Conformal mapping and impedance tomography

Rainer Kress
University of Göttingen, 37083 Göttingen, Germany
E-mail: kress@math.uni-goettingen.de

Abstract

Over the last decade Akduman, Haddar and Kress [1, 3, 5] have employed a conformal mapping technique for the inverse problem to recover a perfectly conducting or a non-conducting inclusion in a homogeneous background medium from Cauchy data on the accessible exterior boundary. More recently, Haddar and Kress [4] proposed an extension of this approach to two-dimensional inverse electrical impedance tomography with piecewise constant conductivities. A main ingredient of this extension is the incorporation of the transmission condition on the unknown interior boundary via a nonlocal boundary condition in terms of an integral equation. We present an outline of the foundations of this new method.

1. Introduction

In a new numerical scheme for solving inverse boundary value problems for the Laplace equation in a doubly connected two-dimensional domain D via a conformal mapping technique introduced by Akduman, Haddar and Kress [1, 3, 5] the reconstruction of the non-accessible interior boundary curve Γ_{0} from over determined Cauchy data on the accessible exterior boundary curve Γ_{1} is based on a conformal map $\Psi: B \rightarrow D$ that takes an annulus B bounded by two concentric circles C_{0} and C_{1} onto D. The Cauchy-Riemann equations provide a nonlocal and nonlinear ordinary differential equation for the boundary values $\left.\Psi\right|_{C_{1}}$ on the exterior circle that can be solved by successive approximations. Then a Cauchy problem for the holomorphic function Ψ has to be solved by a regularized Laurent expansion to retrieve the unknown interior boundary curve via $\Gamma_{0}=\Psi\left(C_{0}\right)$. For the reconstruction of a perfectly conducting or a non-conducting inclusion, i.e., the inverse problem with a homogeneous Dirichlet or Neumann condition on Γ_{0} this conformal mapping method separates the inverse problem into the nonlinear well-posed problem for the ordinary differential equation and the linear ill-posed Cauchy problem.

The inverse electrical impedance problem to reconstruct the shape of a conducting inclusion with a constant conductivity that is different from the constant background conductivity of D corresponds to an inverse transmission problem. For this case, when applying the conformal mapping idea, in principle, two conformal maps are required. In addition to the mapping $\Psi: B \rightarrow D$ also a map taking the interior of C_{0} onto the interior of Γ_{0} is needed. Furthermore, the homogeneous transmission condition on Γ_{0} transforms into a more complicated transmission condition on C_{0} containing the traces of the two conformal maps at different locations for both sides of C_{0}.

Restricting themselves to the case where the two conformal maps are extensions of each other, and consequently have to coincide with a Moebius transform, in a first attempt Dambrine and Kateb [2] were able to extend parts of the above methods to the inverse transmission problem. In a recent paper, Haddar and Kress [4] proposed a different approach that uses only
the conformal map for the annulus and incorporates the transformed transmission condition on C_{0} by a nonlocal boundary condition in terms of a boundary integral equation for the trace of the solution to the transmission problem on Γ_{0}.

2. The inverse algorithm

Let D_{0} and D_{1} be two simply connected bounded domains in \mathbb{R}^{2} with C^{2} smooth boundaries Γ_{0} and Γ_{1} such that $\bar{D}_{0} \subset D_{1}$. Let $D:=D_{1} \backslash \bar{D}_{0}$ and assume the unit normal ν to Γ_{0} and Γ_{1} to be directed into the exterior of D_{0} and D_{1}, respectively. For a given function $f \in H^{1 / 2}\left(\Gamma_{1}\right)$ and given positive constants σ_{0} and σ_{1} we consider the transmission problem for the Laplace equation

$$
\begin{equation*}
\Delta u_{0}=0 \quad \text { in } D_{0}, \quad \Delta u=0 \quad \text { in } D \tag{2.1}
\end{equation*}
$$

for $u_{0} \in H^{1}\left(D_{0}\right)$ and $u \in H^{1}(D)$ with boundary condition

$$
\begin{equation*}
u=f \quad \text { on } \Gamma_{1} \tag{2.2}
\end{equation*}
$$

and transmission conditions

$$
\begin{equation*}
u_{0}=u, \quad \sigma_{0} \frac{\partial u_{0}}{\partial \nu}=\sigma_{1} \frac{\partial u}{\partial \nu} \quad \text { on } \Gamma_{0} . \tag{2.3}
\end{equation*}
$$

After denoting the normal derivative of u on Γ_{1} by

$$
g:=\left.\frac{\partial u}{\partial \nu}\right|_{\Gamma_{1}}
$$

the inverse problem under consideration is to determine the shape of the interior boundary curve Γ_{0} from pairs of Cauchy data (f, g).

