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Abstract
Altitudinal	changes	in	the	diversity	of	plants	and	animals	have	been	well	documented;	
however,	soil	animals	received	little	attention	in	this	context	and	it	is	unclear	whether	
their	diversity	follows	general	altitudinal	distribution	patterns.	Changbai	Mountain	is	
one	of	few	well-	conserved	mountain	regions	comprising	natural	ecosystems	on	the	
Eurasian	continent.	Here,	we	present	a	comprehensive	analysis	of	the	diversity	and	
community	 composition	 of	 Collembola	 along	 ten	 altitudinal	 sites	 representing	 five	
vegetation	types	from	forest	to	alpine	tundra.	Among	7834	Collembola	individuals,	
84	morphospecies	were	identified.	Species	richness	varied	marginally	significant	with	
altitude	and	generally	followed	a	unimodal	relationship	with	altitude.	By	contrast,	the	
density	of	Collembola	did	not	change	in	a	consistent	way	with	altitude.	Collembola	
communities	changed	gradually	with	altitude,	with	local	habitat-	related	factors	(soil	
and	litter	carbon-	to-	nitrogen	ratio,	litter	carbon	content,	and	soil	pH)	and	climatic	var-
iables	(precipitation	seasonality)	identified	as	major	drivers	of	changes	in	Collembola	
community	composition.	Notably,	local	habitat-	related	factors	explained	more	varia-
tion	in	Collembola	assemblages	than	climatic	variables.	The	results	suggest	that	local	
habitat-	related	factors	including	precipitation	and	temperature	are	the	main	drivers	of	
changes	in	Collembola	communities	with	altitude.	Specifically,	soil	and	litter	carbon-	
to-	nitrogen	ratio	correlated	positively	with	Collembola	communities	at	high	altitudes,	
whereas	soil	pH	correlated	positively	at	low	altitudes.	This	documents	that	altitudinal	
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1  |  INTRODUC TION

How	patterns	of	 species	 richness,	 community	 structure,	 and	 their	
underlying	drivers	vary	along	environmental	gradients	is	a	key	ques-
tion	in	ecology.	Mountain	regions	are	hot	spots	for	biodiversity,	cov-
ering	a	wide	range	of	abiotic	factors	that	vary	with	altitude	(Antonelli	
et	al.,	2018).	Mountains	therefore	provide	a	unique	opportunity	to	
study	changes	in	density	and	community	composition	of	plants	and	
animals	 along	 these	 environmental	 gradients	 (Brehm	 et	 al.,	 2013;	
Guo	et	al.,	2013;	Li	et	al.,	2021;	Traunspurger	et	al.,	2017).	Plants	and	
animals	have	to	adapt	to	environmental	changes,	and	altitudinal	vari-
ation	 in	 community	 composition	 reflects	 these	 adaptations.	 Since	
temperature	 and	precipitation	 are	 known	 to	 change	with	 altitude,	
altitudinal	 transects	 may	 provide	 information	 about	 the	 response	
of	 plant	 and	 animal	 communities	 to	 global	 climate	 change	 (Pauli	
et	al.,	2012),	 and	contribute	 to	a	comprehensive	understanding	of	
climate	change	influences	on	ecosystems	(Grytnes	&	McCain,	2007;	
Lomolino,	2001;	Malhi	et	al.,	2010;	Rahbek,	2005).

Plants	and	aboveground	animals	(such	as	mammals,	birds,	and	in-
sects;	McCain	&	Grytnes,	2010)	show	either	monotonically	decreas-
ing	or	hump-	shaped	richness	patterns	with	altitude,	potentially	driven	
by	 local	 habitat-	related,	 climatic,	 spatial,	 historical	 or	 biotic	 factors	
(Bai	et	al.,	2011;	Hodkinson,	2005;	Hoiss	et	al.,	2012;	Kessler,	2001).	
However,	we	know	little	about	the	influence	of	altitudinal	gradients	on	
soil	animals,	which	in	part	is	due	to	the	paucity	of	taxonomical	knowl-
edge.	 This	 is	 particularly	 true	 for	 soil	 invertebrates	 outside	 Europe	
and	North	America	 (Brehm	et	al.,	2003;	Guo	et	al.,	2013;	McCain	&	
Grytnes,	 2010;	Wu	&	 Lei,	 2013).	 Some	 recent	 studies	 have	 investi-
gated	changes	in	the	community	structure	of	soil	invertebrates	across	
altitudinal	 gradients	 in	 temperate	 and	 tropical	 ecosystems	 (Scheu	
et	al.,	2008;	Traunspurger	et	al.,	2017;	Xu	et	al.,	2015).	Density	and	
species	 diversity	 of	 oribatid	mites	 have	 been	 found	 to	 decline	with	
increasing	altitude	 (Illig	et	al.,	2010),	while	 testate	amoebae	showed	
a	hump-	shaped	pattern	peaking	at	intermediate	altitude	(Krashevska	
et	al.,	2007).	In	Collembola,	one	of	the	most	abundant	groups	of	soil	
microarthropods,	the	reported	patterns	are	inconsistent.

