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Optimal transfer functions for bandwidth-limited imaging
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One of the fundamental limits of classical optical microscopy is the diffraction limit of optical resolution.
It results from the finite bandwidth of the optical transfer function (or OTF) of an optical microscope, which
restricts the maximum spatial frequencies that are transmitted by a microscope. However, given the frequency
support of the OTF, which is fully determined by the used optical hardware, an open and unsolved question
is what is the optimal amplitude and phase distribution of spatial frequencies across this support that delivers
the “sharpest” possible image. In this paper, we will answer this question and present a general rule how to
find the optimal OTF for any given imaging system. We discuss our result in the context of optical microscopy,
by considering in particular the cases of wide-field microscopy, confocal image scanning microscopy (ISM),
4pi microscopy, and structured illumination microscopy (SIM). Our results are important for finding optimal
deconvolution algorithms for microscopy images, and we demonstrate this experimentally on the example of
ISM. They can also serve as a guideline for designing optical systems that deliver best possible images, and
can be easily generalized to nonoptical imaging such as telescopic imaging, ultrasound imaging, or magnetic
resonance imaging.
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I. INTRODUCTION

Conventional optical microscopes have a resolution limit
due to the wave nature and resulting diffraction of light. This
is embodied by the fact that a microscope transmits only spa-
tial frequencies of a sample up to some maximum values. The
total set of all transmitted frequencies comprises the support
of the so-called optical transfer function (OTF). The OTF
is the Fourier transform of the point spread function (PSF),
the image of an ideal infinitesimally small point emitter.
Recorded data are often deconvolved using a model of image
formation for the given imaging system [1–6]. The goals of
such a deconvolution can be several: (i) correcting optical
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aberrations of the imaging system, (ii) maximizing spatial
resolution and contrast, or (iii) minimizing out-of-focal plane
contributions. An appropriate model of the imaging system
is also required for nondirect imaging methods, that need an
image reconstruction procedure to arrive at the final image.
For example, image reconstruction in structured illumination
microscopy (SIM) [7–11] requires finding an optimal apodiza-
tion function. In any case, an optimal deconvolution or image
reconstruction needs a valid model of the “ideal” OTF (or,
equivalently PSF) for a given imaging system, which would
yield the best possible image of a sample.

The goals of this paper are threefold. First, we want to
answer the fundamental question in optical imaging what the
ideal OTF is given the support in spatial frequency space, and
how such an ideal OTF can be found from first principles.
Second, we want to illustrate this concept to find the ideal
OTF for a range of microscopic imaging modalities. Third,
we wish to demonstrate a practical application of the concept
of an ideal OTF in linear deconvolution.

II. THEORETICAL FOUNDATION

In what follows, we will focus on image formation in flu-
orescence microscopy. Let us start by considering the image
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formation of a general optical microscope. To be as general
as possible, we consider three-dimensional image formation,
either by taking consecutive images at different focal planes
along the optical axis with a wide-field microscope (with
or without structured illumination), or by three-dimensional
point scanning with a laser scanning microscope (e.g., con-
ventional confocal microscope, image scanning microscope,
STED microscope). For an optical system that is isoplanatic
along all directions [12], the final 3D image I (r) is related to
the sample function S(r) (distribution density of fluorescent
emitters) by a linear convolution of the form

I (r) =
∫

dr′U (r − r′)S(r′) ⇔ Ĩ (k) = Ũ (k)S̃(k), (1)

where r and k are the coordinates in real and Fourier space,
respectively, and a tilde above a symbol denotes its Fourier
transform. Here, U (r) is the PSF, and Ũ (k) is its Fourier
transform, the OTF. Along all directions n̂, there exists a
maximum value kmax(n̂) beyond which the OTF is zero, which
means that no spatial frequencies of the sample distribution
S̃(k) beyond values kmax(n̂)n̂ are transmitted by the micro-
scope (final support of the OTF). This fundamentally limits
the achievable spatial resolution along direction n̂ to 2π/kmax.
We will denote by M the set of all points of the support of the
OTF in Fourier space, i.e.,

M = {k ∣∣ |Ũ (k)| > 0}. (2)

This support M is solely determined by the microscope’s
hardware properties, such as the numerical aperture of its
objective, the size of the confocal aperture and magnification
at the aperture’s position (for a confocal microscope), the
spatial modulation period of the excitation intensity (for a
structured illumination microscope), or the intensity of the
stimulated emission laser (for a STED microscope). But given
this support M, the question is what is the distribution of
complex-valued amplitudes over M that yields the best pos-
sible PSF.

