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Abstract. Over the last decade Akduman, Haddar and Kress [1, 3, 5] have employed a
conformal mapping technique for the inverse problem to recover a perfectly conducting or
a non-conducting inclusion in a homogeneous background medium from Cauchy data on the
accessible exterior boundary. More recently, Haddar and Kress [4] proposed an extension of this
approach to two-dimensional inverse electrical impedance tomography with piecewise constant
conductivities. A main ingredient of this extension is the incorporation of the transmission
condition on the unknown interior boundary via a nonlocal boundary condition in terms of an
integral equation. We present an outline of the foundations of this new method.

1. Introduction
In a new numerical scheme for solving inverse boundary value problems for the Laplace equation
in a doubly connected two-dimensional domain D via a conformal mapping technique introduced
by Akduman, Haddar and Kress [1, 3, 5] the reconstruction of the non-accessible interior
boundary curve Γ0 from over determined Cauchy data on the accessible exterior boundary curve
Γ1 is based on a conformal map Ψ : B → D that takes an annulus B bounded by two concentric
circles C0 and C1 onto D. The Cauchy–Riemann equations provide a nonlocal and nonlinear
ordinary differential equation for the boundary values Ψ|C1 on the exterior circle that can be
solved by successive approximations. Then a Cauchy problem for the holomorphic function Ψ
has to be solved by a regularized Laurent expansion to retrieve the unknown interior boundary
curve via Γ0 = Ψ(C0). For the reconstruction of a perfectly conducting or a non-conducting
inclusion, i.e., the inverse problem with a homogeneous Dirichlet or Neumann condition on Γ0

this conformal mapping method separates the inverse problem into the nonlinear well-posed
problem for the ordinary differential equation and the linear ill-posed Cauchy problem.

The inverse electrical impedance problem to reconstruct the shape of a conducting inclusion
with a constant conductivity that is different from the constant background conductivity of D
corresponds to an inverse transmission problem. For this case, when applying the conformal
mapping idea, in principle, two conformal maps are required. In addition to the mapping
Ψ : B → D also a map taking the interior of C0 onto the interior of Γ0 is needed. Furthermore,
the homogeneous transmission condition on Γ0 transforms into a more complicated transmission
condition on C0 containing the traces of the two conformal maps at different locations for both
sides of C0.

Restricting themselves to the case where the two conformal maps are extensions of each
other, and consequently have to coincide with a Moebius transform, in a first attempt Dambrine
and Kateb [2] were able to extend parts of the above methods to the inverse transmission
problem. In a recent paper, Haddar and Kress [4] proposed a different approach that uses only
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the conformal map for the annulus and incorporates the transformed transmission condition on
C0 by a nonlocal boundary condition in terms of a boundary integral equation for the trace of
the solution to the transmission problem on Γ0.

2. The inverse algorithm
Let D0 and D1 be two simply connected bounded domains in IR2 with C2 smooth boundaries
Γ0 and Γ1 such that D0 ⊂ D1. Let D := D1 \D0 and assume the unit normal ν to Γ0 and Γ1

to be directed into the exterior of D0 and D1, respectively. For a given function f ∈ H1/2(Γ1)
and given positive constants σ0 and σ1 we consider the transmission problem for the Laplace
equation

∆u0 = 0 in D0, ∆u = 0 in D (2.1)

for u0 ∈ H1(D0) and u ∈ H1(D) with boundary condition

u = f on Γ1 (2.2)

and transmission conditions

u0 = u, σ0
∂u0

∂ν
= σ1

∂u

∂ν
on Γ0. (2.3)

After denoting the normal derivative of u on Γ1 by

g :=
∂u

∂ν

∣∣∣∣
Γ1

the inverse problem under consideration is to determine the shape of the interior boundary curve
Γ0 from pairs of Cauchy data (f, g).

In the sequel we will identify IR2 and C. We introduce the annulus B bounded by the
concentric circles C0 with radius ρ and C1 with radius one centered at the origin. By the
conformal mapping theorem there exists a uniquely determined radius ρ and a holomorphic
function Ψ that maps B bijectively onto D such that the boundaries C0 and C1 are mapped
onto Γ0 and Γ1, respectively. Assuming for simplicity that the total length of Γ1 is 2π, we denote
by γ : [0, 2π] → Γ1 the parameterization of Γ1 in terms of arc length.