Collembola	are	among	the	most	widespread	arthropods	occur-
ring	in	almost	all	terrestrial	ecosystems	and	play	important	roles	in	
ecosystem	processes,	such	as	carbon	and	nitrogen	cycling,	soil	mi-
crostructure	formation,	and	plant	litter	decomposition	(Deharveng,	
2004;	Hopkin,	1997).	Density	and	diversity	of	Collembola	vary	with	
environmental	factors	and	plant	community	composition	(Eisenhauer	
et	al.,	2011;	Johnson	et	al.,	2005;	Sabais	et	al.,	2012),	likely	resulting	

in	distinct	patterns	along	altitudinal	gradients.	Loranger	et	al.	(2001)	
found	a	hump-	shaped	pattern	of	Collembola	species	richness	with	
altitude	in	temperate	forests,	driven	by	local	habitat-	related	factors,	
particularly	soil	pH.	By	contrast,	Illig	et	al.	(2010)	observed	decreas-
ing	 Collembola	 density	 with	 increasing	 altitude,	 probably	 due	 to	
low	 resource	quality	at	high	altitude	 tropical	montane	 rainforests.	
In	addition	to	local	habitat-	related	factors,	Collembola	are	affected	
by	climatic	variables	that	change	with	altitude,	such	as	temperature	
and	precipitation	(Bokhorst	et	al.,	2018;	García-	Gómez	et	al.,	2009).	
Increasing	temperature	may	reduce	the	 life	span	of	Collembola	by	
affecting	 their	 physiological	 and	 reproductive	 activities	 (Mertens	
et	al.,	1983;	Snider	&	Butcher,	1972).	Moreover,	Ferguson	and	Joly	
(2002)	uncovered	a	positive	correlation	between	Collembola	density	
and	precipitation,	 as	well	 as	 experimental	water	 supplementation.	
Early	 studies	 mainly	 considered	 local	 habitat-	related	 factors	 and	
climatic	variables	separately,	whereas	recent	studies	combined	cli-
matic	 and	 local	 habitat-	related	 factors;	 for	 example,	 the	 assembly	
of	nematodes	was	shown	to	be	more	closely	related	to	climatic	than	
to	local	habitat-	related	variables	(Li	et	al.,	2020).	To	improve	our	un-
derstanding	of	the	underlying	mechanisms	shaping	distribution	pat-
terns	in	Collembola,	studies	including	both	local	and	climatic	factors	
along	altitudinal	gradients	are	needed.

To	fill	this	knowledge	gap,	we	investigated	the	distribution	pat-
terns	 of	 Collembola	 and	 their	 main	 drivers	 in	 temperate	 forests	
across	 an	 altitudinal	 gradient	 of	 Changbai	Mountain	 in	 northeast	
China.	 Changbai	 Mountain	 is	 one	 of	 few	 well-	conserved	 natural	
ecosystems	 (He	et	al.,	2005)	on	 the	Eurasian	continent	 (Xu	et	al.,	
2004).	Detailed	work	on	community	assembly	has	been	conducted	
at	Changbai	Mountain,	including	altitudinal	changes	in	forest	vege-
tation	(Bai	et	al.,	2011;	Wang	et	al.,	2019),	soil	microorganisms	(Shen	
et	 al.,	 2013,	 2014),	 and	beetles	 (Zou	et	 al.,	 2013,	 2014).	Notably,	
neither	 community	patterns	 in	plants,	microorganisms,	 and	 inver-
tebrates,	 nor	 the	 identified	 drivers	 of	 community	 assembly	were	
consistent	across	taxa.	Based	on	the	results	of	previous	studies	on	
variations	in	soil	mesofauna	communities	with	altitude,	we	hypoth-
esized	that	(1)	Collembola	species	richness	and	abundance	show	a	
hump-	shaped	pattern	with	altitude;	(2)	community	composition	of	
Collembola	changes	gradually	with	altitude,	that	is,	communities	of	
low	and	high	altitudes	are	most	distinct;	 (3)	soil	pH,	 temperature,	
and	precipitation	are	critical	factors	affecting	Collembola	commu-
nity	composition;	(4)	local	habitat-	related	factors	explain	less	vari-
ation	 in	 Collembola	 assemblages	 than	 climatic	 variables,	 such	 as	
precipitation	seasonality.

gradients	provide	unique	opportunities	for	identifying	factors	driving	the	community	
composition	of	not	only	above-		but	also	belowground	invertebrates.

K E Y W O R D S
climatic	and	environmental	factors,	community,	elevation,	forest,	soil	animal,	springtails
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2  |  MATERIAL S AND METHODS

2.1  |  Study sites

The	study	was	conducted	in	the	Changbai	Mountain	Nature	Reserve	
(henceforth	Changbai	Mountain)	in	northeast	China	(41°41'–	42°51'N;	
127°43’–	128°16'E),	which	was	established	in	1960	and	contains	one	
of	the	best-	protected	mature	temperate	forests	in	Asia	(Stone,	2006;	
Xue	&	Tisdell,	2001).	Changbai	Mountain	is	characterized	by	excep-
tionally	high	diversity	of	plants	and	invertebrates	in	the	temperate	
zone,	presumably	exceeding	 that	 in	Europe	and	North	America	 at	
the	same	latitude	(Yang	&	Xu,	2003;	Zou	et	al.,	2013).

Changbai	Mountain	 is	 characterized	 by	 a	 temperate	 continen-
tal	monsoon	climate,	and	experiences	dry	windy	springs,	short	rainy	
summers,	 and	 cool	 autumns	with	 high	 frequency	 of	 fog	 and	 long	
cold	winters.	Changbai	Mountain	 can	be	divided	 into	 five	 vertical	
vegetation	zones:	(1)	mixed	coniferous	and	broad-	leaved	forest	zone	
below	1100	m,	(2)	mixed	coniferous	forest	zone	between	1100	and	
1500	m,	(3)	subalpine	mixed	coniferous	forest	zone	between	1500	
and	1800	m,	(4)	birch	forest	zone	between	1800	and	2100	m,	and	
(5)	alpine	tundra	above	2100	m	(Bai	et	al.,	2011;	Zou	et	al.,	2014).	
Samples	were	 taken	on	 the	northern	 slope	of	Changbai	Mountain	
spanning	from	800	to	2150	m	asl.

