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Analysis of Patchclamp Recordings:

Model-Free Multiscale Methods and Software
Florian Pein, Benjamin Eltzner and Axel Munk

Abstract

Analysis of patchclamp recordings is often a challenging issue. We give practical guidance how such recordings

can be analyzed using the model-free multiscale idealization methodology JSMURF, JULES and HILDE. We

provide an operational manual how to use the accompanying software available as an R-package and as a graphical

user interface. This includes selection of the right approach and tuning of parameters. We also discuss advantages

and disadvantages of model-free approaches in comparison to hidden Markov model approaches and explain how

they complement each other.

Index Terms

Deconvolution, flickering, fully-automatic, hidden Markov models, homogeneous and heterogeneous noise, ion

channel recordings, lowpass filtering, open channel noise, PorB, subconductance states

I. INTRODUCTION

The patchclamp technique has been and still is a fundamental tool for the quantitative analysis of electrophysio-

logical processes of transmembrane proteins, in particular of ion channels, (Neher and Sakmann, 1976; Sakmann and

Neher, 1995). A detailed understanding of the dynamics of transmembrane proteins and their manifold interactions
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with their surrounding is of high importance in medicine and biochemistry, for instance for the development of

new drugs (Kass, 2005; Overington et al., 2006). However, most electrophysiologists will agree that conducting

patchclamp experiments but also the analysis of their recordings is a challenging issue, and the latter is far from

being a routine data analysis in general (Sivilotti and Colquhoun, 2016). In this work we provide practical guidance

on how to analyze such recordings. We focus mainly on model-free multiscale idealizations (explained below),

which we have developed over the last decade.

Patchclamp recordings: The patchclamp technique allows to measure the conductance of a channel (i.e., the

recorded current divided by the applied voltage) over time. An example is given in Figure 1. It shows a recording

of the outer membrane porin PorB from Neisseria meningitidis, a pathogenic bacterium in the human nose and

throat region (Virji, 2009). PorB is a trimeric porin and the second most abundant protein in the outer membrane

of Neisseria meningitidis. The added antibiotic ampicillin blocks the ion flow for short periods of time which

allows to draw conclusions about the transport of antibiotics into the cell, which is relevant for the understanding

of antibiotic resistances. For further details see (Bartsch et al., 2019). In addition, we will also use a PorB dataset

without ampicillin (Figure 7) and a Gramicidin A dataset (Figure 4) throughout this work as illustrating examples1.

Idealization: Important dynamics such as the number of conductance levels, their values and how long each

level persists can be examined provided the conductance recordings (data points) are properly idealized (Colquhoun,

1987; Sakmann and Neher, 1995), i.e., the conductance trace over time (the underlying signal) is accurately

reconstructed (estimated, denoised).

An idealization can either be obtained model-free2, i.e., without prior assumptions about the gating dynamics, or

in a model based way by assuming an underlying statistical (parametric) model with a few parameters for the gating

dynamics. For the latter most commonly hidden Markov models (HMMs) are used, see (Ball and Rice, 1992) for

an early reference, where parameters correspond to states, transition probabilities and noise characteristics.

Filtering: The noise before filtering is often assumed to be Gaussian white noise. However, patchclamp

recordings are usually lowpass filtered, integrated in the hardware of the measurement device, to stay in the

transmission range of the amplifier. Such filtering introduces colored noise and smooths the underlying conductance,

see Figure 13 in Section IV-B. Ignoring filtering typically results in the detection of false positives (additional wrong

events). This is illustrated in Figure 2, where we used SMUCE (Frick et al., 2014), a multiscale method that does

not include filtering but is otherwise similar in spirit to our model-free idealization approaches, to be explained

later. Filtering especially affects short temporal scales (at and below the magnitude of the filter length, say) and is

therefore particularly relevant to the analysis of short events, also called flickering.

1All shown measurements were taken at the Steinem lab, Institute of Organic and Biomolecular Chemistry, Georg-August-University of
Göttingen.

2Strictly speaking the terminology ’model-free’ is misleading as also model-free approaches require an underlying model to be valid. However,
we use this terminology mainly for historical reasons. The precise (non-parametric) models underlying our methodology are reviewed in Section
III. We only assume that the underlying conductance is piecewise constant, but make no further assumptions about the gating dynamics.
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Fig. 1: From seconds to microseconds: Patchclamp recording (grey points) displayed at the level of seconds (top
panel), of milliseconds (middle panel) and of microseconds (bottom panels). Data points result from a representative
conductance recording of PorB wild type with 1 mM ampicillin by the patchclamp technique using black lipid
membranes at 80mV. Data points are explicitly displayed instead of a line plot, which provides an accurate
representation at fine resolution levels.

Flickering and subgating: Flickering typically has its own dynamics and can result from various molecular

processes like conformational changes of the protein (Grosse et al., 2014) or by the passage of larger molecules

blocking the ions’ pathway through the protein (Raj Singh et al., 2012). An example for the latter is the PorB
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Fig. 2: Idealization (red) of the observations in Figure 1 by SMUCE (Frick et al., 2014) displayed on three different
temporal scales. In the lower panels we also show the convolution of the idealization with the lowpass filter (blue).
SMUCE is a multiscale method similar to our model-free idealization approaches, but does not take into account
filtering. Hence, it overestimates the number of conductance changes massively, since it misinterprets local variations
due to colored noise as events and splits abrupt conductance changes in multiple steps since the convolution of the
conductance with the lowpass filter is ignored.

analysis in Figures 1 and 3. A second potential challenge in the analysis are subconductance states (Fox, 1987),

meaning that two or more conductance levels are close to each other, as illustrated in Figures 4 and 5.
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Fig. 3: Idealization (red) of the observations in Figure 1 by HILDE (Pein et al., 2020a) displayed on three different
temporal scales. Lower panels: Convolution of the idealization with the lowpass filter (blue). Events are well
idealized down to microseconds.

Model-free idealizations: In this paper, we discuss mainly our model-free idealization methods JSMURF (Hotz

et al., 2013), JULES (Pein et al., 2018) and HILDE (Pein et al., 2020a), which are primarily designed as versatile

tools to analyze patchclamp recordings in a multiscale fashion, for instance to deal well with subconductance states

and flickering. Due to their multiscale character they act on various temporal scales simultaneously and hence are able

to idealize events of different lengths well in a single step. Moreover, all parameters, i.e., locations of conductance
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Fig. 4: From seconds to milliseconds: Patchclamp recording (grey points) displayed at the level of seconds (top
panel and middle panel) and of milliseconds (bottom panels). Data points result from a representative conductance
recording of an acylated gramicidin A derivative by the patch clamp technique using solvent-free bilayers at 100mV.
Small conductance changes, which most likely result from subconductance states, occur frequently.

changes and conductance levels, are obtained by (local) deconvolution, hence they take into account lowpass filtering

explicitly. Furthermore, all three approaches control the overestimation of the number of conductance changes. More

precisely, the probability to detect at least one false positive is bounded approximately by the error level α, a tuning

parameter. A more detailed review of these and further model-free idealization approaches is given in Section IV-B.
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Fig. 5: Idealization (red) of the observations in Figure 4 by JSMURF (Hotz et al., 2013) displayed on three different
temporal scales. It idealizes the observations well and finds in particular a larger number of gating events with a
small conductance change (subconductance states).