In the sequel we will identify \mathbb{R}^{2} and \mathbb{C}. We introduce the annulus B bounded by the concentric circles C_{0} with radius ρ and C_{1} with radius one centered at the origin. By the conformal mapping theorem there exists a uniquely determined radius ρ and a holomorphic function Ψ that maps B bijectively onto D such that the boundaries C_{0} and C_{1} are mapped onto Γ_{0} and Γ_{1}, respectively. Assuming for simplicity that the total length of Γ_{1} is 2π, we denote by $\gamma:[0,2 \pi] \rightarrow \Gamma_{1}$ the parameterization of Γ_{1} in terms of arc length.

We define a function $\varphi:[0,2 \pi] \rightarrow[0,2 \pi]$ by setting

$$
\begin{equation*}
\varphi(t):=\gamma^{-1}\left(\Psi\left(e^{i t}\right)\right) . \tag{2.4}
\end{equation*}
$$

Roughly speaking, φ describes how Ψ maps arc length on C_{1} onto arc length on Γ_{1}. Clearly, the boundary values φ uniquely determine Ψ as the solution to the Cauchy problem with Ψ on C_{1} given through $\Psi\left(e^{i t}\right)=\gamma(\varphi(t))$. Hence, the operator

$$
\begin{equation*}
N_{\rho}: \varphi \mapsto \chi \tag{2.5}
\end{equation*}
$$

where $\chi(t):=\Psi\left(\rho e^{i t}\right)$ is well defined. The function $\chi:[0,2 \pi] \rightarrow \mathbb{C}$ parameterizes the interior boundary curve Γ_{0} and determining χ solves the inverse transmission problem.

We denote by $A_{\rho}: H^{1 / 2}[0,2 \pi] \times H^{1 / 2}[0,2 \pi] \rightarrow H^{-1 / 2}[0,2 \pi]$ the Dirichlet-to-Neumann operator for the annulus B that maps function pairs (F_{1}, F_{2}) onto the normal derivative

$$
\left(A_{\rho}\left(F_{1}, F_{2}\right)\right)(t):=\frac{\partial v}{\partial \nu}\left(e^{i t}\right)-\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\partial v}{\partial \nu}\left(e^{i t}\right) d t, \quad t \in[0,2 \pi]
$$

of the harmonic function $v \in H^{1}(B)$ with boundary values on C_{1} and C_{0} given by

$$
v\left(e^{i t}\right)=F_{1}(t) \quad \text { and } \quad v\left(\rho e^{i t}\right)=F_{2}(t) \quad \text { for } \quad t \in[0,2 \pi] .
$$

In terms of this operator A from the Cauchy-Riemann equations for u and $v=u \circ \Psi$ and their corresponding harmonic conjugates one can deduce the nonlocal differential equation

$$
\begin{equation*}
\frac{d \varphi}{d t}=\frac{A_{\rho}\left(f \circ \gamma \circ \varphi, u \circ N_{\rho} \varphi\right)}{g \circ \gamma \circ \varphi} \tag{2.6}
\end{equation*}
$$

for the boundary map φ.
In order to eliminate the unknown trace of u on the interior boundary curve from (2.6) we introduce the double-layer operator $K: H^{1 / 2}\left(\Gamma_{0}\right) \rightarrow H^{1 / 2}\left(\Gamma_{0}\right)$ by

$$
(K \beta)(x):=2 \int_{\Gamma_{0}} \frac{\partial \Phi(x, y)}{\partial \nu(y)} \beta(y) d s(y), \quad x \in \Gamma_{0},
$$

with the fundamental solution

$$
\Phi(x, y):=\frac{1}{2 \pi} \ln \frac{1}{|x-y|}
$$

to Laplace's equation in \mathbb{R}^{2}. In terms of the Cauchy data (f, g) we define the combined singleand double-layer potential

$$
\begin{equation*}
w(x):=\int_{\Gamma_{1}}\left\{g(y) \Phi(x, y)-f(y) \frac{\partial \Phi(x, y)}{\partial \nu(y)}\right\} d s(y), \quad x \in \mathbb{R}^{2} \backslash \Gamma_{1} . \tag{2.7}
\end{equation*}
$$

