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Abstract: Based on the rapid increase in incidence of inflammatory bowel disease (IBD), the identifi-
cation of susceptibility genes and cell populations contributing to this condition is essential. Previous
studies suggested multiple genes associated with the susceptibility of IBD; however, due to the
analysis of whole-tissue samples, the contribution of individual cell populations remains widely un-
resolved. Single-cell RNA sequencing (scRNA-seq) provides the opportunity to identify underlying
cellular populations. We determined the enrichment of Crohn’s disease (CD)-induced genes in a pub-
licly available Crohn’s disease scRNA-seq dataset and detected the strongest induction of these genes
in innate lymphoid cells (ILC1), highly activated T cells and dendritic cells, pericytes and activated
fibroblasts, as well as epithelial cells. Notably, these genes were highly enriched in IBD-associated
neoplasia, as well as sporadic colorectal cancer (CRC). Indeed, the same six cell populations displayed
an upregulation of CD-induced genes in a CRC scRNA-seq dataset. Finally, after integrating and
harmonizing the CD and CRC scRNA-seq data, we demonstrated that these six cell types display a
gradual increase in gene expression levels from a healthy state to an inflammatory and tumorous
state. Together, we identified cell populations that specifically upregulate CD-induced genes in CD
and CRC patients and could, therefore, contribute to inflammation-associated tumor development.

Keywords: inflammatory bowel disease; single cell sequencing; gene expression; transcriptomics;
next generation sequencing; Crohn’s disease; colorectal cancer; ulcerative colitis

1. Introduction

With approximately 1.6 million individuals affected and 70,000 new diagnoses each
year in the US alone, inflammatory bowel disease (IBD), including Crohn’s disease (CD)
and ulcerative colitis (UC), represents a major health burden [1]. Nearly 250 single nu-
cleotide polymorphism (SNP)-tagged loci [2-5] and chromosomal alterations [6,7], as well
as splicing variants [8,9], were linked to an elevated risk of developing IBD. In addition,
several studies investigated IBD-induced gene expression changes in the past, including
expression quantitative trait loci (eQTL) approaches [10]. However, due to the analysis of
whole-tissue samples, the contribution of individual cell populations to the expression of
IBD risk genes remains to be elucidated.

Researchers have identified several cell types that promote intestinal inflammation;
for instance, via the secretion of pro-inflammatory cytokines. As summarized by Silva et al.,
macrophages and dendritic, epithelial and T cells, i.e., Th1, Th2, Th17 and regulatory T cells,
contribute to intestinal inflammation by cytokine production [11]. Besides the aberrant
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secretion of pro-inflammatory cytokines, these disruptions in epithelial cell function and
barrier integrity are major events in IBD. In a recent single-cell profiling study, Parikh et al.
determined the contributions of a distinct epithelial cell subpopulation to the barrier
disruption in IBD [12].

Since most polymorphisms linked to IBD are as of yet unannotated, and eQTL studies
to date are tissue-based, this work aimed to link previous SNP- and gene expression-
associated knowledge to IBD biology. In addition, in the current study, we sought to
determine to what extent individual cell populations contribute to the upregulation of
CD risk genes detected in whole-tissue specimens in earlier studies. Finally, we aimed to
verify whether a subsequent transformation to a carcinomatous state can be mirrored on
a transcriptome-wide and single-cell level. We hypothesized that only specific cell types
mediate the induction of these genes. Specifically, due to their key role in maintaining the
intestinal barrier function and their presumably high abundance in samples utilized for
bulk sequencing datasets, we expect that epithelial cells largely contribute to the induction
of CD-risk genes. In addition, we hypothesize that distinct immune regulatory cells play
major roles in mediating inflammatory signaling. An in-depth characterization of CD-
induced genes and the availability of next-generation sequencing data on a single cell level
allow for the verification of CD risk genes and identify causative cell populations and their
relevance in the context of local cellular heterogeneity. We confirmed the upregulation of
previously suggested CD risk genes in inflamed terminal ileum on a single cell level. Six cell
populations were identified as the major drivers of the upregulation of these genes in CD.
Intriguingly, this gene signature was highly enriched in UC-associated neoplasia, as well as
sporadic colorectal cancer (CRC). Indeed, these six cell types displayed a gradual increase
in gene expression levels when comparing the control to inflamed and tumorous tissue.