All three methods can be used when homogeneous noise is assumed (i.e. the error variability does not change

over time, see Section III for details), but JSMURF and HILDE in addition allow for heterogeneous noise. The

latter means that different parts of the data, for instance different states, may have different noise levels, as for

instance caused by open channel noise. Moreover, JSMURF requires that events are slightly longer, while JULES

or HILDE are able to deal with flickering (short events) at the possible expense of longer computational time.
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Figure 6 summarizes for which datasets which one of them is most suitable and Section II-B explains those choices

in full detail.

  

homogeneous 
noise

heterogeneous 
noise

no relevant short 
events exist

JSMURF
(homogeneuos noise)

JSMURF
(heterogeneuos noise)

relevant short 
events exist

JULES or HILDE 

(homogeneuos noise)
HILDE
(heterogeneuos noise)

Fig. 6: Table for the selection of the right model-free idealization method. For more details see Section II-B.

Software: JSMURF, JULES and HILDE are implemented as R functions in the package clampSeg (Pein

and Aspelmeier, 2020). In Section II-A use of those methods is demonstrated. They can be combined with the

packages readABF (Syekirin and Pein, 2020) to load recordings, and lowpassFilter (Pein et al., 2020b) for certain

data processing steps around filtering such as computing the convolution of an idealization with the kernel of a

lowpass filter.

Alternatively, a graphical user interface, available at https://github.com/FlorianPein/clampSegGUI together with

detailed manuals on how to install it and on how to use it, allows access without requiring any R or other

programming knowledge. The idealizations can be visualized in the interface but also saved as csv files and hence

post-processed by any other program.

Interplay between model-free idealizations and hidden Markov models: There is wide agreement that, except

in few counterexamples (Fuliński et al., 1998; Mercik and Weron, 2001; Goychuk et al., 2005; Shelley et al.,

2010), the gating dynamics of ion and many other channels are usually Markovian. Hence, hidden Markov model

(HMM) based approaches are widely used to analyze partchclamp recordings. However, from our own experience

we stress that the hidden part is usually the critical part of the assumption of a (homogeneous) HMM. This is

because of artifacts, which are for instance caused by the electronics, external vibrations or small holes in the

membrane, or because of additional high frequency f2 (violet) and long tailed 1/f (pink) noise components, see

for instance (Neher and Sakmann, 1976; Venkataramanan et al., 1998; Levis and Rae, 1993). Hence, HMM based

analyses often rely on intensive preprocessing or on more complicated models: For instance (Venkataramanan et al.,

1998) assumed an HMM that allows additional colored noise, and (Diehn et al., 2019) provided modifications to

incorporate inhomogeneous errors. Moreover, lowpass filtering often requires further, computationally demanding

https://github.com/FlorianPein/clampSegGUI
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extensions, see for instance (Venkataramanan et al., 1998; de Gunst et al., 2001; Diehn, 2017; Almanjahie et al.,

2019).

In contrast, model-free idealizations do not assume a specific (parametric) model for the gating dynamics and

immediately provide an idealization without such an assumption. Moreover, they usually act rather locally on the

data. Hence, they are typically more robust to artifacts and often simpler to apply. Contrarily, HMM based approaches

have (potentially) a finer time resolution and provide more concise results. A more detailed review of HMM based

analyses, their advantages and disadvantages in comparison to model-free approaches and their interplay is given

in Section IV-A.

Model-free idealizations allow a flexible analysis of the number of conductance states, their values and which

transitions are possible. To fit a Markov model, one has to cluster the conductance values, e.g., by fitting a Gaussian

mixture distribution and assigning each value to the nearest mean value. The outcome will then have only a small

number of conductance levels. This can be used to select and verify a Markov model and to estimate its parameters,

which often requires taking into account missing of short events. Further details and tools which can be used

for those steps are described in Section IV-C. Finally, model-free idealizations can be used to assist HMM based

approaches in any of their analysis steps, e.g., they can be used to remove artifacts, to select and verify a specific

Markov model, to provide starting values for iterative procedures such as the Baum-Welch algorithm and to verify

estimated parameters and the provided idealization.

All in all, model-free and HMM approaches have different strengths and weaknesses and hence should less be

seen as competing approaches, but rather as tools that benefit from and complement each other. In fact, as an

indication of a proper data analysis it can be checked whether the results of model-free and HMM based analyses

are in compliance.

Organization of this work: In Section II we give detailed instructions how to use our methods to obtain

model-free idealizations. In Section III we provide details of the statistical models underlying the presented model-

free idealization methodology. In Section IV we review in more detail existing approaches for the analysis of

patchclamp recordings. We start in Section IV-A with a review of HMM based methodology, their advantages

and disadvantages in comparison to model-free approaches and the interplay of model-free idealization with them.

Afterwards, in Section IV-B we review some existing model-free idealization methods, with a particular focus on

our approaches JSMURF, JULES and HILDE. This is complemented by a brief summary of simulation results.

Finally, in Section IV-C we discuss how (model-free) idealizations can be used to analyze patchclamp recordings.

The paper concludes with a discussion in Section V, in which we highlight open research questions.

II. MODEL-FREE IDEALIZATIONS

This section provides a comprehensive guide on how to use our methods JSMURF, JULES and HILDE, which

have different strengths and weaknesses depending on certain structural features of the measured data. We explain
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in detail how to use our software (Section II-A) and provide guidance for which method is preferable in which

situations (Section II-B).

A. Using our software

For this section we use R code3. We start by describing how recordings can be loaded, how the lowpass filter

can be specified and how our methods can be called. To this end, we require the R packages readABF (Syekirin

and Pein, 2020), lowpassFilter (Pein et al., 2020b) and clampSeg (Pein and Aspelmeier, 2020). All three packages

are available on CRAN4. For users who are not familiar with R, we also provide a graphical user interface5, which

contains detailed manuals on how to install it and on how to use it.