Then, as a consequence of Green's representation theorem, the trace $\beta:=\left.u\right|_{\Gamma_{0}}$ is given as the unique solution to the integral equation

$$
(1+\mu) \beta+(1-\mu) K \beta=\left.2 \mu w\right|_{\Gamma_{0}}
$$

where

$$
\mu:=\frac{\sigma_{1}}{\sigma_{0}}
$$

Via $\eta:=u \circ \chi$ we transform this into

$$
\begin{equation*}
(1+\mu) \eta+(1-\mu) H_{\chi} \eta=2 \mu w \circ \chi \tag{2.8}
\end{equation*}
$$

with the parameterized double-layer operator H_{χ} given by $H_{\chi}(\beta \circ \chi):=(K \beta) \circ \chi$. Since the double-layer operator is compact and has its spectrum contained in $[-1,1]$, the operator on the left-hand side of (2.8) is bijective with bounded inverse

$$
M_{\chi}:=2 \mu\left[(1+\mu) I+(1-\mu) H_{\chi}\right]^{-1}: H^{1 / 2}[0,2 \pi] \rightarrow H^{1 / 2}[0,2 \pi] .
$$

Now we can write

$$
u \circ N_{\rho} \varphi=M_{N_{\rho} \varphi}\left(w \circ N_{\rho} \varphi\right)
$$

and, finally, the nonlocal differential equation for φ assumes the form

$$
\begin{equation*}
\frac{d \varphi}{d t}=\frac{A_{\rho}\left(f \circ \gamma \circ \varphi, M_{N_{\rho} \varphi}\left(w \circ N_{\rho} \varphi\right)\right)}{g \circ \gamma \circ \varphi} . \tag{2.9}
\end{equation*}
$$

The differential equation (2.9) has to be complemented by the boundary conditions $\varphi(0)=0$ and $\varphi(2 \pi)=2 \pi$.

To avoid difficulties in solving (2.9) arising from zeros of the function g occurring in the denominator, two pairs of Cauchy data can be used. If $\left(f_{1}, g_{1}\right)$ and $\left(f_{2}, g_{2}\right)$ are two pairs of Cauchy data on Γ_{1}, then

$$
\begin{equation*}
\frac{d \varphi}{d t}=\frac{\sum_{j=1}^{2}\left(g_{j} \circ \gamma \circ \varphi\right) A_{\rho}\left(f_{j} \circ \gamma \circ \varphi, M_{N_{\rho} \varphi}\left(w_{j} \circ N_{\rho} \varphi\right)\right)}{\sum_{j=1}^{2}\left[g_{1} \circ \gamma \circ \varphi\right]^{2}} \tag{2.10}
\end{equation*}
$$

where w_{1} and w_{2} denote the combined single- and double-layer potential (2.7) associated with the real-valued Cauchy pairs $\left(f_{1}, g_{1}\right)$ and $\left(f_{2}, g_{2}\right)$, respectively. To condense the notation, after introducing the complex valued functions

$$
\begin{equation*}
f=f_{1}+i f_{2}, \quad g=g_{1}+i g_{2} \quad \text { and } \quad w=w_{1}+i w_{2} \tag{2.11}
\end{equation*}
$$

we rewrite (2.10) in the shorter form

$$
\frac{d \varphi}{d t}=\frac{\Re\left[(\bar{g} \circ \gamma \circ \varphi) A_{\rho}\left(f \circ \gamma \circ \varphi, M_{N_{\rho} \varphi}\left(w \circ N_{\rho} \varphi\right)\right)\right]}{|g \circ \gamma \circ \varphi|^{2}} .
$$

