

Supplementary Material

Papua at the crossroads: A plea for systematic conservation planning in one of the largest 1 remaining areas of tropical rainforest

Christoph Parsch^{*}, Benjamin Wagner^{*}, Margaretha Z. Pangau-Adam, Craig Nitschke, Holger Kreft, Julian Schrader

* These authors contributed equally to this work

Correspondence:

Christoph Parsch, University of Goettingen, Buesgenweg 1, 37077 Goettingen, Germany, E-mail: parsch@posteo.net, Phone: +4915733975405

Benjamin Wagner, The University of Melbourne, 500 Yarra Boulevard, Richmond 3121, VIC, Australia, E-mail: benjamin.wagner@unimelb.edu.au, Phone: +61403426810

Methods

Elevational and ecoregional representativeness

A (30x30 m) digital elevation model (DEM) of Tanah Papua was derived from NASA's Shuttle Radar Topography Mission (Farr et al., 2007) to assess the elevational representativeness of the existing protected area network and land-use concessions. All analyses were conducted in R (R Core Team, 2018). An open-access layer of the world's ecoregions (Dinerstein et al., 2017) was cropped to the study region for the same purpose. We created three polygon layers covering protected areas (UNEP- WCMC & IUCN, 2019), publicly available land-use concessions (Global Forest Watch, 2019), and all areas without available land designations. For elevational analysis, we used the *extract* function in the *raster* package (Hijmans et al., 2019) to extract elevation for all pixels within each polygon layer. We categorized pixels into five classes based on their DEM elevation (0-500 m, 500-1000 m, 1000-2000 m, and 2000-3000 m) and grouped them according to their land designation. We further calculated the sum of all pixels per elevation class and land designation and divided by the sum of pixels to derive the area percentage per land designation and elevation class (Figure 2A). A similar approach was applied to analyze ecological representativeness by ecoregion. Instead of elevation class, pixel sum for each ecoregion per land designation was extracted and area percentage calculated. Ecoregions were then grouped into the categories 'Montane', 'Lowland', and 'Islands' according to their elevation for easier distinguishing and visualization (Figure 2B).

Supplementary Tables

 Table S1 Elevational representativeness of Tanah Papua's main land designations used in this

 study

Land designation	Elevation class	% of total land designation	% of total land area	
	0-500 m	94.23	26.82	
Concession	500 - 1000 m	5.33	1.52	
	1000 - 2000 m	<1	<1	
	2000 - 3000 m	<1	0	

	>3000 m	<1	<1
	0-500 m	70.73	37.09
	500 - 1000 m	10.68	5.6
Protected Area	1000 - 2000 m	10.16	5.33
	2000 - 3000 m	6.32	3.31
	>3000 m	2.12	1.11
	0-500 m	56.53	10.8
No Designation	500 - 1000 m	12.41	2.37
	1000 - 2000 m	16.53	3.16
	2000 - 3000 m	7.51	1.44
	>3000 m	7.01	1.34

Table S2 Ecoregional representativeness of Tanah Papua divided by Ecoregions as defined byDinerstein et al. (2017) and three land designations used in this study

Ecoregion	% of total land area	Class	Land designation	% of total land designatio n	% of total ecoregi on	ratio of land designation area to total land area
	0.62	Islands	Concession	<1	0	0

Protected Area <1 18 0.11 **Biak-Numfoor rain** forests 82 0.51 No Designation 1.05 Concession 2.26 3.79 0.70 **Central Range Papuan montane** 18.33 Montane Protected Area 24.40 4.98 27.15 rain forests No Designation 25.92 69.06 12.66 Concession 3.30 1.01 20.87 **New Guinea** Protected Area 4.86 Lowland 6.10 25.61 1.25 mangroves No Designation 5.33 53.52 2.60 **Northern New** Concession 35.94 5.25 17.06 **Guinea** lowland 14.60 Lowland Protected Area 15.83 22.13 3.23 rain and freshwater swamp No Designation 12.53 41.93 6.12 forests Concession 4.09 30.84 1.26 Northern New Guinea montane 4 Montane Protected Area 4.05 20.27 0.83 rain forests No Designation 4.08 48.88 1.99 0 Concession <1 0.00 2.39 Montane Protected Area 1.38 6.75 57.61

Supplementary Material

Papuan Central Range sub-alpine grasslands			No Designation	2.08	42.39	1.01
Southern New			Concession	13.08	32.65	4.02
Guinea freshwater swamp forests	12.31	Lowland	Protected Area	10.23	16.95	2.09
			No Designation	12.71	50.4	6.21
Southern New			Concession	30.73	50.84	9.45
Guinea lowland	18.60	Lowland	Protected Area	6.23	6.84	1.27
			No Designation	16.10	42.32	7.86
			Concession	<1	7.38	0.15
Trans Fly savanna and grasslands	2	Lowland	Protected Area	4.99	50.48	1.02
			No Designation	1.74	42.14	0.85
			Concession	1.99	11.62	0.61
Vogelkop montane rain forests	16.3	Montane	Protected Area	12.95	50.03	2.64
			No Designation	4.15	38.36	2.03
	5 29	Lowland	Concession	27.00	50.8	8.30
	5.28	Lowland	Protected Area	6.55	8.17	1.34

Vogelkop-Aru lowland rain forests		No Designation	13.73	41.03	6.71
		Concession	<1	<1	0
Yapen rain forests	0.57 Islands	Protected Area	1.36	48.42	0.28
		No Designation	<1	51.4	0.29

Supplementary Figures

Supplementary Figure 1. Tanah Papua's twelve Ecoregions according to Dinerstein et al. (2017). Numbers align with Fig. 2 of the main text.

Literature

Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E., ... Saleem, M.

(2017). An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. Bioscience, 67(6),

534-545. https://doi.org/10.1093/biosci/bix014

- Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., ... Alsdorf, D. (2007). The Shuttle Radar Topography Mission. *Reviews of Geophysics*, 45(2), RG2004. <u>https://doi.org/10.1029/2005RG000183</u>
- Global Forest Watch. (2019). World Resources Institute. Retrieved June 1, 2019, from www.globalforestwatch.org
- Hijmans, R. J., van Etten, J., Cheng, J., Mattiuzzi, M., Sumner, M., Greenberg, J. A., ... Shortridge, A. (2019). raster: Geographic Data Analysis and Modeling. R package version 3.0-7. Retrieved from <u>https://cran.r-project.org/package=raster</u>
- Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., ... RCore Team. (2020). caret: Classification and Regression Training. R package version 6.0-85. Retrieved from <u>https://cran.r-project.org/package=caret</u>
- R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved from https://www.r-project.org/
- UNEP-WCMC & IUCN. (2019). Protected Planet: The World Database on Protected Areas (WDPA). Retrieved June 1, 2019, from <u>www.protectedplanet.net</u>