
Compute farm software for ATLAS IBL calibration

M Bindi1, T Flick2, J Grosse-Knetter3, T Heim2, S-C Hsu5, M Kretz4,
A Kugel4, M Marx5, P Morettini6, K Potamianos7 and Y Takubo8

1 Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
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Abstract. In 2014 the Insertable B-Layer (IBL) will extend the existing Pixel Detector of
the ATLAS experiment at CERN by over 12 million additional pixels. For calibration and
monitoring purposes, occupancy and time-over-threshold data are being histogrammed in the
read-out hardware. Further processing of the histograms happens on commodity hardware,
which not only requires the fast transfer of histogram data from the read-out hardware to
the computing farm via Ethernet, but also the integration of the software and hardware into
the already existing data-acquisition and calibration framework (TDAQ and PixelDAQ) of the
ATLAS experiment and the current Pixel Detector.

We implement the software running on the compute cluster with an emphasis on modularity,
allowing for flexible adjustment of the infrastructure and a good scalability with respect to the
number of network interfaces, available CPU cores, and deployed machines. By using a modular
design we are able to not only employ CPU-based fitting algorithms, but also have the possibility
to take advantage of the performance offered by a GPU-based approach to fitting.

1. Introduction
The Insertable-B-Layer (IBL, [1]) will add an additional layer of over 12 million pixels to the
already existing ATLAS Pixel Detector. The front-end chips (FE-I4s, [2]) will be connected
to newly designed readout hardware that takes advantage of recent enhancements in hardware
components. While the basic architecture with pairs of Back-Of-Crate (BOC, [3]) and Read-
Out-Driver (ROD, [4]) cards within a VME crate remains unchanged ([5]), the task of performing
computationally demanding fits on calibration histograms, that are gathered in the RODs, has
been shifted from ROD DSPs ([6]) to an external compute farm (FitFarm) to allow for greater
flexibility.

Gigabit Ethernet interfaces enable the two Slave FPGAs on a ROD to bypass the slow VME-
based communication and send out the histogram data via TCP/IP to the FitFarm machines.
The FitFarm software reformats the incoming data streams and starts the fitting procedure
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when the first valid fraction of data has arrived. Once a scan is completed, it publishes the
results for further use by the TDAQ infrastructure.

2. Existing DAQ Software
There are two major software frameworks used for the IBL and FitFarm development: TDAQ
and IBLDAQ.

The TDAQ framework provides an environment for running distributed software with IPC,
an information service (IS) to share information between applications, and a process manager
(PMG), that controls and monitors remotely spawned processes. IBLDAQ is a fork of the
PixelDAQ framework and the active software development happens here. It contains features
specific to the Pixel Detector and IBL, such as a scan and calibration engine. It is foreseen to
be merged with PixelDAQ.

3. FitFarm Design Considerations
For software as well as hardware specifications it is important to note the beneficial granularity
of the problem set and the hardware interfaces:

3.1. Fitting Problems
Each pixel histogram poses an independent fitting problem and can therefore be processed in
parallel independently from other histograms. As histogramming steps will oftentimes only
be performed on a fraction of pixels (mask-stepping), the fitting procedures can already start
as soon as the first part of valid data, belonging to a subset of all frontend pixels, has been
transferred to a FitFarm machine, even before the scan has been completed. This process is
illustrated in Figure 1.

3.2. Network Transfer
Each ROD features two slave FPGAs, each with one Gigabit Ethernet interface. Preliminary
measurements ([7, p. 41ff]) have shown that the software based IP stack running on the slave
FPGAs is able to deliver about 200 MBit/s. This yields a total output rate of 6 GBit/s for all
15 RODs (one ROD belonging to the Diamond Beam Monitor — DBM — telescopes), a rate
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Figure 1. The steps involved in a calibration scan that are being performed on the different
parts of the system. The front-end electronics are connected via optical links to the readout
hardware that is located in a VME crate. Histogram data is being sent out from the Readout-
Drivers (RODs) to the FitFarm via a Gigabit Ethernet connection and the fitting starts as soon
as the first valid data is available.
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that can easily be handled by current hardware. Different approaches to effectively parallelizing
the fitting problems (CPU and GPU-based) have already been investigated ([8], [7, p. 57ff])
and proven fruitful. As there are 60 TCP connections originating from the slaves, the number
of FitFarm computing nodes is very flexible and can easily be scaled up. The current design
aims for 1-4 nodes in the final setup. Figure 2 depicts the involved hardware components. All
of the ROD-BOC pairs for the IBL are located in a single VME crate. Network connectivity
between slaves and FitFarm machines will most likely be realized via a separate network segment,
allowing for a possible use of jumbo ethernet frames.
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Figure 2. Hardware architec-
ture of the off-detector electronics
and computing components. The
15 ROD-BOC pairs will fit in one
VME crate. ROD slave FPGAs
and FitFarm computing nodes will
be connected via Gigabit Ethernet
connections.

4. FitFarm Software
The architecture of the FitFarm software reflects two main goals - flexibility and scalability.
Figure 3 gives an overview of the planned software structure of a FitFarm node. A FitController
component receives information about the scan that is to be performed. Networking threads
are being created and configured to receive data from the RODs. In the figure a design for a
standalone application, that is controlled by the Process Manager, is shown, but an integration
of the components into an already existing application (PixActionsServer) is feasible. The
FitServer processes perform the actual fitting routines and report the results. They can easily
be substituted to take advantage of different fitting methods (ROOT [9], ported DSP code
from the current Pixel Detector RODs, GPU-based approach, etc.). The results are then being
published to a database for further analysis or will be used directly for steering more advanced
tuning procedures.

5. Development Approach
In order to simplify and speed up the development of the FitFarm software we use a standalone
tool that can simulate the network output generated by the slave FPGAs. Setting up a full
readout chain would not only require to have the involved hardware (front-end chips, VME
crate with ROD and BOC cards, etc.) available, but also a working DAQ software, which is
currently under heavy development. The tool generates fake threshold scan histograms that can
be used for realistic tests of the FitFarm fitting routines.

As the FitFarm software will run in a distributed environment, we make use of virtual
machines that are based on SLC5 and run TDAQ/IBLDAQ. This allows a fast and convenient
deployment of additional FitFarm nodes for testing functionality and debugging. For assessing
the network as well as the fitting performance we will need to run measurements on dedicated
hardware, though.
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Figure 3. Design of the software
running on a FitFarm compute node.
A FitController module coordinates
the fitting of the incoming histogram
data and assigns work packages to
FitServer processes.

6. Current Status & Outlook
Currently the FitFarm software supports one out of the four readout modes provided by the
histogramming units, that is being used during threshold scans. It publishes fitted threshold
scan histograms to the TDAQ online histogramming service (OH). For fitting the histograms
ROOT or the lmfit library can be used, resulting in fit times of 15µs/pixel with lmfit on a
machine with dual Intel E5620 CPUs. A modified implementation of the DSP fitting algorithm
in CUDA yielded fit times of up to 2.3µs/pixel on an Nvidia GTX480 GPU.

Future work will focus on a tighter integration of FitFarm into the IBLDAQ framework and
the support of all available readout modes. By making use of multiple threads, the FitFarm will
be able to serve more than one histogramming unit at a time. For assessing the needed hardware
of the final setup, benchmarks of the networking throughput with the emulator software as well
as the real slaves have to be undertaken.
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