Loading the data: Patchclamp recordings are typically stored as abf files. The readABF package allows to

read such files in R.

library(readABF)

# path and filename have to adjusted

data <- readABF("../data/1 M KCl 10 mM HEPES pH 75_0268.abf")

# convert it to a data.frame with two columns:

# time and conductance (current divided by voltage)

data <- as.data.frame(data, type = "one", channels = c(1, 2), unit = "nS")

time <- data$`Time [s]`

data <- data$`Data [nS]`

Our idealization methods but also any other approach should not be used as a black-box. We strongly recommend

to start with an empirical and visual data analysis to gain understanding of the datasets and major features that

can be used to direct further analysis. In alignment with the underlying multiscale philosophy of our methods we

recommend always to plot on various temporal scales. See Figure 1 for an example of such plots on three different

scales ranging from a minute to milliseconds. Moreover, histograms of the raw data (point amplitude histograms),

see for instance Figure 14a and for code the paragraph ’Interpreting, plotting and verification of the output’ below,

are helpful visual cues. As detailed below, this can already help to decide whether the noise is homogeneous or

heterogeneous and whether short events occur in the dataset. Moreover, we recommend to identify potential artifacts

that might disturb analysis and interpretation. However, we have found that model-free idealizations are usually

3https://www.r-project.org/
4https://cran.r-project.org/
5https://github.com/FlorianPein/clampSegGUI
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quite robust to artifacts. Hence, our default suggestion is first to apply the idealization methods on the unmodified

dataset and to decide later whether artifacts require a more careful analysis.

Lowpass filter: Our methodology requires to specify correctly the lowpass filter in the measurement device.

The type, often a Bessel filter with an even number of poles, should be specified in the hardware documentation. The

sampling rate and cut-off frequency can typically be varied by the user. In our example (Figure 1), the recordings

were sampled at 50 000 Hz and lowpass filtered by a 4-pole Bessel filter with normalized cutoff frequency of 0.1

(5 000 Hz cutoff frequency in time domain).

For simplification and since the error is negligible we truncate the kernel of the lowpass filter after m data points,

for sufficiently large m. As a working rule, we choose m such that the autocorrelation function of the untruncated

analogue lowpass filter is below 10−3 afterwards, which leads for instance to m = 11 in the example above.

This is implemented in the function lowpassFilter in the package lowpassFilter (Pein et al., 2020b) (currently

only Bessel filters are supported). The following code creates the filter object.

library(lowpassFilter)

filter <- lowpassFilter(type = "bessel",

param = list(pole = 4L, cutoff = 0.1), sr = 5e4)

We strongly recommend to verify that the filter is correctly specified by zooming into single events and checking

whether the obtained idealization convolved with the lowpass filter fits the observations well. This is detailed in

paragraph ’Interpreting, verification and storing of the output’ below, where we discuss in more generality how to

assess the quality of an obtained idealization. Additionally, one can compare the auto-correlation resulting from the

filter, filter$acf, with the estimated auto-correlation of the recordings. To this end, one can either apply standard time

series estimators, as for instance offered by the acf function in R, to long segments without conductance changes

or use the robust difference based estimators of (Tecuapetla-Gómez and Munk, 2017) on the raw data, available in

the R-package dbacf 6.

Obtaining an idealization: JSMURF, JULES and HILDE are available in the package clampSeg. All three

functions can be applied when homogeneous noise is assumed, but only JSMURF and HILDE allow for het-

erogeneous noise. The following code illustrates how to call those functions depending on whether the noise is

homogeneous or heterogeneous. See Section II-B for guidance which method and which noise option should be

chosen to idealize a given measurement.

6http://www.stochastik.math.uni-goettingen.de/dbacf
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library(clampSeg)

# JSMURF assuming homogeneous noise

fit1 <- jsmurf(data, filter = filter, family = "jsmurfPS",

alpha = 0.05, r = 1e4)

# JSMURF allowing heterogeneous noise

fit2 <- jsmurf(data, filter = filter, family = "hjsmurf",

alpha = 0.05, r = 1e4)

# JULES assuming homogeneous noise

fit3 <- jules(data, filter = filter, alpha = 0.05, r = 1e4)

# HILDE assuming homogeneous noise

fit4 <- hilde(data, filter = filter, family = "jsmurfPS", method = "LR",

alpha1 = 0.01, alpha2 = 0.04, r = 1e3, lengths = 1:20)

# HILDE allowing heterogeneous noise

fit5 <- hilde(data, filter = filter, family = "hjsmurf", method = "2Param",

alpha1 = 0.01, alpha2 = 0.04, r = 1e3, lengths = 1:65)

The followings paragraphs discuss run time, required Monte-Carlo simulations, the output of the approaches and

how to proceed with it. Further, we explain a potentially occurring warning and how to choose tuning parameters,

e.g., r and alpha.

Run time and Monte-Carlo simulations: The run time of all approaches depends on the size of the dataset,

but also on the number of detected events. The primary reason are Monte-Carlo simulations which are required to

obtain critical values that balance the probabilities of detection of true events and of false positives. Monte-Carlo

simulations depend on the number of data points and on the lowpass filter. Hence, a new Monte-Carlo simulation

is required when new values for those parameters occur or when more repetitions are requested. Depending on the

number of data points and the total number of repetitions r, Monte-Carlo simulations may take long, even up to

several hours. Hence, we store and load their results such that they have to be performed only once. They are fully

automatically stored in the workspace and on the disk of the local computing machine, for more details see the

documentation of the function getCritVal in the package clampSeg (Pein and Aspelmeier, 2020). To keep track of

the progress of a Monte-Carlo simulation one can set the argument messages to a positive integer value m to print

a message every m repetitions.

While a larger number of repetitions increases the run time of the simulations, it also reduces statistical errors

in the computation of the critical values. For a final analysis we recommend to use the default values, 10 000

for JSMURF and JULES and 1 000 for HILDE. For a quick analysis, for instance to decide whether further
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measurements or analyses are required, few hundreds up to 1 000 repetitions usually suffice.

Additionally, also the main computation of the idealization can take some time, usually between few seconds and

few minutes, depending on the used idealization method, on the size of the dataset and on the number of detected

events. Usually, the run time increases with the complexity of the idealization approach, JSMURF is the fastest

and HILDE the slowest. A situation which is computationally particularly demanding is displayed in Figure 10 (see

below). JSMURF detects almost no events. Due to internals in the dynamic programming algorithm, this causes a

considerably long run time, in this example of roughly half an hour. We stress that HILDE uses JSMURF as an

initial step and hence also HILDE is slow in such a situation, though it detects many events as it is able to resolve

events on smaller temporal scales at and below the magnitude of the filter length.