2. Results
2.1. Only Distinct Cell Populations Contribute to the Upregulation of Inflammation-Induced Genes
in CD Lesions

Genome-wide association studies (GWAS) have identified several SNPs to be linked with
an increased susceptibility of developing IBD. In a comprehensive study by Peloquin et al.,
the expression of CD risk genes was evaluated by comparing inflamed mucosal intestinal
tissues from IBD patients to healthy controls [10]. Initially, to underscore the clear dis-
tinction between SNPs and gene expression data, we compared these genes to previously
identified loci associated with SNPs [13,14]. Intriguingly, only 31% of genes upregulated
in chronic intestinal inflammation and 19% of downregulated genes were suggested to be
associated with an increased risk towards developing IBD in SNP-based studies (Figure 1A).
Thus, genes differentially expressed in CD were associated with loci beyond the recognized
SNPs. Gene ontology confirmed that SNP-containing loci, as well as genes upregulated
in CD, are related to cytokine production, cytokine-mediated signaling pathways and an
inflammatory response (Figure 1B). In contrast, these processes were not affected by factors
downregulated in CD, emphasizing the regulatory relevance of genes induced during
inflammatory processes. Since previous RNA sequencing approaches and the subsequent
identification of risk genes was based on bulk analyses, the contribution of distinct cell
types remains unknown. Therefore, we aimed to assess which cell populations display an
upregulation of genes suggested by the work of Peloquin et al. Initial gene-ontology-based
analyses using the PanglaoDB database predicted that this gene set is enriched in immune
regulatory cells, including macrophages, basophils, neutrophils, dendritic cells and T cells
(Figure 1C). Next, an in-depth analysis of the differential expression of these CD-induced
genes in distinct cell types was performed using publicly available scRNA-seq data of
CD lesions and uninflamed control tissue [15]. After clustering all cells, as suggested by
the original study (Supplementary Figure S1), we enriched every cell type for the gener-
ated gene set (Figure 1D). In pairwise comparisons, we discovered that innate lymphoid
cells (ILC1), highly activated T cells and dendritic cells (DCs), pericytes and activated
fibroblasts, as well as epithelial cells, displayed the highest upregulation of CD-induced
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genes. Together, while previously published gene expression analyses largely contributed
to our knowledge about CD risk genes, the integration of scRNA-seq data allows for the
identification of cellular key players.
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Figure 1. Identification of cell populations upregulating CD risk genes. (A) Venn diagram displaying
SNP-containing loci linked to IBD [13,14] with genes up- or downregulated in CD [10]. (B) Gene
ontology (GO Biological Process, EnrichR [16]) revealed that SNP-containing loci (purple), genes
upregulated in CD (green) and their overlap (teal) are related to inflammatory pathways, while genes
downregulated in CD (red) and their overlap with SNP-containing regions (dark red) are not. (C) Dot
plot depicting cell types related to CD-induced genes according to PanglaoDB Augmented 2021 [17].
The dot color reflects a combination of p-value and z-score, referred to as combined score, whereas
the dot size correlates to the number of enriched genes. (D) Violin plot indicating the pairwise
enrichment of CD-induced genes in scRNA-seq data from CD lesions (IBD; dark red) and uninflamed
control tissue (NAT; light pink; [15], Wilcoxon-test). * p < 0.05, *** p < 0.001, *** p < 0.0001.