2.2  |  Sampling procedure

In	July	2015,	we	collected	litter	and	soil	samples	from	five	randomly	se-
lected	plots	(each	measuring	10	m2)	at	each	of	the	10	altitudes:	800,	950,	
1100,	1250,	1400,	1550,	1700,	1850,	2000,	and	2150	m	(Figure	1).	The	
five	plots	per	altitude	were	spaced	by	at	least	100	m.	From	each	plot,	
three	random	subsamples	of	litter	and	soil	were	collected	and	pooled	as	

one	litter	and	one	soil	sample.	Litter	samples	were	taken	within	a	100-	
cm2	frame;	soil	samples	were	taken	using	5.5-	cm-	diameter	cores	to	a	
depth	of	10	cm	underneath	the	litter	samples.	Animals	were	extracted	
from	litter	and	soil	using	Berlese	funnels	(diameter	20	cm,	mesh	size	for	
litter	2	mm,	mesh	size	for	soil	0.84	mm)	over	ten	days	without	heating,	
and	preserved	in	95%	ethanol	for	further	identification.	The	extraction	
was	started	as	soon	as	possible	but	no	longer	than	24	h	after	collection.

2.3  |  Species identification

Collembola	were	separated	from	other	soil	animals	and	sorted	into	
morphological	species	under	a	stereomicroscope	(STEMI	508,	Zeiss,	
Jena,	Germany)	based	on	morphological	characters.	At	 least	eight	
individuals	of	each	morphological	species	from	each	sample	subse-
quently	were	cleaned	with	lactic	acid,	mounted	in	Hoyer's	solution	
and	inspected	using	a	Zeiss	Axio	Scope	A1	microscope.	Collembola	
were	 identified	 to	 described	 species	 or	morphospecies	 using	 rel-
evant	publications	(Christiansen	&	Bellinger,	1998;	Potapov,	2001;	
Sun	et	al.,	2020;	Xie	et	al.,	2019).	Immature	specimens	were	sorted	
into	morphospecies	by	reference	to	adults	or	subadults	found	in	the	
same	sample	or	 in	additional	samples	taken	in	the	vicinity	to	sup-
port	identification	work.	Morphospecies	were	classified	into	three	
ecomorphological	 life-	forms,	that	 is,	euedaphic	 (soil-	dwelling),	he-
miedaphic	 (litter-	dwelling),	 and	 epedaphic	 (surface-	dwelling)	 fol-
lowing	Gisin	(1943),	Hopkin	(1997),	and	Widenfalk	et	al.	(2015).

2.4  |  Environmental variables

To	identify	potential	drivers	of	Collembola	communities	and	diversity	
along	the	altitudinal	gradient,	we	used	two	categories	of	variables:	

F I G U R E  1 Schematic	view	of	the	sampling	locations	along	an	altitudinal	gradient	spanning	from	800	to	2150	m	at	Changbai	Mountain,	
China,	modified	from	Xie	et	al.	2022
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local	 habitat-	related	 factors	 and	 climatic	 variables.	 Local	 habitat-	
related	factors	were	determined	from	litter	or	soil	samples	after	ex-
tracting	soil	animals,	grinded	in	a	ball	mill,	and	included	ten	variables	
(Table	S1).	Soil	pH	was	measured	after	shaking	a	1:5	wt/vol	soil:water	
suspension	for	30	min.	Soil	organic	matter	(SOM)	was	measured	using	
an	 organic	 carbon	 analyzer	 (TOC-	V,	 SSM-	5000A,	 Japan)	 based	 on	
non-	dispersive	infrared	method.	Total	carbon	(TC)	and	total	nitrogen	
(TN)	of	litter	and	soil	were	measured	by	an	elemental	analyzer	(vario	
MACRO	cube,	Elementar,	Germany),	and	total	phosphorus	(TP)	of	lit-
ter	and	soil	was	determined	using	H2SO4-	HClO4	digestion.	Carbon-	
to-	nitrogen	ratio	(C/N	ratio)	was	calculated	from	TC	and	TN	for	both	
litter	and	soil.	The	four	climatic	variables	included	in	our	study	were	
mean	annual	 temperature,	mean	annual	precipitation,	 temperature	
seasonality,	and	precipitation	seasonality	(standard	deviation	×100) 
retrieved	 from	WorldClim	 version	 2	 at	 a	 30-	s	 resolution	 (https://
www.world	clim.org/;	Fick	&	Hijmans,	2017;	Table	S1).	Climatic	data	
were	extracted	for	the	mean	coordinates	of	the	sampling	plots	from	
the	ten	altitudes	using	the	R	package	“raster”	(Robert	2021).

2.5  |  Statistical analysis

Abundance	of	species	from	litter	and	soil	of	the	same	sampling	point	
was	calculated	on	the	basis	of	one	square	meter.	Area-	based	density	
and	 species	 richness	were	 analyzed	 as	 count	data	 (individuals	 per	
species	per	sample).	The	full	species	list	and	density	across	altitudes	
are	 given	 in	 Table	 S2.	 All	 analyses	were	 performed	 in	 R	 software	
version	 4.0.4	 (R	 Core	 Team,	 2021).	 Species	 accumulation	 curves	
were	computed	with	the	function	“specaccum”	in	the	“vegan”	pack-
age	(Oksanen	et	al.,	2019)	and	used	to	inspect	whether	the	sampling	
effort	was	 adequate.	Rarefaction	 curves	were	 calculated	 for	 each	
altitude	to	evaluate	the	total	sampling	effort	(Hsieh	et	al.,	2016).