Interpreting, plotting and verification of the output: All shown idealization methods return an object of the

classes stepblock and localDeconvolution. We omit the exact structure of it (and refer to the man files of the called

functions), but demonstrate important ways how to proceed with such an object. First of all, the idealization can be

plotted using standard functions in R. Further, the convolution of the idealization with the kernel of the lowpass filter

can be computed using the function getConvolution in the package lowpassFilter. The following code demonstrates

how to do so. It provides the lower left panel in Figure 3.

fit <- fit4

par(mar = c(4.5, 4.5, 0.5, 0.5))

plot(time, data, pch = 16, col = "grey30", ylim = c(2.5, 4.2),

xlim = c(0.0460798, 0.0463768), ylab = "Conductance in nS",

xlab = "Time in s", cex.lab = 1.8, cex.axis = 1.8)

ind <- seq(0.0460, 0.0464, 1e-6)

convolvedSignal <- lowpassFilter::getConvolution(ind, fit, filter)

lines(ind, convolvedSignal, col = "blue", lwd = 3)

lines(fit, col = "#FF0000", lwd = 3)

In Figure 3 we found that the convolution fits the recorded observations well, which is a confirmation for our

idealization, but also for a correct specification of the model, in particular of the underlying lowpass filter. We

always recommend such a graphical inspection to evaluate the quality of the idealization. If the idealization is not

sufficiently good, one might modify tuning parameters (see the paragraph below), try a different idealization method

(see Section II-B), remove artifacts or seek to improve the quality of the recordings.
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Obtaining a model-free idealization is usually only one step in a data analysis. In Section IV-C we discuss

typical follow up steps. The idealized conductance values and the start and end times of the segments are given

in fit$values, fit$leftEnd and fit$rightEnd, respectively. For instance, the following code creates histograms such as

the ones in Figure 14. We use the half sample mode (Robertson and Cryer, 1974), implemented in the R-package

modeest, to determine the underlying conductance levels, see the paragraph ’Analysis of the conductance levels’ in

Section IV-C for further discussion.

# point amplitude histogram (histogram of the raw data)

hist(data[data >= 2.5 & data <= 4.5], breaks = seq(2.5, 4.5, 0.05),

main = "", xlab = "Conductance in nS")

abline(v = modeest::mlv(data[data >= 2.5 & data <= 4.5],

method = "hsm"), col = "red", lwd = 2)

# event histogram (histogram of the idealized conductance levels)

hist(fit$value[fit$value >= 2.5 & fit$value <= 4.5],

breaks = seq(2.5, 4.5, 0.05),

main = "", xlab = "Codunctance in nS")

abline(v = modeest::mlv(fit$value[fit$value >= 2.5 & fit$value <= 4.5],

method = "hsm"), col = "red", lwd = 2)

abline(v = modeest::mlv(fit$value[fit$value >= 2.5 & fit$value <= 3.5],

method = "hsm"), col = "red", lwd = 2)

# amplitude histogram (difference between idealized conductance levels)

amp <- diff(fit$value[fit$right - fit$left <= 20 / filter$sr &

fit$right - fit$left >= 4 / filter$sr])

hist(amp[amp < 2 & amp > 0], breaks = seq(0, 2, 0.05),

main = "", xlab = "Amplitude in nS")

abline(v = modeest::mlv(amp[amp < 2 & amp > 0.7],

method = "hsm"), col = "red", lwd = 2)

Warning: Users may experience a warning saying “at least one segment could not be deconvolved since two

successive short segments occurred”. This is caused by the fact that the deconvolution approach incorporated in our

methods can only deal with single changes or with isolated peaks (two changes in quick succession but separated by
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few more observations from other events). Obtaining a deconvolution for three or more changes in quick succession

is complicated and time-consuming and hence we decided to ignore such events when applying a deconvolution, but

to mark them in attr(fit, ”noDeconvolution”). For a further analysis we usually recommend to ignore such events

as they might even indicate artifacts. This can be done by setting all marked values to NA.

fit$value[attr(fit, "noDeconvolution")] <- NA

fit$rightEnd[attr(fit, "noDeconvolution") - 1] <- NA

fit$rightEnd[attr(fit, "noDeconvolution")] <- NA

fit$leftEnd[attr(fit, "noDeconvolution")] <- NA

if (length(attr(fit, "noDeconvolution")) > 0) {

if (attr(fit, "noDeconvolution")[

length(attr(fit, "noDeconvolution"))] == length(fit$leftEnd)) {

fit$leftEnd[attr(fit, "noDeconvolution")[

-length(attr(fit, "noDeconvolution"))] + 1] <- NA

} else {

fit$leftEnd[attr(fit, "noDeconvolution") + 1] <- NA

}

}

If too many segments are marked and they appear to be important for the given dataset, we cannot recommend

to use our approaches, in this situation of extreme / high flickering a better alternative might be approaches based

on conductance distribution fitting, for further details see our review in Section IV-A.

Storing of the output: To allow proceeding in a different program, one can store the idealization for instance

in a csv file as demonstrated by the following code. Note that we also remove the first and last segment, since their

true start and end, respectively, cannot be identified by the data.

fit <- data.frame(left = fit$leftEnd[-c(1, length(fit$leftEnd))],

right = fit$rightEnd[-c(1, length(fit$rightEnd))],

value = fit$value[-c(1, length(fit$value))])

write.csv(fit, file = "fit.csv")

Tuning parameters: All three methods have multiple parameters which can be tuned to adapt to particular

needs. Nonetheless, it is advisable to leave them unchanged unless specific reasons exists. All parameters are

described in the man files of the called functions and in the referenced papers. Hence, in the following we will
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only give a brief overview about the most important ones. Further details are also provided in the review of our

idealization approaches in Section IV-B.

The choice of the number of repetitions of the Monte-Carlo simulations, the argument r, was already discussed

above in paragraph ’Run time and Monte-Carlo simulations’. The parameters alpha, alpha1 and alpha2 are error

levels α, α1, α2 that bound approximately the probability of detecting one or more false positives (under the idealized

scenario that the observations follow exactly the assumed model). As a default choice we suggest α = 0.05. Larger

values increase the chance to detect true events, but also to detect more false positives. One may use larger α values

to ’screen’ if important events are difficult to detect.

For HILDE the error level α := α1 + α2 is split between the multiscale criterion of JSMURF (error level α1)

and the local tests (error level α2). As default values, we suggest α1 = 0.01 and α2 = 0.04, since the focus of

HILDE is typically on detecting short events primarily, while events on larger scales are often easier to detect.

More weight can be put on α1 if either short events are of less interest or if long events are difficult to detect as

well, e.g., since they have a smaller jump size than the short events, for instance because of subconductance states.

HILDE requires to specify the largest scale lmax (in R: lengths = 1 : lmax), this value should be chosen such that

all events on larger scales are reliably detected by JSMURF. If required, this can be tested by applying JSMURF

or by Monte-Carlo simulations.