We define a function ϕ : [0, 2π] → [0, 2π] by setting

ϕ(t) := γ−1(Ψ(eit)). (2.4)

Roughly speaking, ϕ describes how Ψ maps arc length on C1 onto arc length on Γ1. Clearly,
the boundary values ϕ uniquely determine Ψ as the solution to the Cauchy problem with Ψ on
C1 given through Ψ(eit) = γ(ϕ(t)). Hence, the operator

Nρ : ϕ 7→ χ (2.5)

where χ(t) := Ψ(ρeit) is well defined. The function χ : [0, 2π] → C parameterizes the interior
boundary curve Γ0 and determining χ solves the inverse transmission problem.

We denote by Aρ : H1/2[0, 2π] × H1/2[0, 2π] → H−1/2[0, 2π] the Dirichlet-to-Neumann
operator for the annulus B that maps function pairs (F1, F2) onto the normal derivative

(Aρ(F1, F2)) (t) :=
∂v

∂ν
(eit)− 1

2π

∫ 2π

0

∂v

∂ν
(eit) dt, t ∈ [0, 2π],
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of the harmonic function v ∈ H1(B) with boundary values on C1 and C0 given by

v(eit) = F1(t) and v(ρeit) = F2(t) for t ∈ [0, 2π].

In terms of this operator A from the Cauchy–Riemann equations for u and v = u ◦Ψ and their
corresponding harmonic conjugates one can deduce the nonlocal differential equation

dϕ

dt
=
Aρ(f ◦ γ ◦ ϕ, u ◦Nρϕ)

g ◦ γ ◦ ϕ
(2.6)

for the boundary map ϕ.
In order to eliminate the unknown trace of u on the interior boundary curve from (2.6) we

introduce the double-layer operator K : H1/2(Γ0) → H1/2(Γ0) by

(Kβ)(x) := 2
∫

Γ0

∂Φ(x, y)
∂ν(y)

β(y) ds(y), x ∈ Γ0,

with the fundamental solution
Φ(x, y) :=

1
2π

ln
1

|x− y|

to Laplace’s equation in IR2. In terms of the Cauchy data (f, g) we define the combined single-
and double-layer potential

w(x) :=
∫

Γ1

{
g(y)Φ(x, y)− f(y)

∂Φ(x, y)
∂ν(y)

}
ds(y), x ∈ IR2 \ Γ1. (2.7)

Then, as a consequence of Green’s representation theorem, the trace β := u|Γ0 is given as the
unique solution to the integral equation

(1 + µ)β + (1− µ)Kβ = 2µw|Γ0

where
µ :=

σ1

σ0
.

Via η := u ◦ χ we transform this into

(1 + µ)η + (1− µ)Hχη = 2µw ◦ χ (2.8)

with the parameterized double-layer operator Hχ given by Hχ(β ◦ χ) := (Kβ) ◦ χ. Since the
double-layer operator is compact and has its spectrum contained in [−1, 1], the operator on the
left-hand side of (2.8) is bijective with bounded inverse

Mχ := 2µ[(1 + µ)I + (1− µ)Hχ]−1 : H1/2[0, 2π] → H1/2[0, 2π].

Now we can write
u ◦Nρϕ = MNρϕ(w ◦Nρϕ)

and, finally, the nonlocal differential equation for ϕ assumes the form

dϕ

dt
=
Aρ(f ◦ γ ◦ ϕ,MNρϕ(w ◦Nρϕ))

g ◦ γ ◦ ϕ
. (2.9)

The differential equation (2.9) has to be complemented by the boundary conditions ϕ(0) = 0
and ϕ(2π) = 2π.
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To avoid difficulties in solving (2.9) arising from zeros of the function g occurring in the
denominator, two pairs of Cauchy data can be used. If (f1, g1) and (f2, g2) are two pairs of
Cauchy data on Γ1, then

dϕ

dt
=

∑2
j=1(gj ◦ γ ◦ ϕ)Aρ(fj ◦ γ ◦ ϕ,MNρϕ(wj ◦Nρϕ))∑2

j=1[g1 ◦ γ ◦ ϕ]2
, (2.10)

where w1 and w2 denote the combined single- and double-layer potential (2.7) associated with
the real-valued Cauchy pairs (f1, g1) and (f2, g2), respectively. To condense the notation, after
introducing the complex valued functions

f = f1 + if2, g = g1 + ig2 and w = w1 + iw2 (2.11)

we rewrite (2.10) in the shorter form

dϕ

dt
=
<

[
(ḡ ◦ γ ◦ ϕ)Aρ(f ◦ γ ◦ ϕ,MNρϕ(w ◦Nρϕ))

]
|g ◦ γ ◦ ϕ|2

.