To	test	hypothesis	1,	we	fitted	linear	and	(in	part)	quadratic	mod-
els	with	 response	variables	 including	species	 richness,	 abundance,	
relative	abundances	of	different	families	and	life-	forms,	and	propor-
tional	 abundance	 in	 the	 litter	 layer	 (abundance	 in	 litter/combined	
abundance	in	litter	and	soil)	as	response	variables,	and	altitude	was	
fitted	as	explanatory	variable.	Pairwise	differences	in	the	response	
variables	among	altitudes	were	assessed	using	Tukey's	HSD	test	as	
implemented	in	the	package	“emmeans”	(Russell,	2020).	To	test	for	
relationships	 between	 richness	 and	 altitude,	 the	 squared	 altitude	
was	included	as	fixed	effect.	All	models	met	the	assumptions	of	nor-
mality	of	residuals	and	homogeneity	of	variance.

To	 test	 hypothesis	 2,	 the	 Bray–	Curtis	 dissimilarity	matrix	 was	
calculated	 and	 non-	metric	 multidimensional	 scaling	 (NMDS)	 was	
used	to	visualize	the	overall	differences	in	Collembola	communities	
across	 altitudes	using	 the	 “vegan”	package	 (Oksanen	et	 al.,	 2019).	
Only	species	occurring	in	at	 least	three	plots	were	included	in	this	
and	following	analyses,	since	species	occurring	in	one	or	two	plots	
reached	uniformly	low	densities.

To	test	hypothesis	3,	we	first	evaluated	correlations	among	the	
environmental	variables	through	Pearson	correlation	analyses	using	
the	 “chart.	 Correlation”	 function	 in	 the	 “PerformanceAnalytics”	

package	 (Brian	 &	 Peter,	 2020).	 Variables	 with	 correlation	 coeffi-
cients	 larger	 than	 0.70	 were	 considered	 strongly	 correlated	 and	
removed	 from	 further	 analyses	 (Dormann	et	 al.,	 2013;	 for	 results,	
see	Figure	 S6),	 resulting	 in	 eight	 factors	 being	 included	 in	 further	
analyses	(TC	and	C/N	ratio	of	soil	and	litter,	soil	pH,	soil	P,	tempera-
ture	seasonality,	and	precipitation	seasonality).	Litter	species	iden-
tity	was	not	 included	 in	 the	 analyses,	 as	 previous	 studies	 showed	
litter	quality	to	be	more	important	than	litter	identity	in	driving	soil	
microarthropod	community	composition	(Marian	et	al.,	2018;	Peng	
et	al.,	2022).	Community	data	were	standardized	using	“Hellinger”	
transformation	 and	 environmental	 data	 using	 “standardize”	 of	 the	
function	“decostand”	in	the	“vegan”	package	(Oksanen	et	al.,	2019).	
Detrended	 correspondence	 analysis	 (DCA)	 recovered	 a	 length	 of	
gradient	<3,	 indicating	 redundancy	 analysis	 (RDA)	 as	 appropriate	
approach	for	further	analyses.	RDA	was	run	on	non-	collinear	factors	
to	 identify	 factors	 significantly	 affecting	Collembola	 assemblages,	
following	a	forward	selection	model	with	the	“ordistep”	function	in	
the	“vegan”	package.	The	Monte	Carlo	tests	with	999	permutations	
were	 performed	 to	 evaluate	 overall	 model	 significance.	 Variation	
explained	 by	 the	 selected	 environmental	 variables	 was	 assessed	
by	adjusted	R2	values.	Scaling	option	was	set	as	“species,”	and	the	
23	species	closely	correlating	with	the	first	two	axes	were	displayed.

To	test	hypothesis	4,	we	separated	the	variables	that	determined	
Collembola	community	composition	selected	by	the	procedure	de-
scribed	above	into	two	categories,	that	is,	local	habitat-	related	fac-
tors	(soil	pH,	litter	C,	soil	C/N,	and	litter	C/N)	and	climatic	variables	
(precipitation	 seasonality).	The	proportion	of	 the	 total	variation	 in	
Collembola	assemblages	explained	by	the	two	categories	was	calcu-
lated	using	the	sum	of	all	canonical	eigenvalues	(Borcard	et	al.,	1992)	
and	was	conducted	using	the	“varpart”	function	in	the	“vegan”	pack-
age.	To	evaluate	the	performance	of	the	different	models,	permuta-
tion	tests	(1000	permutations,	pseudo-	F	statistics)	were	performed	
using	the	“anova.cca”	function	in	the	“vegan”	package.

3  |  RESULTS

3.1  |  Species richness and density

A	 total	of	84	Collembola	 species	or	morphospecies	of	12	 families	
were	identified	from	a	total	of	7,834	individuals	inspected	under	the	
stereomicroscope.	 Species	 accumulation	 curves	 became	 margin-
ally	 asymptotic,	 indicating	 that	 most	 species	 present	 at	 Changbai	
Mountain	had	been	sampled	(Figure	S1a).	Rarefaction	curves	stabi-
lized	at	about	43	and	26	species	at	1400	and	1850	m,	respectively,	
but	did	not	stabilize	at	the	other	altitudes	(Figure	S1b).	Average	spe-
cies	richness	varied	marginally	significant	with	altitude	and	generally	
changed	in	a	unimodal	way	with	altitude	(F1,48 =	3.52,	p =	.067;	quad-
ratic	regression	analysis),	but	with	a	maximum	at	1100	m	(Figure	2a).	
This	pattern	was	mainly	due	to	Collembola	species	richness	in	litter,	
which	changed	significantly	with	altitude	(F1,48 =	5.35,	p =	.025).	By	
contrast,	species	richness	in	soil	varied	little	with	altitude	with	the	
exception	of	very	low	richness	at	950	m	(Figures	S2a,c).	Generally,	

https://www.worldclim.org/
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more	species	occurred	in	the	litter	layer	than	in	the	soil,	with	the	ex-
ception	at	800	and	2150	m	(Figure	S3a).	The	density	of	Collembola	
did	not	change	in	a	consistent	way	with	altitude	(Figure	2b	and	Figure	
S2b,d).	Generally,	the	density	in	litter	exceeded	that	in	soil	across	all	
altitudes	except	at	800	m	and	1850	and	2150	m	(Figure	S3b).