B. Choosing the right method

A guide which method to use is given in Figure 6. The two main criteria are whether the noise is homogeneous

or heterogeneous and whether short events are present and relevant. Recall that JSMURF, JULES and HILDE are

all suitable when one assumes homogeneous noise, but only JULES and HILDE allow for heterogeneous noise.

Moreover, JULES and HILDE are designed to deal with short events, while JSMURF requires that events are

slightly longer. Because of run time and precision, we generally recommend to use the simplest approach that is

suitable for a dataset. Unless the dataset demands otherwise, we recommend JSMURF over JULES over HILDE

and a homogeneous over a heterogeneous noise setting.

Visual inspection: Homogeneous noise means that the noise distribution is the same at all times and for all

conductance levels, otherwise the noise is called heterogeneous. Heterogeneous noise is often clearly visible by

naked eye, as in Figure 7 where the noise level is higher for the higher conductance level, whence one should use

either JSMURF or HILDE with heterogeneous noise setting. In most cases, if heterogeneous noise is not clearly

visible, approaches that assume homogeneous noise are suitable.

A short event is defined by two conductance changes in quick succession, e.g., a channel opening only very

briefly before closing again. JSMURF should be used if it is not expected to miss relevant short events. Which

events are too short depends not only on the absolute length, but also on the magnitude of the conductance change,
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noise levels, filtering and tuning parameters. At least, events shorter than filter length will certainly be missed by

JSMURF. Figure 1 shows such an example, whence one should use either JULES or HILDE.

Empirical comparison: If visual inspection is not sufficient, we suggest the following empirical procedure.

The user should apply all potentially suitable methods to a small excerpt of the data and decide which leads to the

best idealization. In general, if the idealizations are similar, the simpler approach should be preferred.

To illustrate the procedure for short events, consider Figure 3 where we see that HILDE detects a large number

of short events. In comparison, we see in Figure 10 that JSMURF is not able to detect those events and hence is

unsuitable for this dataset. In this case, HILDE appears to be more suitable. Contrarily, Figure 5 demonstrates that

JSMURF is very suitable to idealize the Gramicidin dataset, where no short events occur, but events with small

conductance changes, while the more complex method JULES struggles to detect all of them, as seen in Figure 11.

To illustrate the procedure for heterogeneous noise, we idealized the observations in Figures 7, which have visibly

heterogeneous noise, with HILDE, which is designed to deal with heterogeneous noise. Results are displayed in

Figure 8. For comparison, an idealization by JULES, assuming homogeneous noise, are displayed in Figure 9. We

see that JULES detects many additional events in the open state, which has higher noise level and while it is able

to detect the short events, the fit is visibly worse than the fit by HILDE.

To decide whether the noise is heterogeneous, we recommend to more advanced users also the following

systematic approach: If longer segments without gating events are present, one can use them to estimate the noise

level. Alternatively, one can idealize the data with JSMURF or HILDE with heterogeneous noise setting and use

the idealization to determine noise levels as detailed in (Pein et al., 2020a, Section VI-C).

Finally, if homogeneous noise is assumed and short events are relevant, we usually recommend to use JULES

instead of HILDE as it is simpler and faster. Only if events are very short, such as in Figure 3, HILDE should be

used as it detects such events more likely.

III. MODELS

In this section we explain the statistical models underlying our methodology. For more details see (Hotz et al.,

2013; Pein et al., 2018, 2020a).

We assume that the recorded data Y1, . . . , Yn (the measured conductance at time points ti = i/fs, i = 1, . . . , n,

equidistantly sampled at rate fs) result from a conductance f perturbed by a centered Gaussian white noise process

η. The noise is scaled by the noise level σ. Furthermore, conductance and noise are convolved with an analogue

lowpass filter, with (truncated) kernel Fm. Hence, after digitization at sampling rate fs = n/τend, we obtain

Yi =
(
Fm ∗ (f + ση)

)
(i/fs) = (Fm ∗ f)(i/fs) + εi, i = 1, . . . , n, (III.1)
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Fig. 7: From seconds to microseconds: Patchclamp recording (grey points) displayed at the level of seconds (top
panel), of milliseconds (middle panel) and of microseconds (bottom panels). Data points result from a representative
conductance recording of PorB by the patch clamp technique using solvent-free bilayers at 20mV. The observations
in the open state have visibly a larger noise level than the ones in closed state.

with ∗ the convolution operator. Here, n denotes the total number of data points (typically several hundred thousands

up to few millions). Hence, the resulting errors ε1, . . . , εn are Gaussian and centered, but correlated (colored noise).

The conductance f is assumed to be piecewise constant with potentially many different (unknown) segments of

(unknown) length and size. The noise can either be homogeneous, i.e., the noise level σ does not vary over time,
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Fig. 8: Idealization (red) of the observations in Figure 7 by HILDE (Pein et al., 2020a) displayed on three different
temporal scales. Lower panels: Convolution of the idealization with the lowpass filter (blue). Events are well
idealized down to very short temporal resolutions.

or heterogeneous. In the latter case, we assume the noise level σ to be an unknown piecewise constant function

with potential jumps at the locations where the conductance changes, since changes of the noise level also depend
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Fig. 9: Idealization (red) of the observations in Figure 7 by JULES (Pein et al., 2018) displayed on three different
temporal scales. Lower panels: Convolution of the idealization with the lowpass filter (blue). JULES detects short
events, but finds many small events, which are most likely false positives, at areas of high conductance and high
variance (see for instance the idealization of the observations around 0.36 nS in the middle panel). These detections
prevent JULES from performing a deconvolution at those positions (see for instance the lower left panel) and make
the idealization unreliable.

on gating events7. More precisely, we model the conductance f and the noise level σ by

f(t) =
∑K
j=0 cj 1l[τj ,τj+1)(t) and σ ≡ σ0 ∈ R, if homogeneous noise is assumed,

f(t) =
∑K
j=0 cj 1l[τj ,τj+1)(t) and σ(t) =

∑K
k=0 sk 1l[τk,τk+1)(t), if heterogeneous noise is assumed,

(III.2)

7Strictly speaking, this models only heteroscedasticity, one special form of heterogeneous noise that is for instance caused by open channel
noise. But we expect our methods also to be robust to other forms of heterogeneous noise, confer the simulation results in (Pein et al., 2020a).
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Fig. 10: Idealization (red) of the observations in Figure 7 by JSMURF (Hotz et al., 2013) displayed on three
different temporal scales. Almost no events are detected, since all events are around or below the magnitude of the
filter length.

where t denotes physical time. The (unknown) conductance levels are denoted as c0, . . . , cK , the (unknown) noise

levels as s0, . . . , sK > 0, the (unknown) number of gating event as K and the (unknown) locations of the gating

events as −∞ =: τ0 < τ1 < · · · < τK < τK+1 := τend. We stress that the class of signals in (III.2) is very flexible

as potentially any arbitrary number of gating events at arbitrary conductance levels and arbitrary noise levels can

be imposed, see Figure 3 for an example.
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Fig. 11: Idealization (red) of the observations in Figure 4 by JULES (Pein et al., 2018) displayed on three different
temporal scales. It misses many of the small conductance changes, since the fact that it also looks for very short
events (which are not present in this dataset) slightly decreases detection power for long events compared to
JSMURF.