2.2. Cell Type-Specific Enrichment and Co-Expression Patterns of CD-Induced Genes

Based on high expression levels of CD-induced genes, we focused on ILC1, highly
activated T cells and dendritic cells, pericytes and activated fibroblasts, as well as epithelial
cells, in our subsequent analyses. We confirmed the enrichment of CD-induced genes in
the respective cell types isolated from inflamed lesions by gene set enrichment analysis
(GSEA; Figure 2A). Similarities between cells isolated from NAT and CD were evaluated
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using uniform manifold approximation and projection (UMAP) plots (Figure 2B). Generally,
transcriptomes of both conditions appeared as similar in most cell types. Notably, activated
fibroblasts isolated from CD lesions were highly distinct from control cells. To further
elucidate how the respective cell populations contribute to the induction of CD risk genes in
chronically inflamed intestinal tissue, we defined the most upregulated susceptibility genes
per cell type (Figure 2C). Within the ILC1 cluster, HLA-C, TNFAIP3 and LITAF showed the
most profound induction in inflamed tissue, whereas GPR183, TNFAIP3 and PLEK were
highly upregulated in activated DCs, OLFML3, CXCL2 and CXCL3 in activated fibroblasts,
HLA-C, ADA and IRF1 in highly activated T cells, CCL2, ERRFI1 and CXCL2 in pericytes
and HLA-C, PIGR and ERRFI1 in epithelial cells. A correlation plot of all CD risk genes
revealed the presence of a gene subset with a high co-expressional pattern (Supplementary
Figure S3A). Therefore, we generated correlation plots displaying the most relevant co-
expression patterns per cell type, confirming a profound pairwise interconnectivity of
distinct CD-induced genes (Figure 2D).
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Figure 2. Cell type-specific upregulation and co-expression of risk genes in CD lesions. (A) GSEA
confirms the enrichment of CD-induced genes in ILC1, highly activated T cells and dendritic cells,
pericytes and activated fibroblasts, as well as epithelial cells, isolated from inflamed CD lesions.
(B) UMAPs displaying similarities between control (light pink) and inflamed (dark red) cells based on
dimensional reduction. While gene expression patterns among those conditions appear comparable,
inflamed activated fibroblasts are highly distinct from controls. (C) Dot plots displaying ten genes
per cell type with the most significant differential expression. Dot size indicates the percentage of
cells expressing the respective genes, dot color represents expression intensity. (D) Correlation plots
revealing co-expression patterns of CD-induced genes.

2.3. CD-Induced Genes Are Upregulated in UC-Associated Neoplasia and Sporadic CRC

While the probability of developing colorectal cancer (CRC) is higher in UC than CD
patients [18], the overall risk of patients with colonic IBD developing CRC is increased
1.7-fold [19]. Interestingly, the recent gene-expression-based identification of two clinically
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relevant CD subtypes, colon- and ileum-like CD [20], suggests that IBD subclasses are not
always clearly distinct on a molecular level. Indeed, when comparing genes induced in UC
and CD, a substantial overlap was detected (Figure 3A). Thus, we assessed the expression of
CD-induced genes in a microarray dataset analyzing tissue isolated from healthy controls,
UC lesions and UC-associated neoplasia (UCneo [21]). Indeed, a significant enrichment of
CD-induced genes was detected in UCneo samples (Figure 3B,C). To extend this finding,
we utilized two independent bulk RNA-seq datasets comparing CRC to normal control
tissue [22,23]. Notably, GSEA demonstrated that there is a significant enrichment of CD-
induced genes in sporadic colorectal cancer (Figure 3D). Using publicly available TCGA
data, we evaluated the effect of a high expression of CD-induced genes on the overall
survival of CRC patients (Figure 3E). In fact, high-level genes, particularly highly expressed
in UCneo, i.e.,, CXCL6, ITGAM, TDO2, CXCL1, RGS1, FCGR3A, CXCL8 and FCGR3B,
displayed a heterogeneous effect on patient survival. This finding is in agreement with
a recent study by Vitali et al., who detected no difference between the outcome of UC-
associated and sporadic CRC [24]. In summary, CD-induced genes are upregulated in
UC-associated neoplasia, as well as sporadic CRC, supporting the established concept of
chronic inflammation as a predisposing factor for intestinal tumorigenesis.
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Figure 3. Enrichment of CD risk genes in UC-associated neoplasia and sporadic CRC. (A) Genes
upregulated in UC and CD regions were obtained from a study by Peloquin et al. [10] and overlapped.
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(B) Microarray analysis revealed only a slight upregulation of CD risk genes in UC patients (n = 3)
compared to controls (n = 5), whereas a profound induction was observed in UC patients with
neoplasia (n = 10; [25], one-way ANOVA). (C) The corresponding heatmap displays the expression of
all CD risk genes among control, UC and UCneo patients [25]. (D) The enrichment of CD-induced
genes in sporadic CRC was verified in two bulk mRNA-seq datasets comparing normal tissue to
tumor tissue using GSEA [22,23]. CD risk genes displayed a significant upregulation in sporadic
CRC compared to control tissues (p < 0.001, NES = 2.01 and p = 0.021, NES = 1.43, respectively).
(E) Survival curves of CRC patients with low (green) or high (red) expression of CD-induced genes
significantly upregulated in UCneo samples. ** p < 0.01, *** p < 0.001.