After defining Fourier coefficients depending on the data (f, g) and on φ by setting

$$
\begin{aligned}
& a_{m}(\varphi):=\int_{0}^{2 \pi} f(\gamma(\varphi(t))) e^{-i m t} d t \\
& b_{m}(\varphi):=\int_{0}^{2 \pi} g(\gamma(\varphi(t))) \varphi^{\prime}(t) e^{-i m t} d t \\
& c_{m}(\varphi, \rho):=\int_{0}^{2 \pi}\left(M_{N_{\rho} \varphi}\left(w \circ N_{\rho} \varphi\right)\right)(t) e^{-i m t} d t
\end{aligned}
$$

a straightforward application of Green's integral theorem yields

$$
\begin{equation*}
\left[|m| a_{m}(\varphi)+b_{m}(\varphi)\right] \rho^{2|m|}+|m| a_{m}(\varphi)-b_{m}(\varphi)=2|m| \rho^{|m|} c_{m}(\varphi, \rho) \tag{2.12}
\end{equation*}
$$

By this equation the radius is given in terms of φ and the data (f, g). Under appropriate assumptions, (2.12) can be solved iteratively via

$$
\begin{equation*}
\rho_{j+1}=\left|\frac{b_{m}(\varphi)-|m| a_{m}(\varphi)+2|m| \rho_{j}^{\mid m]} c_{m}\left(\varphi, \rho_{j}\right)}{b_{m}(\varphi)+|m| a_{m}(\varphi)}\right|^{\frac{1}{2|m|}} \tag{2.13}
\end{equation*}
$$

Finally we define an operator V by setting $(V \psi)(t)=t+\psi(t)$ and introduce the operator $T: H_{0}^{1}[0,2 \pi] \rightarrow H_{0}^{1}[0,2 \pi]$ by

$$
(T \psi)(t):=\int_{0}^{t}\left(U \psi-\frac{1}{2 \pi} \int_{0}^{2 \pi} U \psi d \theta\right) d \tau, \quad t \in[0,2 \pi]
$$

where

$$
U \psi:=\frac{\Re\left[(\bar{g} \circ \gamma \circ V \psi) A_{\rho(V \psi)}\left(f \circ \gamma \circ V \psi, M_{N_{\rho(V \psi)} V \psi}\left(w \circ N_{\rho(V \psi)} V \psi\right)\right)\right]}{|g \circ \gamma \circ V \psi|^{2}},
$$

and $\rho(V \psi)$ indicates the solution of (2.12) for $\varphi=V \psi$ and an appropriately chosen $m \in \mathbb{N}$. Then we can summarize the above results into the following theorem.

Theorem 2.1 Let (f, g) be a pair of Cauchy data of the form (2.11) for the transmission problem. Then, in terms of the holomorphic map $\Psi: B \rightarrow D$ and its boundary values φ the function $\psi=V^{-1} \varphi$ is a fixed point of T.

Theorem 2.1 suggests the following iteration scheme: Given a current approximation ψ_{0}, we update it in two steps.
(i) For an appropriate choice of m we solve (2.12) with the boundary map $\varphi_{0}=V \psi_{0}$ via iterations as indicated in (2.13) to obtain a radius ρ_{0}.
(ii) In view of Theorem 2.1 we update the boundary map by $\psi_{1}=T\left(\psi_{0}\right)$ using the radius ρ_{0} and a regularized version of the operator N_{ρ} for the Cauchy problem.

Of course, the whole scheme then consists in repeating these two steps iteratively. For a convergence result on this iteration scheme for sufficiently small transmission coefficients μ and numerical examples exhibiting the feasibility of the method we refer to [4].

Acknowledgement

This work was supported by the German Ministry of Education and Research in the BMBFproject Regularization techniques for electrical impedance tomography in medical science and geosciences.

References

[1] Akduman I and Kress, R 2002 Electrostatic imaging via conformal mapping. Inverse Problems 181659
[2] Dambrine M and Kateb D 2007 Conformal mapping and inverse conductivity problem with one measurement. ESAIM: Control, Optimisation and Calculus of Variations 13163
[3] Haddar H and Kress R 2005 Conformal mappings and inverse boundary value problems. Inverse Problems 21935
[4] Haddar H and Kress R 2010 Conformal mapping and impedance tomography. Inverse Problems 26074002
[5] Kress R 2004 Inverse Dirichlet problem and conformal mapping. Mathematics and Computers in Simulation 66255

