; Winkler, Ulrike; Marx, Grit; Imamura, Hiromi; Möbius, Wiebke ; Kusch, Kathrin; Nave, Klaus-Armin; Hirrlinger, Johannes
Abstract
In several neurodegenerative diseases and myelin disorders, the degeneration profiles of myelinated axons are compatible with underlying energy deficits. However, it is presently impossible to measure selectively axonal ATP levels in the electrically active nervous system. We combined transgenic expression of an ATP-sensor in neurons of mice with confocal FRET imaging and electrophysiological recordings of acutely isolated optic nerves. This allowed us to monitor dynamic changes and activity-dependent axonal ATP homeostasis at the cellular level and in real time. We find that changes in ATP levels correlate well with compound action potentials. However, this correlation is disrupted when metabolism of lactate is inhibited, suggesting that axonal glycolysis products are not sufficient to maintain mitochondrial energy metabolism of electrically active axons. The combined monitoring of cellular ATP and electrical activity is a novel tool to study neuronal and glial energy metabolism in normal physiology and in models of neurodegenerative disorders.
Issue Date
2017
Journal
eLife 
Organization
Universitätsmedizin Göttingen
ISSN
2050-084X
Language
English

Reference

Citations


Social Media