2.4. Enrichment of CD Risk Genes in Sporadic CRC on a Single-Cell Level

We aimed to elucidate the relevance of CD risk genes in CRC in more detail and to
acquire knowledge on cell type-specific functions. Subsequently, we analyzed a scRNA-seq
dataset containing CRC and normal control samples [26]. To ensure the comparability
between the CD and CRC in scRNA-seq data, the same cell type annotation suggested
in the CD study was applied to the CRC dataset. After assigning the cell types within
this study (Figure 4A, Supplementary Figure S2), we evaluated the enrichment of CD risk
genes in CRC and control cells. Besides an upregulation in stroma cells, we detected a
significant enrichment of CD-induced genes in ILC1, highly activated T cells and dendritic
cells, pericytes and activated fibroblasts, as well as epithelial cells (Figure 4B). Therefore,
we decided to characterize these cell populations in more detail.
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Figure 4. Enrichment of CD risk genes in UC-associated neoplasia and sporadic CRC. (A) Genes
upregulated in UC and CD regions were obtained from a study by Peloquin et al. [10] and overlapped.
(B) Microarray analysis revealed only a slight upregulation of CD risk genes in UC. * p < 0.05,
**p <0.01, *** p < 0.001, *** p < 0.0001.
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2.5. Enrichment and Co-Expression Patterns of CD-Induced Genes in Distinct Cell Populations in
CRC

Notably, when determining the enrichment of CD risk genes in these cell types in CRC
using GSEA, only ILC1, activated DCs, fibroblasts and highly activated T cells reached
statistical significance. While only a few genes were enriched in ILC1, pericytes and
epithelial cells showed only a positive trend towards the induction of CD risk genes in
CRC (p = 0.051 and p = 0.0599, respectively; Figure 5A). As suggested by UMAPs, pericytes
and epithelial cells isolated from tumors were highly distinct from control cells (Figure 5B).
Next, we determined the most upregulated CD risk genes per cell population. Within
the ILC1 cluster, RGS1, STAT3 and TNFRSF18 showed the most significant induction in
CRC tissue, whereas RGS51, FCGR2A and CXCL3 were highly upregulated in activated
DCs, NUPR1, CXCL2 and ZFP36L2 in activated fibroblasts, RGS1, GPR183 and TNFAIP3 in
highly activated T cells, XBP1, TNFAIP3 and CXCL2 in pericytes and CXCL1, CXCL2 and
CEBPB in epithelial cells (Figure 5C). While the top three upregulated CD risk genes were
mostly different among cell types when comparing CD and CRC, the top 10 candidates
showed several overlaps. Similar to our previous analyses, correlation plots displaying
the most relevant co-expression patterns per cell type suggested a profound pairwise
interconnectivity of distinct genes (Figure 5D, Supplementary Figure S4A,B).
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Figure 5. Cell-population-specific induction and co-expression of CD risk genes in sporadic CRC.
(A) GSEA reveals the statistically significant enrichment of CD-induced genes in ILC1, activated
DCs, activated fibroblasts and highly activated T cells isolated from colorectal tumors. (B) UMAPs
displaying gene expression-based similarities between control (light pink) and transformed (dark
red) cells. Pericytes and epithelial cells isolated from tumors appear highly distinct from controls.
(C) Dot plots depicting genes with the most significant differential expression per cell population.
Dot size indicates the percentage of cells expressing the respective genes, dot color represents
expression intensity. (D) Correlation plots revealing co-expression patterns of CD-induced genes in
sporadic CRC.
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2.6. The Expression of CD Risk Genes Gradually Increases from Control NAT, CD to CRC Cells