3.2  |  Families, life- forms, and species composition

Among	 the	 12	 families	 present,	 Isotomidae	 dominated	 (53.4%	 of	
total;	 mean	 across	 altitudes),	 followed	 by	 Onychiuridae	 (16.4%),	
Hypogastruridae	(11.3%),	Entomobryidae	(7.6%),	Neanuridae	(4.5%),	
Tomoceridae	(3.0%),	and	Odontellidae	(1.5%)	(Figure	2a).	Isotomidae	
predominated	at	most	altitudes	(except	950	and	2150	m),	with	the	
highest	 relative	 abundance	 at	 1850	 m	 (59.3%)	 and	 the	 lowest	 at	
950	m	 (26.7%)	 (Figure	 3a	 and	 Figure	 S4).	 The	 relative	 abundance	
of	Onychiuridae	was	highest	at	2150	m	 (44.8%)	and	the	 lowest	at	
950	m	(7.7%).	The	relative	abundance	of	Hypogastruridae	averaged	
12.7%.	The	relative	abundance	of	Entomobryidae	was	high	at	alti-
tudes	between	950	and	1400	m	averaging	20.6%,	but	low	at	800	m	
(1.7%)	and	between	1550	and	2150	m	averaging	1.8%.

Among	 the	 three	 life-	forms,	 hemiedaphic	 Collembola	 domi-
nated	 (53.5%	 of	 total),	 followed	 by	 euedaphic	 Collembola	 (29.3%)	
and	 epedaphic	 Collembola	 (17.2%)	 (Figure	 3b	 and	 Figure	 S5).	
Hemiedaphic	Collembola	dominated	at	each	of	the	altitudes	except	
950	and	2150	m,	and	the	relative	abundance	did	not	differ	signifi-
cantly	with	altitude	(F =	1.57,	p =	.157),	but	was	highest	at	2000	m	
(45.0%)	 and	 lowest	 at	 2150	 m	 (14.7%).	 By	 contrast,	 epedaphic	
Collembola	varied	more	strongly	with	altitude	(F =	3.13,	p =	 .006),	
and	the	relative	abundance	decreased	from	950	(64.4%)	to	2000	m	
(30.5%).	The	relative	abundance	of	euedaphic	Collembola	was	high-
est	 at	2150	m	 (52.2%)	 and	 lowest	 at	950	m	 (7.7%)	but	 similar	be-
tween	1100	and	2000	m.

Non-	metric	multidimensional	 scaling	 separated	 the	Collembola	
communities	 across	 altitudes	 along	 the	 first	 axes	with	 the	 excep-
tion	of	the	site	at	800	m,	which	was	positioned	similar	to	the	sites	

between	1850	and	2150	m	(Figure	4).	The	second	axis	in	particular	
separated	the	sites	at	800	and	950	m	from	the	other	sites	at	higher	
altitude.	Overall,	NMDS	reflected	that	Collembola	community	com-
position	at	high	altitude	sites	between	1850	and	2150	m	and	sites	at	
intermediate	altitude	between	1100	m	and	1700	m	was	similar	and	
distinct	from	that	at	low	altitude	(800	and	950	m).

3.3  |  Relationship with local habitat- related 
factors and climatic variables

Five	 of	 the	 14	 local	 habitat-	related	 and	 climatic	 variables	 studied	
correlated	 significantly	 with	 species	 composition	 (RDA,	 forward	
selection,	 overall	Monte	Carlo	 test,	p =	 .001),	 together	explaining	
16.2%	of	the	variation	(Figure	5).	Soil	C/N	and	litter	C/N	correlated	
positively	 with	 Collembola	 communities	 at	 high	 altitudes	 (1850,	
2000,	and	2150	m)	and	were	associated	with	high	densities	of	cer-
tain	euedaphic	 (Allonychiurus songi	and	Bionychiurus changbaiensis),	
hemiedaphic	(Anurophorus	sp.1	and	Parisotoma	cf.	ekmani	sp.1),	and	
epedaphic	 (Desoria choi	 and	Koreanurina alba)	 species.	 Collembola	
communities	 at	 altitudes	 between	 1250	 and	 1700	m	were	 corre-
lated	 with	 precipitation	 seasonality	 and	 high	 densities	 of	 certain	
euedaphic	 (Hymenaphorura nearctica,	 Sensillonychiurus reductus,	
Sensillonychiurus virginis,	 and	 Protaphorura changbaiensis),	 hemie-
daphic	(Pachyotoma	sp.1,	Parisotoma	cf.	hyonosenensis,	and	Folsomia 
ozeana	 sp.1),	 and	epedaphic	 (Tetracanthella wui,	Sinella	 cf.	umesaoi,	
Arrhopalites	 sp.1,	 and	 Lepidocyrtus	 sp.1)	 species.	 Collembola	 com-
munities	at	950	and	1100	m	correlated	with	soil	pH	and	high	densi-
ties	of	epedaphic	(Homidia similis,	Sinella	cf.	curviseta,	and	Tomocerus 
sp.1)	and	hemiedaphic	(Folsomia octoculata sp.2) species.

Variation	partitioning	further	indicated	that	local	habitat-	related	
factors	including	soil	pH,	soil	C/N,	litter	C/N,	and	litter	C	explained	
12.5%	of	the	total	variation	in	Collembola	community	composition	
(p =	.001),	while	climatic	factors	(precipitation	seasonality)	only	ex-
plained	2.6%	of	the	variation	(p =	 .001);	climatic	and	local	habitat-	
related	factors	jointly	explained	1.6%	of	the	variation.