IV. REVIEW OF TOOLS TO ANALYZE PATCHCLAMP RECORDINGS

In this section we give a review about methods for the analysis of patchclamp recordings. We start in Section IV-A

with a HMM-based analysis and discuss also their interplay with model-free idealizations as well as their advantages

and disadvantages in comparison to model-free approaches. The analysis by and the interplay between the different
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approaches is also illustrated in Figure 12. Secondly, we review existing model-free idealization methods in Section

IV-B. Finally, we discuss in Section IV-C how idealizations can be used to analyze patchclamp recordings. Given

the large amount of different methodology, we are by far not able to give a full review. The following only intends

to summarize major ideas in order to help the reader to put JSMURF, JULES and HILDE in the right context.

A. Hidden Markov Models

HMM based analysis: We limit our discussion mostly to homogeneous HMMs, which means that the pa-

rameters, which describe state transition properties and noise distribution, are constant in time. Inhomogeneous

HMMs, see for instance (Diehn et al., 2019), are rarely used, as they are computationally more challenging and

theoretical guarantees for parameter estimates are much harder to prove. As already discussed in the introduction,

the assumption of a homogeneous Markov chain underlying the gating dynamics is almost always appropriate, but

the assumption of a homogeneous error distribution to obtain a homogeneous HMM is more critical, since, e.g.

because of artifacts, often intensive data cleaning or more complicated models are required. We stress that the

quality of a HMM based analysis crucially depends on the stringent modeling assumption given by a HMM.

Obtaining an idealization by a HMM proceeds in several steps (illustrated in the right hand side of Figure 12):

First, a specific hidden Markov model has to be selected and ideally verified. This includes to find a Markov model

for the gating dynamics, e.g., to fix the number of states and which transitions are possible. Note, that often multiple

Markov states are required for one conductance level, e.g., to accommodate different noise levels or dwell times.

Though data-driven model-selection tools are available, see e.g. (Gassiat and Keribin, 2000; Gassiat and Boucheron,

2003; Celeux and Durand, 2008; Chambaz et al., 2009; Lehéricy, 2019) and the references therein, this is often

done manually by an empirical data analysis or by repeating the steps below until results are satisfying, which can

be time-consuming and introduces subjectivity.

As soon as a specific HMM is selected, parameters of the Markov model can either be estimated by the Baum-

Welch algorithm, see (Venkataramanan et al., 2000; Qin et al., 2000), by Bayesian approaches, in particular MCMC

sampling, see (de Gunst et al., 2001; Siekmann et al., 2011), or by approaches based on the conductance (current)

distribution, see (Yellen, 1984; Heinemann and Sigworth, 1991; Schroeder, 2015) and the references therein.

Finally, an idealization can be obtained by the Viterbi algorithm (Viterbi, 1967) or by Bayesian methods, in

particular particle filtering, see (Fearnhead and Künsch, 2018) and the references therein. Recently, a deep neural

network approach has been proposed (Celik et al., 2020), which skips the parameter estimation step and directly

obtains an idealization. This approach can be seen as a hybrid method in between parametric and model-free

approaches. It does not require a specific HMM to obtain an idealization but training in advance is required, which

was done by assuming classes of hidden Markov models with hyperparameters.
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Fig. 12: Illustration of the interplay between HMM and model-free approaches.

Once an idealization is obtained, it can be used in reverse to estimate the parameters of the Markov model.

We postpone details to Section IV-C, since one proceeds as for model-free idealization. Using a layered HMM

on simulated filtered signals (Pein et al., 2020a, Section IV-D) as well as in real data applications (Pein et al.,

2020a, Section V), (Bartsch et al., 2019) we observed that the thus estimated parameters were significantly better

than the parameters obtained directly by a Baum-Welch algorithm, most likely because of the applied missed event

correction.

Interplay: As we will demonstrate in Section IV-C, model-free idealizations allow a standalone analysis of

patchclamp recordings. Moreover, they can assist a HMM based analysis in various forms (illustrated in Figure 12):

Model-free idealization can help to identify and remove artifacts, we used for instance JULES in (Bartsch et al.,

2019) to assists a HMM based analysis in that way. They can be used to determine the number of conductance

levels (paragraph ’Analysis of the conductance levels’ in Section IV-C) and help select and verify a specific Markov

model (paragraph ’Selection and verification of a Markov model’ in Section IV-C). Furthermore, most HMM based

parameter estimation approaches are iterative procedures which require starting values. Those are particularly crucial
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when the procedure converges to a local optimum only. Such starting values can be provided by previously obtained

values using model-free idealizations. Finally, model-free idealizations and the resulting parameter estimates using

a missed event correction can be used to verify HMM based idealization and parameter estimates, and vice versa.

This is particularly valuable as they have different strengths and weaknesses as outlined in the following paragraph.

We also note that the local deconvolution approach used in our model-free idealization methods, see (Pein

et al., 2018), can be used to improve HMM based idealizations, obtained for instance by a Viterbi algorithm, as

our approach not only takes into account explicitly the filtering but is also time-continuous. It only relies on a

prior fit that fixes the number of conductance changes and their rough locations. It can be called by the function

deconvolveLocally in the package clampSeg.

HMM versus model-free idealization: Compared and contrasted: In general, HMM based approaches achieve

a higher temporal resolution of gating dynamics, because of their stronger assumptions. Hence, parameter estimates

might be more accurate as they rely on more detected events. Moreover, HMMs allow for immediate parameter

estimation and interpretation, which is often the main goal of an analysis. And since the HMM state space is

fixed in advance, the idealization immediately assigns every time point to one of the states. In contrast, model-free

idealizations often have to be postprocessed, (e.g., by clustering or thresholding) to identify discrete states because

conductance levels are determined freely.

On the other hand, there are several disadvantages, some of which are closely entangled with the advantages.

As discussed above, the need for often extensive preprocessing adds subjectivity and also more potential sources

of data analysis errors. In contrast, in such situations model-free methods may right away provide a reasonable

idealization as they can potentially handle inhomogeneity in a more flexible way, in particular those which act

locally on the dataset. The state space and a model for the noise must be fixed in advance, thereby strongly limiting

the possible results. Model selection always has a subjective component and can lead to a flawed idealization,

for example by inadvertently modeling two states with similar but subtly different conductance or noise levels as

only one state, or by prescribing an unsuitable noise model which can lead to detection of spurious state changes.