Finally, in order to evaluate whether CD risk genes display a gradual upregulation
from control to CD and, subsequently, transformed cells, we integrated and harmonized
the CD and CRC scRNA-seq dataset. Determining the enrichment of CD-induced genes
revealed a gradual and significant increase in all six previously identified cell populations,
i.e., ILC1, highly activated T cells and dendritic cells, pericytes and activated fibroblasts,
as well as epithelial cells (Figure 6). As a control, this phenomenon was tested in cell
populations that did not display a significant induction of CD risk genes in CD or CRC
earlier. As exemplarily shown for the naive T cells, this gradual increase was not detected
(Supplementary Figures S4 and S5).
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Figure 6. Enrichment of CD risk genes along control, inflammatory and finally tumorous state.
After integration and harmonization, the CD and CRC scRNA-seq datasets [15,26] were normalized
and scaled together, and an enrichment of CD risk genes was performed. ILC1, highly activated
T cells and dendritic cells, pericytes and activated fibroblasts, as well as epithelial cells, displayed a
significant upregulation during inflammation, as well as CRC. Kruskal-Wallis test with correction for
multiple comparisons by Dunn’s test, & = 0.05. *** p < 0.001, *** p < 0.0001.

3. Discussion

While several studies identified IBD susceptibility genes, as well as (partially unan-
notated) risk loci, there is a lack of a global evaluation of the cellular contribution on a
single-cell level. In this study, we provide evidence for the cellular composition underlying
the transcriptional enrichment of risk genes in CD and CRC patients.

Publicly available scRNA-seq data of inflamed terminal ileum specimens and unin-
volved controls revealed a profound upregulation of CD-induced genes in ILC1, highly
activated T cells and dendritic cells, pericytes and activated fibroblasts, as well as epithelial



Int. J. Mol. Sci. 2022, 23, 3082

9of 14

cells. Interestingly, UC-associated neoplastic lesions displayed an enrichment in these
genes as well. Therefore, we sought to investigate the extent to which this signature plays a
role in sporadic CRC. Initial GSEA approaches revealed a highly significant upregulation
of CD-induced genes in two sporadic CRC bulk RNA-seq datasets. Indeed, when extend-
ing our approach to a single-cell level, we discovered an upregulation of these genes in
the aforementioned cell types in CRC. Finally, to further elucidate this inter-relation, we
integrated and harmonized the CD and CRC scRNA-seq datasets, demonstrating a gradual
increase from control to CD and CRC in these cell populations.

In agreement with our findings, these cell types have been linked to intestinal inflam-
mation and tumorigenesis in earlier studies.