F I G U R E  2 Changes	in	species	richness	(a)	and	density	(b)	of	Collembola	along	an	altitudinal	gradient	spanning	from	800	to	2150	m	at	
Changbai	Mountain.	Bars	sharing	the	same	letter	do	not	differ	significantly	(p >	.05;	Tukey's	HSD	test)	(dots	=	data	points,	bars	=	means,	
boxes	=	95%	confidence	intervals,	gray	lines	=	density	distribution)
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4  |  DISCUSSION

4.1  |  Changes in density and species richness of 
Collembola with altitude

Supporting	hypothesis	1,	species	richness	of	Collembola	along	the	
altitudinal	gradient	at	Changbai	Mountain	followed	a	hump-	shaped	
pattern,	which	has	been	found	before	not	only	for	Collembola	but	
also	for	other	soil	mesofauna	taxa	(Jiang	et	al.,	2015).	Loranger	et	al.	
(2001)	also	 found	a	similar	pattern	of	Collembola	species	 richness	
across	an	altitudinal	transect	from	950	to	2150	m	in	the	French	Alps	
(temperate	forests).	In	our	study,	the	mid-	peak	was	at	1100	m,	the	
transition	 zone	 between	 mixed	 coniferous	 and	 broad-	leaved	 for-
ests,	 an	 area	with	 high	 tree	 species	 diversity	 (Sang	 &	 Bai,	 2009).	
This	 suggests	 that	 Collembola	 species	 richness	 is	 associated	with	
plant	species	composition	as	proposed	earlier	(Maunsell	et	al.,	2013;	
Sabais	et	al.,	2011).	Vegetation	characteristics	determine	soil	prop-
erties	and	food	supply	for	microarthropods,	thereby	likely	affecting	
Collembola	richness	(Wardle	et	al.,	2004).	Indeed,	microbial	biomass	
serving	as	important	food	resource	for	Collembola	was	shown	to	be	
higher	in	the	transition	zone	between	mixed	coniferous	and	broad-	
leaved	forests	than	in	other	forest	types	at	Changbai	Mountain	(Liu	
et	al.,	2019).

Contrasting	 hypothesis	 1,	 the	 density	 of	 Collembola	 did	 not	
change	 consistently	 with	 altitude,	 with	 the	 density	 in	 litter	 ex-
ceeding	 that	 in	 soil	 at	 most	 altitudinal	 zones.	 This	 is	 consistent	

with	 previous	 observations	 that	 typically	 more	 Collembola	 (and	
other	soil	invertebrates)	colonize	the	litter	than	the	soil	layer	(Illig	
et	al.,	2010;	Ma	et	al.,	2020;	Mayvan	et	al.,	2015).	The	decline	in	
density	and	diversity	of	Collembola	with	soil	depth	may	be	due	to	
lower	availability	and	quality	of	food	resources	in	soil	than	in	 lit-
ter	(Illig	et	al.,	2010).	Interestingly,	the	density	showed	two	peaks,	
one	 at	1100	m,	which	was	 consistent	with	 species	 richness,	 but	
there	was	 an	 additional	 peak	 at	 2000	m	 (not	 present	 in	 species	
richness).	This	was	because	some	species	of	the	genera	Folsomia 
and	Ceratophysella	 reached	high	 densities	 at	 2000	m	 suggesting	
them	to	be	well	adapted	to	harsh	environmental	conditions	at	high	
altitudes.

4.2  |  Changes in Collembola community 
composition with altitude

We	 hypothesized	 that	 community	 composition	 of	 Collembola	
changes	gradually	with	altitude	(hypothesis	2),	and	our	results	con-
firmed	 this	hypothesis	 at	different	 taxonomic	and	 life-	form	 levels.	
At	 family	 level,	 Isotomidae,	 Onychiuridae,	 and	 Hypogastruridae	
dominated	 across	 our	 study	 sites	 and	 the	 density	 of	 Isotomidae	
and	 Hypogastruridae	 gradually	 changed	 with	 altitude.	 Similar	 re-
sults	have	been	 reported	 from	an	altitudinal	 transect	 in	Russia	by	
Stebaeva’s	 (2003).	 In	our	 study,	 Isotomidae	predominated	at	most	
altitudes,	mainly	comprising	the	genera	Folsomia,	Heteroisotoma,	and	

F I G U R E  3 Relative	abundance	(%	of	total)	of	families	(a)	and	life-	forms	(b)	of	Collembola	(lower	half	circle)	at	10	altitudes	along	an	
altitudinal	gradient	spanning	from	800	to	2150	m	at	Changbai	Mountain	(upper	half	circle).	The	width	of	the	links	represents	the	relative	
abundance	of	families	and	life-	forms	at	the	respective	altitude
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Desoria.	These	eurytopic	taxa	inhabit	soil	and	litter,	but	typically	are	
most	numerous	at	moist	and	cold	sites	at	higher	 latitude	 (Potapov	
2001).	 The	 abundance	 of	 Onychiuridae,	 the	 second	 most	 abun-
dant	 Collembola	 group,	 did	 not	 change	 significantly	with	 altitude,	

and	 this	 is	 consistent	with	 the	 findings	of	 Sun	et	 al.	 (2020)	 based	
on	sampling	a	narrower	altitudinal	gradient	from	800	to	1700	m	at	
Changbai	 Mountain.	 Onychiuridae	 comprise	 uniformly	 euedaphic	
species	 living	 in	soil	and	therefore	were	being	 less	exposed	to	en-
vironmental	 harshness	 than	 epedaphic	 and	 hemiedaphic	 species,	
and	 this	 likely	contributes	 to	 their	uniform	high	abundance	across	
altitudes.	 The	high	density	of	Hypogastruridae	was	mainly	 due	 to	
the	genus	Ceratophysella,	and	species	of	this	genus	were	also	found	
to	be	among	the	most	abundant	Collembola	across	temperate	for-
ests	along	an	altitudinal	transect	in	Mexico	(2750–	3700	m;	García-	
Gómez	et	al.,	2009),	suggesting	that	Ceratophysella	species	are	well	
adapted	to	a	wide	range	of	environmental	conditions.