After defining Fourier coefficients depending on the data (f, g) and on ϕ by setting

am(ϕ) :=
∫ 2π

0
f(γ(ϕ(t))) e−imt dt,

bm(ϕ) :=
∫ 2π

0
g(γ(ϕ(t)))ϕ′(t) e−imt dt,

cm(ϕ, ρ) :=
∫ 2π

0
(MNρϕ(w ◦Nρϕ))(t) e−imt dt,

a straightforward application of Green’s integral theorem yields

[|m| am(ϕ) + bm(ϕ)]ρ2|m| + |m| am(ϕ)− bm(ϕ) = 2|m|ρ|m|cm(ϕ, ρ). (2.12)

By this equation the radius is given in terms of ϕ and the data (f, g). Under appropriate
assumptions, (2.12) can be solved iteratively via

ρj+1 =

∣∣∣∣∣bm(ϕ)− |m| am(ϕ) + 2|m|ρ|m]
j cm(ϕ, ρj)

bm(ϕ) + |m| am(ϕ)

∣∣∣∣∣
1

2|m|

. (2.13)

Finally we define an operator V by setting (V ψ)(t) = t + ψ(t) and introduce the operator
T : H1

0 [0, 2π] → H1
0 [0, 2π] by

(Tψ)(t) :=
∫ t

0

(
Uψ − 1

2π

∫ 2π

0
Uψ dθ

)
dτ, t ∈ [0, 2π],

where

Uψ :=
<

[
(ḡ ◦ γ ◦ V ψ)Aρ(V ψ)(f ◦ γ ◦ V ψ,MNρ(V ψ)V ψ(w ◦Nρ(V ψ)V ψ))

]
|g ◦ γ ◦ V ψ|2

,

and ρ(V ψ) indicates the solution of (2.12) for ϕ = V ψ and an appropriately chosen m ∈ IN.
Then we can summarize the above results into the following theorem.
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Theorem 2.1 Let (f, g) be a pair of Cauchy data of the form (2.11) for the transmission
problem. Then, in terms of the holomorphic map Ψ : B → D and its boundary values ϕ
the function ψ = V −1ϕ is a fixed point of T .

Theorem 2.1 suggests the following iteration scheme: Given a current approximation ψ0, we
update it in two steps.

(i) For an appropriate choice of m we solve (2.12) with the boundary map ϕ0 = V ψ0 via
iterations as indicated in (2.13) to obtain a radius ρ0.

(ii) In view of Theorem 2.1 we update the boundary map by ψ1 = T (ψ0) using the radius ρ0

and a regularized version of the operator Nρ for the Cauchy problem.

Of course, the whole scheme then consists in repeating these two steps iteratively. For a
convergence result on this iteration scheme for sufficiently small transmission coefficients µ and
numerical examples exhibiting the feasibility of the method we refer to [4].

Acknowledgement
This work was supported by the German Ministry of Education and Research in the BMBF-
project Regularization techniques for electrical impedance tomography in medical science and
geosciences.

References
[1] Akduman I and Kress, R 2002 Electrostatic imaging via conformal mapping. Inverse Problems 18 1659
[2] Dambrine M and Kateb D 2007 Conformal mapping and inverse conductivity problem with one measurement.

ESAIM: Control, Optimisation and Calculus of Variations 13 163
[3] Haddar H and Kress R 2005 Conformal mappings and inverse boundary value problems. Inverse Problems

21 935
[4] Haddar H and Kress R 2010 Conformal mapping and impedance tomography. Inverse Problems 26 074002
[5] Kress R 2004 Inverse Dirichlet problem and conformal mapping. Mathematics and Computers in Simulation

66 255

International Conference on Inverse Problems 2010 IOP Publishing
Journal of Physics: Conference Series 290 (2011) 012009 doi:10.1088/1742-6596/290/1/012009

5