The ILC1 population was first described by Bernink et al., and their importance in
the inflamed intestine of Crohn’s patients, especially via INF-y and the pathogenesis
of gut mucosal inflammation, has been emphasized [27]. Interestingly, the high INFG
expression levels that we detected in CRC samples compared to controls is in support of
these data. ILC1 innate lymphoid cells were demonstrated to hold a crucial role in the
IL22 production and, thus, regulation of inflammatory bowel disease, but are markedly
distinct from conventional natural killer (NK) cells [28,29]. Interestingly, CRC progression
was recently suggested to be mediated by distinct ILC populations, while the presence of
ILC1-like cells was identified in CRC lesions [30].

The relevance of activated T cells in IBD is widely characterized [31], and their multi-
faceted regulatory activity in IBD has been previously demonstrated by our group [32,33].
Their pro-inflammatory function, including the upregulation of CXCL1-3 and IFNG, was
described in order to contribute to the development of CRC [34]. Similarly, activated
DCs accumulate in the colon of UC patients [35] and their suppression by cancer cells
has been hypothesized as a mechanism to avoid immune surveillance [36]. Notably, an
increased abundance of activated DCs in invasive tumors, along with lymph node invasion,
was observed [37].

Among these immune cell populations (ILC1, activated T cells and activated DCs), a
recurring expressional pattern of TNFa-signaling-related genes was observed. For instance,
TNFAIP3 in ILC1 and activated DC is induced by TNFe, as are IRF1 (and related interferon-
pathway genes) in all of these cell types and STAT1, leading to an autocrine loop of
inflammation [38]. Similarly, the induction of HLA-C, which we have shown in all of
these populations, can be explained via induction by TNFa [39]. The importance of these
expression patterns is highlighted by the application of TNF« inhibitors as a mainstay
therapy for over 20 years [40—42].

Pericytes, residing at the interface between the endothelium and interstitium, mostly
contribute to inflammation-associated fibrosis, whereas their role in IBD [43], as well as
CRC, is not fully understood. Interestingly, earlier studies suggest a functional relevance in
the tumor microenvironment and a potential involvement in antiangiogenic therapies [44].
Activated fibroblasts were just recently discovered to be critical pro-inflammatory players
in both CD and the development of CRC. These cells mediate increased levels of CXCL1,
-2 and -3 and further pro-inflammatory cytokines and, therefore, were suggested to drive
pro-tumorigenic development in IBD [45]. Epithelial cells are the main cell type described
as being involved in the development of colorectal cancer [46,47]. While their heterogeneity
and importance in barrier breakdown in IBD was highlighted in the past [12], our findings
support their key role in IBD and CRC [48].

Among some ILC1, activated DCs, pericytes and activated fibroblasts, the levels of
the intercellular adhesion molecule 1 (ICAM1) increased in the diseased state. Intriguingly,
ICAM1 was increased in the serum of Crohn’s patients and declined significantly during
treatment and after remission [49]. Notably, we identified a potential cellular origin of this
potentially impactful serum marker.

The analysis of CD and UC data within the same study may have reduced the
pathogenic insights into the individual respective disease. However, the large propor-
tion of CD-induced genes upregulated in UC suggests a general deregulation of distinct
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genes, as well as signaling pathways, in IBD. Future research will aim to specifically verify
and expand our findings in CD and UC in separate studies.

4. Materials and Methods
4.1. CD Signature

Genes differentially expressed in CD patients were obtained from an earlier study
by Peloquin et al. Initially, we selected all genes upregulated (1 = 176) or downregulated
(n =91) in CD [10]. As explained in the results section, we later focused on CD-induced
genes (also referred to as CD risk genes throughout this manuscript). This signature was
enriched in single-cell sequencing datasets using the enrichIT function within the escape
package, in groups of 1000 cells (v. 1.3.3, [50]). Out of these 176 genes, 153 were detected in
both single-cell sequencing datasets. Therefore, heatmap analyses and pairwise compar-
isons focus on these 153 genes (Supplementary Table S1). To compare genes upregulated in
CD and UC, UC-induced genes were obtained from the same study by Peloquin et al. [10].