Within a HMM framework one can only incompletely determine whether the data is compatible with the underlying

model assumptions. Hence, despite the above described advantages, at least in simulations and real data examples

in (Pein et al., 2020a; Bartsch et al., 2019) we observed that parameter estimates based on an idealization (either

obtained by model-free approaches or by the Viterbi algorithm) appear to be more accurate than direct estimates

by the Baum-Welch algorithm. Gating dynamics are time-continuous processes, but for simplification many HMM

approaches underlie a time-discrete Markov chain as an approximation. A time-discrete approximation is also

implied by most model-free approaches as they allow gating events only at the sampling points. An exception is

the local deconvolution approach used in (Pein et al., 2018) and (Pein et al., 2020a).

Some of the subjectivity and other problems in HMM modeling can be mitigated by conducting a model-free
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idealization to inform preprocessing and model selection. In summary, HMM-based and model-free approaches can

(and should) be used to complement each other to verify each other’s results. Artifacts and missed events might be

reasons for some differences, but otherwise results should be similar.

B. Review of existing model-free idealization approaches

Many analyses are still performed by visual inspection, often with manually chosen event times or in a semi-

automatic way, for instance by amplitude thresholding (Colquhoun, 1987; Sakmann and Neher, 1995), as e.g. offered

by pCLAMP 10 software (Molecular Devices), or by the semi-automatic SCAN software (Colquhoun and Sigworth,

1995) which allows time-course fitting. Hence, those approaches are typically time-consuming and subjective.

Moreover, approaches which are based on additional filtering (often by lowpass Gauss filters) aggravate detection

of small events. A first approach for a fully automatic idealization was slope thresholding (Basseville and Benveniste,

1983), for instance TRANSIT (VanDongen, 1996). Recently, Gnanasambandam et al. (2017) proposed idealizations

based on the minimal description length (MDL). All of them (except the semi-automatic SCAN software) ignore

lowpass filtering and hence may have difficulties to idealize events correctly on small temporal scales. Furthermore,

if events are present on multiple scales (recall Figures 1, 4, 7), uniscale thresholding procedures will usually fail.

As mentioned in the introduction, JSMURF (Hotz et al., 2013), JULES (Pein et al., 2018) and HILDE (Pein

et al., 2020a) are multiscale procedures combined with local deconvolution and hence take into account both issues.

Consequently, they provide usually more accurate results as demonstrated in simulations and real data applications.

As described in the following they mostly differ in how they take into account the filter when detecting events

and hence whether they are suitable to detect short events, but also whether they incorporate the possibility to

allow for heterogeneous noise. To understand the methodology better, it is illustrative to plot the convolution of a

single gating event and single peaks with the kernel of a lowpass filter, see Figure 13. We stress that for the short

event displayed in Figure 13b the filtered signal does not reach the lower conductance level of the original signal.

This is generally the case for peaks shorter than the filter length m/fs. Hence, if such short events are present,

deconvolution techniques are indispensable to idealize those conductance levels correctly.

JSMURF: The Jump-Segmentation by MUltiResolution Filter, JSMURF, from Hotz et al. (2013), combines

a multiscale criterion with rigorous error control to reliably detect events on various temporal scales simultaneously.

More precisely, it takes into account all scales above the filter length and for each of those intervals it ignores the

first m data-points. As illustrated in Figure 13 only during these m point long transitions the convolution is not

matching the conductance f . It provides the following strict error control. The probability that the idealization

contains at least one false positive event (an event that is not contained in the true conductance f ) is bounded by

the error level α. The original work (Hotz et al., 2013) assumed homogeneous noise, (Pein et al., 2020a) proposed

an extension to heterogeneous noise.
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(a) Single gating event. (b) Short peak. (c) Long peak.

Fig. 13: Signals (black line) containing a single gating event, a short peak and a longer peak and their convolutions (blue line) with a four-pole
lowpass Bessel filter with normalized cutoff frequency of 0.1 and sampling rate 104. Vertical red lines indicate the event time plus the filter
length m/fs.

JULES: The JUmp Local dEconvolution Segmentation filter, JULES, from Pein et al. (2018), applies a

multiscale criterion to all temporal scales and combines it with a postfilter step to remove incremental steps as for

instance occurring in Figure 2. Finally, a local deconvolution approach is proposed to idealize short events well. The

error level α bounds the probability of detecting a false positive approximately. All in all, JULES is particularly

designed for homogeneous noise and short events.

HILDE: Heterogeneous Idealization by Local testing and DEconvolution (Pein et al., 2020a) obtains ideal-

izations in three steps: It applies JSMURF to detect events on large temporal scales, afterwards it tests locally for

additional short events. Those tests explicitly take filtering into account. The final idealization is once again obtained

by local deconvolution. Local tests are performed on scales up to length lmax. The error level α := α1+α2 is split

between the multiscale criterion of JSMURF (error level α1) and the local tests (error level α2). False positives

occur again only with probability approximately α.

Simulation results: In the following we give a brief qualitative summary about the simulation results in (Hotz

et al., 2013; Pein, 2017; Pein et al., 2018, 2020a). Generally speaking, such computer simulations are a systematic

but also computation intensive way to determine precisely how long an event has to be such that an idealization

method is able to reliably detect it. However, we stress that all quantitative results depend on the signal to noise

ratio, the filter and on tuning parameters.

We found that JSMURF reliably idealizes events of medium or large length (usually an event has to be at least

few times the filter length) even when the conductance change is small, confer (Hotz et al., 2013). This is essential

to idealize subgating events. In comparison, JULES and HILDE are able to reliably idealize much shorter peaks,

if they are isolated. Isolated means that two events have to be separated by at least three times the filter length if

homogeneous noise is assumed but at least five times the filter length if heterogeneous noise is assumed (for a filter

truncated after m = 11 sampling points). Moreover, for a good idealization events have to be usually only few
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sampling points long but can be shorter than the filter length. Hence, those two approaches are suitable to idealize

flickering. HILDE allows events to be a bit shorter than JULES.

JSMURF is usually the fastest of our three approaches and an idealization of several hundred thousands up

to a few million data points take often only seconds (when Monte-Carlo simulations are already performed). In

comparison, an idealization of the same dataset with JULES may last around a minute and with HILDE few

minutes. All run times are measured on a standard laptop and increase typically linearly in the number of data

points. A notable exception are situations in which JSMURF detects almost no change-points, then the run time

increases quadratically in the number of observations. For instance the idealization in Figure 10 took roughly half

an hour. Since HILDE uses JSMURF as a first step, its run time is similarly slow.