Similar	 to	 Collembola	 families,	 the	 relative	 abundance	 of	
Collembola	 life-	forms	 changed	 markedly	 with	 altitude,	 with	 more	
euedaphic	species	at	higher	altitude.	Euedaphic	species	inhabit	the	
mineral	soil	buffered	against	climatic	harshness.	In	fact,	mineral	soil	
layers	at	high	altitude	stay	consistently	more	wet	and	temperature	
fluctuates	less	than	at	low	altitude	at	Changbai	Mountain	(Qian	et	al.,	
2014),	and	this	 likely	favors	euedaphic	species	 (Berg	&	Bengtsson,	
2007;	 Heiniger	 et	 al.,	 2015;	 Parisi	 et	 al.,	 2005).	 In	 contrast	 to	
euedaphic	 species,	 the	 abundance	 of	 hemiedaphic	 species,	 which	
dominated	at	most	altitudes,	did	not	differ	significantly	between	al-
titudes.	Hemiedaphic	 species	 colonize	both	 litter	 and	mineral	 soil,	
on	the	one	side	allowing	them	to	exploit	rich	litter	resources,	but	on	
the	other	to	escape	drought	and	frost	by	retreating	into	deeper	soil	
layers,	which	may	contribute	to	their	uniform	dominance	across	the	
studied	altitudinal	gradient.

Collembola	 species	 composition	 was	 similar	 at	 intermediate	
(1100–	1700	m)	and	at	high	 (1850–	2150	m)	altitudes,	but	differed	
widely	 across	 altitudes.	 Vegetation	 at	 1100–	1700	 m	 was	 similar	
comprising	 subalpine	mixed	 coniferous	 forest,	 whereas	 high	 alti-
tude	sites	(1850–	2150	m)	comprise	birch	forests	or	alpine	tundra.	
Similar	species	composition	at	both	of	these	vegetation	types	sug-
gests	 that	 they	provide	similar	habitat	conditions	 for	Collembola.	
However,	 we	 also	 found	 that	 Collembola	 communities	 along	 the	
studied	altitudinal	 gradient	 changed	gradually	 along	 the	 first	 and	
second	 NMDS	 axes,	 with	 those	 at	 high	 altitudes	 (1850,	 2000,	
and	2150	m)	being	similar	to	those	at	the	lowest	altitude	(800	m).	
In	 fact,	 species	 such	 as	 Allonychiurus songi,	 Ceratophysella	 sp.1,	
Folsomia	 cf.	 villosa,	 Folsomia octoculata	 sp.2,	Heteraphorura seola-
gensis,	 and	Hymenaphorura nearctica	 were	 abundant	 at	 both	 the	
high	and	low	altitude	sites	and	thereby	contributed	to	the	observed	
pattern.	Moreover,	 the	Onychiuridae	 and	Folsomia	 species	 domi-
nant	at	both	the	high	and	low	altitude	sites	also	reach	high	abun-
dance	in	the	high	Tatra	Mountains	(Ová	et	al.,	2014),	the	western	
Putorana	Plateau	 (Babenko,	2002),	and	 the	French	northern	Alps	
(Loranger	et	al.,	2001),	suggesting	that	they	are	well	adapted	to	a	
wide	 range	 of	 environmental	 factors	 in	 cold	 and	 temperate	 eco-
systems.	Compared	with	sites	between	1100	and	1700	m,	species	
composition	 at	 800	 and	 950	 m	 differed	 along	 the	 second	 axis,	
which	was	mainly	due	to	the	genera	Semicerura	and	Tetracanthella 
reaching	high	densities	at	sites	between	1100	and	1700	m	(Potapov	
et	al.,	2020;	Xie	et	al.,	2019).

F I G U R E  4 Non-	metric	multidimensional	scaling	(NMDS)	
ordination	based	on	the	Bray–	Curtis	dissimilarity	index	of	
Collembola	community	composition	at	ten	altitudes	along	an	
altitudinal	gradient	spanning	from	800	to	2150	m	at	Changbai	
Mountain
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F I G U R E  5 Redundancy	analysis	of	Collembola	species	along	
an	altitudinal	gradient	spanning	from	800	to	2150	m	at	Changbai	
Mountain	as	related	to	local	habitat-	related	factors	(soil	C/N	ratio,	
litter	C/N	ratio,	and	litter	C	concentration)	and	climatic	variables	
(annual	precipitation,	precipitation	seasonality,	and	mean	diurnal	
temperature	range)	(blue	arrows).	The	length	of	arrows	represents	
the	percentage	of	variation	explained	by	the	respective	variable.	
The	23	species	most	closely	correlating	with	the	first	two	axes	are	
displayed
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4.3  |  Relationship with local habitat- related 
factors and climatic variables