4.2. Analysis of Microarray Sequencing Data

To identify genes associated with UC, as well as UC-associated neoplasia, publicly
available microarray data (healthy controls, n = 5; quiescent UC, n = 3, UC and neoplasia,
n = 10) were analyzed ([21], GSE37283) using Transcriptome Analysis Console Tac Software
(TAC4.0) (appliedbiosystems, Thermo Fisher, Waltham, MA, USA) with the Array Type
HT_HG-U133_Plus_PM.

4.3. Analysis of CRC Bulk mRNA Sequencing Data

The enrichment of CD risk genes in CRC specimens was tested in two publicly avail-
able bulk mRNA datasets. In the study by Paredes et al. ([22], GSE146009, Caucasian Amer-
icans) 18 tumor and 17 adjacent non-transformed tissues were compared, while Kim et al.
([23], GSE50760) assessed transcriptome-wide changes in 18 primary CRC and 18 normal
colon samples. These bulk mRNA-seq data were analyzed (GSE146009, GSE50760) as
described earlier ([51]). Briefly, raw counts were converted into a matrix, before DESeq2
(1.34.0) was used. Determination of differentially expressed genes (DEGs) was performed
using DESeq2 (lfcThreshold = 0, alpha = 0.1, min. count = 0.5). An exemplarily RNA-seq
analysis vignette is provided as R notebook in our previous study [51]. Gene set enrichment
analysis (GSEA, v. 4.2.2, Broad Institute, Inc., Massachusetts Institute of Technology, and
Regents of the University of California, Massachusetts, CA, USA) was performed with
default settings (1000 permutations for gene sets, Signal2Noise metric for ranking genes).

4.4. Single-Cell RNA-seq (scRNA-seq) Analysis

Differential expression of CD risk genes in distinct cell populations was determined by
analyzing publicly available single-cell sequencing datasets comparing CD to uninflamed
intestinal tissue (GSE134809; CD, n = 11; uninflamed, n = 11, [15]) and CRC specimens to
matched normal mucosa (E-MTAB-8410; CRC, n = 23; normal, n = 10; [26]). Cells with at
least 500 unique molecular identifiers (UMIs), log10 genes per UMI >0.8 and >250 genes per
cell and a mitochondrial ratio of less than 20% were extracted, normalized and integrated
using the Seurat package (v 4.0.6) in R 4.0.3, as demonstrated in our previous studies
([51,52]). The cell annotation utilized in the CD study was provided by the authors, and
uninflamed, normal adjacent tissue (NAT) was referred to as “NAT”, while involved ileal
samples have been named “IBD” ([15], GSE134809). Detailed information on sample
characteristics, conditions and cell numbers per cluster from the CD scRNA-seq dataset are
summarized in Supplementary Table S2. To determine common mechanisms in CD and
CRC samples, the same cell type annotation suggested in the CD study was selected for
the CRC data. The sample classification into “tumor” and “normal” was provided by the
authors [26]. Sample characteristics are summarized in Supplementary Table S3.

The normalization, scaling and clustering followed the recommendations of the Seurat
package [53]. Comparisons between IBD and NAT, as well as normal and tumor samples,
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were performed using the “FindMarkers” function (Seurat package) and the “"MAST” pack-
age (1.16.0, [54], logfc.threshold = 0, test.use = "MAST”, only.pos = FALSE, min.pct = 0.0).
For downstream analyses, ggplot2 (3.3.5) was utilized. For pairwise comparisons, a non-
parametric Wilcoxon signed-rank test was applied (ggpubr 0.4.0). GSEA analysis was
conducted using clusterProfiler (3.18.1). Correlation plots were designed with corrplot
(0.92), ggsci (2.9) and ggExtra (0.9) and heatmaps using the DEP package (1.1.5).