C. Analysis of patchclamp recordings

In this section we provide a step-by-step guide on how to analyze patchclamp recordings using model-free

idealizations. In addition we describe their interplay with Markov model based analyses, see also the introduction

and in particular Figure 12 for an illustration. Of course, any analysis depends on the specific datasets and its goals.

Hence, the following steps should be seen as more of general guidance that has to be interpreted flexibly. We also

stress that it contains time consuming verification steps which might not be necessary in every analysis.

Analysis of the conductance levels: For this step, we assume that the underlying protein attains only a finite

number of conformations and hence that only a finite number of conductance levels occur. We aim to determine

this number, the values of the conductance levels and possible transitions between those levels. This can be done in

various ways and we will only sketch important ideas. Event histograms (histograms of the idealized conductance

levels) and amplitude histograms (histogram of the differences between consecutive segments in the idealization)

should be used as a visualization of the underlying conductance levels, see Figure 14.

The idealized conductance levels form a mixture distribution, typically a Gaussian mixture, around the true

conductance levels, where randomness results from measurement and idealization errors (and hence the peaks are

narrower if those are better performed). Modes correspond to the true conductance levels. An example can be found

in Figure 14. One can use simple approaches based on a Gaussian assumption to estimate modes. We obtained

good results using the half sample mode (Robertson and Cryer, 1974), because it is quite robust against outliers. In

more difficult cases, where peaks cannot be identified that clearly, more involved statistical methodology to estimate

the components of a mixture distribution has to be used, for an overview see (McLachlan and Peel, 2004) and the

references therein, or the accuracy of the measurement or idealization has to be increased.

Afterwards, one often wants to map each idealized conductance level to its mixture component, for instance

by defining thresholds based on such histograms. Note that the idealization methods are often sensitive enough to

detect baseline fluctuations and fluctuations due to pink noise as events. As a result, often several events in a row
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(a) Point amplitude histogram. (b) Event histogram. (c) Amplitudes.

Fig. 14: Histograms of the PorB measurement with ampicillin in Figure 1. Histograms are based on the visualized and on ten additional traces.
Code to obtain such histograms was explained in the paragraph ’Interpreting, plotting and verification of the output’ in Section II-A. In the
point amplitude histogram we found one dominant conductance level of 3.9664 nS (estimated by the half sample mode). Smaller conductance
levels are not visual, since they are too short and smoothed by the lowpass filter (in total 2 476 data points are between 2.5 nS and 3.5 nS).
The event histogram confirms this conductance level. Note that the peak is much narrower in the event than in the point amplitude histogram.
This is usually the case and improves identification of conductance levels. Moreover, because of the deconvolution step in our idealization and
since dwell times are not represented in the event histogram, we were also able to identify a second conductance level of 2.7956 nS, i.e., the
amplitude (difference, blockage effect of the ampicillin) is 1.1708 nS. The amplitude histogram confirms this finding with a pronounced mode
at 1.1662 nS. A simple mean is roughly the same with 1.1546 nS. The amplitude histogram but also the event histogram shows further events.
Those events could be matched to processes unrelated to the interaction of ProB and ampicillin, and hence should be ignored for the ampicillin
influence, confer (Bartsch et al., 2019).

are mapped to the same conductance level. In other words, this process can also merge segments and thus remove

spurious events. Moreover, it is often a good idea to remove segments that are far from any estimated conductance

level from the subsequent analysis, since they typically result from artifacts.

Selection and verification of a Markov model: As discussed before, a time-continuous Markov model is a

common assumption to analyze patchclamp recordings. Since model-free idealizations are obtained without any

prior assumption on the gating dynamics, they can be used to determine and verify a Markov model. In order to

avoid statistical dependency, a careful analysis involves splitting the measurements and using the first part to select

a Markov model and the second part to verify the model. Recall that a Markov model has two key properties:

dwell times (how long a channel stays in one Markov state) are independent of each other and are exponentially

distributed. Since it is often simpler, one might aim to verify uncorrelated, instead of independent, dwell times,

though lack of correlation does not imply independence. When checking whether dwell times follow a Markov

model, one has to take into account that short events might be missed. Nonetheless, at least in simple Markov

models with only few states one readily can check for uncorrelated and exponentially distributed dwell times, for

an example see (Bartsch et al., 2019, Figure S4 in the supplement).

Parameter estimation: Once a specific Markov model is assumed, one has to estimate its parameters. To this

end, it is essential to take into account missed events. Missing events shorter than a certain resolution limit are

widely discussed in the literature. The exact distribution is calculated by Hawkes et al. (1990), an estimator called

MIL of the Q-matrix is suggested by Qin et al. (1996) and integrated in the QuB software package (Nicolai and
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Sachs, 2013), the exact maximum likelihood estimator for the Q-matrix for two conductance levels is obtained by

Colquhoun et al. (1996) and recently a Bayesian approach was proposed by Epstein et al. (2016). In (Pein et al.,

2018, 2020a; Bartsch et al., 2019) we applied simpler approximations, which worked well since the measurements

could be modeled well by Markov models with only two or three states.

Verification by using hidden Markov approaches: This step was already discussed in Section IV-A. The previous

analysis using model-free idealizations can be an essential help to perform an analysis using HMM based approaches.

HMM based approaches are however potentially able to achieve better temporal resolution. Hence, both approaches

should be used to verify each other’s results, both in terms of parameter estimation and of idealizations.

V. DISCUSSION

We gave detailed guidance on how to obtain model-free idealizations using JSMURF, JULES and HILDE and

on how to use those idealizations together with HMM based approaches to analyze patchclamp recordings. We

believe that this provides a rather comprehensive toolkit for the analysis of many patchclamp recordings.

A notable exception are experiments with varying conductance. Such experiments are interesting, since not only

the present value of voltage affects the channel, some channels are also affected by the present rate of voltage change.

This includes channels that show no gating when the voltage is constant, but can be activated by a varying voltage.

For other channels different dynamics are observed when the voltage changes. One example is the protein channel

Tim23 which tends to close when larger voltage levels are applied constantly (Denkert et al., 2017). Moreover,

experiments with a constant voltage only allow to examine the gating dynamics at few voltage levels (or require

large experimental effort), while with varying voltage the dynamics can be analyzed for a whole range of voltages

by a single experiment. Brief ideas were discussed in (Pein, 2017, Section 6.2.1) and (Diehn et al., 2019).

Though model-free approaches are in general more robust to artifacts than HMM based approaches, confer (Pein

et al., 2018, 2020a) who demonstrated for JULES and HILDE certain robustness to model violations, there is need

for improved methodology (either model-free or HMM based) with a larger focus on robustness.
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