Collembola	 are	 known	 to	 sensitively	 respond	 to	 soil	 characteris-
tics	(Loranger	et	al.,	2001;	Salamon	et	al.,	2008),	and	we	found	soil	
pH,	soil	C/N	ratio,	litter	C/N	ratio,	and	litter	carbon	content	to	sig-
nificantly	 correlate	with	Collembola	 species	 composition	 support-
ing	hypothesis	 3.	Both	 euedaphic	 species	 (Allonychiurus songi	 and	
Bionychiurus changbaiensis)	and	epedaphic	species	(Desoria choi	and	
Koreanurina alba)	were	abundant	at	high	altitude	sites	characterized	
by	 high	 soil	 and	 litter	C/N	 ratio,	 reflecting	 low	quality	 of	 organic	
matter.	The	results	are	in	line	with	those	of	the	study	of	Hasegawa	
and	 Takeda	 (1995),	 showing	 that	 the	 amount	 and	 composition	 of	
soil	organic	matter	are	 important	 factors	driving	Collembola	com-
munity	 composition.	High	 C/N	 ratio	 and	 low	 litter	 quality	 reflect	
slow	decomposition	processes	of	 litter	and	the	 formation	of	 thick	
organic	 layers	known	to	be	important	for	microarthropods	includ-
ing	Collembola	 (Marian	 et	 al.,	 2018).	Moreover,	 thick	 organic	 lay-
ers	typically	are	associated	with	low	soil	pH	(Chagnon	et	al.,	2001;	
Loranger	et	al.,	2001;	Salamon	et	al.,	2008)	and	 this	was	also	 the	
case	at	our	study	sites.	Soil	pH	has	been	shown	to	drive	bacterial	
community	composition	at	Changbai	Mountain	(Shen	et	al.,	2013),	
thereby	 likely	 also	 affecting	 Collembola	 feeding	 microorganisms	
(Petersen,	1994;	Visser,	1985).

Besides	 local	 habitat-	related	 characteristics,	 climatic	 factors,	
such	 as	 precipitation	 seasonality,	 significantly	 correlated	 with	
Collembola	 community	 composition,	 in	 part	 supporting	 hypoth-
esis	 3.	 This	 suggests	 that	 precipitation	 directly	 and/or	 indirectly	
structure	 Collembola	 community	 composition,	 as	 suggested	 ear-
lier	 (Irmler,	 2006).	 At	 intermediate	 altitudes	 (between	 1250	 and	
1700	m),	euedaphic	 (Hymenaphorura nearctica,	Sensillonychiurus re-
ductus,	 and	 Protaphorura changbaiensis),	 hemiedaphic	 (Pachyotoma 
sp.1,	 Parisotoma	 cf.	 hyonosenensis,	 and	 Folsomia ozeana	 sp.1),	 and	
epedaphic	 (Tetracanthella wui,	Sinella	 cf.	umesaoi,	Arrhopalites	 sp.1,	
and	Lepidocyrtus	sp.1)	species	correlated	with	precipitation	season-
ality.	 The	 precipitation	 seasonality	 is	 also	 significantly	 correlated	
with	temperature	(Figure	S6).	This	supports	earlier	suggestions	that	
epedaphic	and	hemiedaphic	species	are	more	vulnerable	to	increas-
ing	temperature	and	precipitation	than	euedaphic	species,	presum-
ably	due	to	epedaphic	species	predominantly	living	in	litter,	thereby	
being	 less	buffered	against	 temperature	and	precipitation	 fluctua-
tions	than	euedaphic	species	living	in	soil.	For	example,	fast	devel-
opment	of	eggs	of	epedaphic	species	may	contribute	to	their	high	
temperature	sensitivity	(van	Straalen,	1994).	Notably,	Tetracanthella 
wui,	 a	 species	 only	 reported	 from	 Changbai	Mountain	 (Xie	 et	 al.,	
2019),	 correlated	 with	 high	 precipitation	 seasonality,	 suggesting	
that	it	can	cope	with	the	large	precipitation	fluctuations	occurring	at	
1400	and	1700	m	at	Changbai	Mountain.

Climatic	variables	explained	 less	variation	 in	Collembola	assem-
blages	than	 local	habitat-	related	factors,	contrasting	our	hypothesis	
4.	This	 is	unlike	the	study	of	Xu	et	al.	 (2017)	stressing	that	climatic	
variables	 are	 the	 most	 critical	 factor	 driving	 diversity	 patterns	 of	
litter-	dwelling	 invertebrates	 including	 Collembola,	 Acariformes,	

Parasitiformes,	 and	 Diptera	 across	 altitude.	 Local	 habitat-	related	
factors	 likely	 reflect	 the	 availability	 of	 food	 resources,	which	 likely	
affect	the	density	of	soil	animals	 (Ponge,	2000).	 In	addition,	Stange	
and	Ayres	(2010)	found	that	climatic	factors	may	change	insect	distri-
bution	not	only	directly	through	physiological	limits	due	to	tempera-
ture,	precipitation,	 and	humidity,	but	also	 indirectly	by	determining	
vegetation	type	and	plant	abundance,	as	well	as	by	influencing	species	
interactions.	However,	hampering	the	identification	of	the	role	of	in-
dividual	factors	for	Collembola	community	composition,	climatic	fac-
tors	correlated	closely	with	altitude	(Figure	S6).	This	corresponds	to	
the	suggestion	of	Li	et	al.	(2020)	that	altitude	is	a	proxy	for	a	number	
of	 environmental	 factors	 that	 directly	 influence	 soil	 fauna	distribu-
tion.	To	improve	the	mechanistic	understanding	of	the	role	of	climatic	
and	local	habitat-	related	factors	in	driving	belowground	communities	
across	altitudes,	 future	 research	needs	 to	consider	additional	 infor-
mation	 on	 other	 abiotic	 environmental	 and	 biotic	 factors	 (e.g.,	 soil	
moisture,	vegetation	characteristics,	litter	quality	and	quantity,	fungal	
biomass,	and	predators),	and	integrate	local	factors	into	a	broad	geo-
graphic	sampling	design.	Ultimately,	experimental	manipulations	will	
be	necessary	to	 identify	the	role	of	 individual	factors	 in	structuring	
belowground	communities	along	altitudinal	gradients.
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