The two scRNA-seq datasets were harmonized with the harmony package (0.1.0)
according to the authors instructions [55]. Briefly, the separate Seurat objects were merged
with the Seurat package, normalized and scaled before the variation of gene expression
was embedded in a PCA, normalized for library size. The eigenvalue-scaled eigenvectors
were used as harmony input before the batch variables (NAT, IBD and tumor) were used to
integrate, which returned a Seurat object with harmony correction.

Correlation analyses were performed according to the suggestions of Iacono et al. [56]
using the bigSCale framework (2.0). Briefly, modules for differential expression were
generated in a newly created regulatory network. After clustering based on granularity,
iterative differential expression analysis between cluster pairs was performed. In the
thereby created Z-score space, a solid measure of linear correlation via Spearman coefficients
was used to correlate gene pairs.

4.5. Statistics and Graphs

Statistical analyses were performed using a D’ Agostino and Pearson test for normality.
If passed, an unpaired t-test was performed. Otherwise, a Mann-Whitney test was per-
formed (* p < 0.05, ** p < 0.01, *** p < 0.001). Correlation analyses were performed with
Spearman’s correlation. Raw count comparisons were calculated with a one-way ANOVA.

Graphs were designed using GraphPad Prism 9.2.0 (GraphPad Software, Inc., San
Diego, CA, USA), BioRender.com and R (4.0.3).

5. Conclusions

We are the first group to provide evidence for the relevance of these distinct cell types
in driving CD-associated gene expression patterns. Therefore, these cells are likely to
contribute to the development of chronic intestinal inflammation and progression into
CRC. Further studies will validate these findings in primary cells and will help to unravel
the role of these cells in the local inflammatory environment, as well as their therapeutic
vulnerability towards existing and novel treatments.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijms23063082/s1. Supplementary Figure S1: Clustering of cell types
in control and inflamed tissue isolated from CD patients. (A) UMAP depicting the 27 main cell types
found in surgically resected inflamed (IBD) and uninflamed (NAT) lamina propria ileum samples
from Crohn’s disease patients split by condition ([15], GSE134809). (B) Heatmap depicting all CD risk
genes, as previously identified by Peloquin et al. [10]. (C) Dot plots for each of the 27 cell types and
marker gene expression according to the suggestion by Martin et al. [15]. Supplementary Figure S2:
Cell populations in CRC and control tissue. (A) Heatmap indicating the clustering approach which
has been integrated with the cell type markers of the CD scRNA-seq dataset by Martin et al. [15] for
consistency. (B) Genes displaying the most differential expression within each of the 34 cell types in
CRC [25] were merged with the proposed clustering from the scRNA-seq dataset by Martin et al. [15].
Supplementary Figure S3: Correlation plots for six key cell populations within the CD scRNA-seq
dataset. (A) Correlation plots indicate different cluster sizes of co-expressed genes within each cell
cluster. The most significant correlations are depicted in Figure 2. (B) Exemplary presentation of
the correlation between CDC37 and STAT3 supporting the correlation data (R = 0.68, p < 0.0001,
spearman) shown in Figure 2A. Supplementary Figure S4: Correlation plots for all six key cell types
within the CRC scRNA-seq dataset. (A) Correlation plots indicate a different amount of co-expressed
genes within each cell cluster. The highest correlations are shown in Figure 4. (B) Exemplary depiction
of the co-expressional pattern of RUNX3 and RASSF5 (R = 0.34, p < 0.0001, spearman) in the ILC1
cluster, as shown in in Figure 5A. Supplementary Figure S5: Enrichment of CD risk genes in the naive
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T cells. The CD risk gene set was downregulated in CD compared to NAT specimens and upregulated
in the tumorous state. Supplementary Table S1. Genes upregulated in CD. Supplementary Table S2.
Cluster assignment and numbers in IBD dataset from Martin et al. [15]. Supplementary Table S3.
Cluster assignment and numbers in IBD dataset from Lee et al. [25].
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