At this point it makes sense to make more explicit what
we understand to be the ideal OTF and PSF. Our position
is that an ideal PSF of an incoherently imaging fluorescence
microscope should be (i) positive everywhere (U (r) � 0), as
this avoids edge ringing and negative pixel artifacts in linear
deconvolution and image filtering, as well as being consistent
with the physical requirement of having nonnegative image
signals, (ii) as sharp as possible, which can be quantified by
a maximum OTF summed over the OTF support, or equiva-
lently a maximum PSF peak value

U (0) =
∫
M

dk
(2π )D

Ũ (k), (3)

where D is the dimensionality of M. The advantage of a
sharpness metric that is based on the OTF is that is indepen-
dent of any specific object features, in contrast to, e.g., the
steepness of imaged edges.

There is a large interdependency between the above two
requirements. For example, a gain in contrast and overall
sharpness may be achieved by having a relatively high OTF
for large spatial frequencies, as this will emphasize the rep-
resentation of small scale features in the image. It appears,
however, that an unbalanced OTF, with comparable or even

higher values for larger spatial frequencies than for lower
spatial frequencies, gives rise to violations of the positivity
constraint for the PSF. A metric to quantify sharpness should
therefore take into account the OTF at all spatial frequencies,
a straightforward way to do this is to simply take the average
over all spatial frequencies in the OTF support. The quest for
a best possible OTF giving rise to a positive PSF has already
been addressed by Lukosz, who has derived upper bounds for
such an OTF [13,14]. The concept of the Lukosz bound has
also been applied in image reconstruction for SIM [15,16].
Here, we improve on these results by proposing an exact
recipe for obtaining the ideal OTF given the support M.

Let us start with the simplest case of an infinitely ex-
tended support in one dimension. This is a trivial case with
the well-known answer that a constant OTF, Ũ (k) = const,
yields the most narrow PSF, namely a delta function. In that
case, the image I (r) and the sample function S(r) become
identical. For the one-dimensional case with a limited support
|k| < kmax, one may still assume that the Fourier transform
of uniform amplitude, Ũ (k) = const for |k| < kmax, yields the
most compact PSF. A quick calculation shows that this leads
to a function proportional to sin(kmaxx)/x, which is not strictly
nonnegative, while strict nonnegativity is a fundamentally im-
portant requirement for a physically valid PSF. Expanding on
this idea, it is proposed that the most compact PSF is given by
the square of this function, [sin(kmaxx/2)/x]2, which corre-
sponds to the Fourier transform of the autoconvolution of the
rescaled original uniform amplitude distribution, Ũ (2k), over
half the support |k| < kmax/2, i.e., Ũ (2k) ⊗ Ũ (2k). This auto-
convolution does indeed have the original support |k| < kmax,
and its Fourier transform is by definition strictly nonnegative.
Generalizing this idea to three dimensions, we arrive at the
core hypothesis of our paper: For a given support M, the most
compact positive PSF is found as the Fourier transform of
an OTF, which is the autoconvolution of a uniform amplitude
distribution.

This problem is closely connected to Minkowski sums. A
Minkowski sum of two sets of points A and B is defined by

A ⊕ B = {a + b
∣∣a ∈ A ∧ b ∈ B}. (4)

If one has two functions f̃ (k) and g̃(k) defined over finite
supports A and B, respectively, then their convolution f̃ (k) ⊗
g̃(k) has the support A ⊕ B. Thus, given the set of points M
of an OTF’s support, what we need to find is another set of
points M1/2 so that

M = M1/2 ⊕ M1/2. (5)

Knowing this set M1/2, the ideal OTF is found by an auto-
convolution of a uniform amplitude distribution over M1/2,
and the ideal PSF is the Fourier transform of this OTF. It
is trivial to find M1/2 for a convex set M, which is M
scaled down in extent by a factor of 2. For general sets M,
in particular nonconvex or disjoint sets, there is no general
algorithm known for finding M1/2. However, for many cases
of practical relevance in microscopic imaging, one can find
M1/2 by considering how the OTF is physically calculated.

We will now show that a uniform phase and amplitude
distribution across M1/2 gives rise to a maximum sharpness
metric U (0) as defined in Eq. (3). That is, given a Minkowski
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decomposition of the OTF support M in Eq. (5) we can
construct the ideal OTF. A positive (and real) PSF can always
be written as U (r) = |E (r)|2, where the field distribution E (r)
can be written as a Fourier transform:

E (r) =
∫

dk
(2π )D

Ẽ (k) exp (ik · r), (6)

where the support of Ẽ (k) is M1/2. Without loss of generality
we may write [for k ∈ M1/2]:

Ẽ (k) = E0 exp (iWc(k)), (7)

where Wc(k) = W (k) + iV (k) is the complex aberration
function, with real and imaginary parts W (k) and V (k) that
represent the phase and amplitude aberration functions, re-
spectively. The constant E0 is fixed by the normalization
condition:

1 =
∫

dr|E (r)|2 =
∫

dk
(2π )D

|Ẽ (k)|2

= E2
0

∫
M1/2

dk
(2π )D

|exp (iWc(k))|2. (8)

With the aid of this equation, E0 can be solved and we find
for the PSF peak value:

U (0) = 1

(2π )D

|∫M1/2 dk exp (iWc(k))|2∫
M1/2 dk|exp (iWc(k))|2 . (9)

The PSF peak value is usually expressed in the dimension-
less Strehl ratio:

S = U (0)

Ap
= |〈exp (iWc)〉|2

〈|exp (iWc)|2〉 , (10)

where the pupil area is defined as

Ap =
∫
M1/2

dk
(2π )D

, (11)

and where the pupil average of any function F (k) is defined
as

〈F 〉 = 1

Ap

∫
M1/2

dk
(2π )D

F (k). (12)

Using |〈a|b〉|2 � 〈a|a〉〈b|b〉 for a = exp(iWc) and b = 1 we
find that S � 1 and that the maximum is obtained in case
Wc(k) = 0, i.e., for zero phase and amplitude aberrations,
leading to a uniform complex amplitude distribution over the
pupil support M1/2. This finalizes the proof, and enables
a direct computation of the ideal OTF once the Minkowski
decomposition of the OTF support is made.

An interesting corollary of the current formalism is that to
lowest order in the phase and amplitude aberration functions:

S = 1 − W 2
rms − V 2

rms, (13)

where the root mean square phase aberration is given by
W 2

rms = 〈W 2〉 − 〈W 〉2 (and likewise for the root mean square
amplitude aberration Vrms). This suggests a generalization of
Maréchal’s criterion for aberration tolerances to include am-
plitude aberrations as well. In fact, in the current form phase
and amplitude aberrations can be treated on an equal footing.

It appears that the decomposition of the OTF support M
into the pupil M1/2 via the Minkowski sum is not unique.

Consider for example the case of a circular support of a
2D-OTF. Then our procedure leads to a circular pupil scaled
down twofold in size compared to the OTF support. An an-
nular pupil, however, is an equally valid solution M′1/2 to
the Minkowski sum decomposition. Such pupil shapes can
be incorporated into the current formalism because these sets
M′1/2 are subsets of the full set M1/2, i.e., M′1/2 ⊂ M1/2

for any solution M′1/2 to the Minkowski sum decomposition.
This can be taken into account by an amplitude aberration
function V (k) = 0 for k ∈ M′1/2 and V (k) = ∞ for k /∈
M′1/2. Then the Strehl-ratio can be computed as

S = 1

Ap

∫
M′1/2

dk
(2π )D

, (14)

which satisfies S � 1, i.e., the overall performance, quantified
by the summed OTF over the support M, is always worse.
This fits with the well-known behavior that annular pupils can
give rise to a narrower central peak of the PSF, but always
at the expense of enhanced side lobes [17–19]. We mention
that for a small range of spatial frequencies the use of annular
pupils possibly gives rise to a higher OTF than out ideal OTF,
but for the average OTF over all spatial frequencies this does
not appear to be the case.

In what follows, we will demonstrate the application of
our concept of an optimal PSF/OTF on four examples: a
wide-field microscope, an image scanning microscope, a 4pi-
microscope, and a structured illumination microscope.

III. WIDE-FIELD MICROSCOPE

As a first example, we consider a perfectly imaging,
aberration-free wide-field microscope equipped with an ob-
jective of numerical aperture NA. Here and it the next
sections, we will work in the scalar approximation of optical
imaging, i.e., neglecting the vector character of the electric-
magnetic field—discussion and justification of our results in
the light of a full vector theory of electromagnetic radiation
will be given in Sec. VII. Thus, following the scalar the-
ory of imaging through a high-aperture optics, the electric
field distribution of the image of a point emitter is given by
Eq. (6) where the finite two-dimensional integration domain
is an axisymmetric cap of the sphere |k| = nk0 defined by
arctan(k⊥/k) � θmax, with k0 being the length of the emission
light’s wave vector in vacuum, n the refractive index of the ob-
jective’s immersion medium (sample space), k⊥ the modulus
of the transverse component of k perpendicular to the optical
axis, and θmax the maximum half angle of light collection of
the microscope’s objective. This angle is connected with the
objective’s numerical aperture by NA = n sin θmax. A cross
section of the integration domain is shown in Fig. 1(a). It is
important to note that the above electric field distribution is
given as a function of the coordinate r in—the corresponding
transverse position in image space is the transverse component
of r multiplied by magnification M.

For an isotropically emitting point source, energy conser-
vation implies that the amplitude function Ẽ (k) is equal to√

cos θ/ cos θ ′, where θ = arctan(k⊥/k‖) with k‖ being the
component of the wave vector along the optical axis, and
the angle θ ′ in image space is connected to θ via Abbe’s
sine condition, Mn′ sin θ ′ = n sin θ , where M is the image
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FIG. 1. OTF of a wide-field microscope. [(a),(b)] (kx, kz )-cross
section of the axisymmetric Fourier transform Ẽ (k) of the electric
field distribution, Eq. (6). Optical axis is along kz. Extent along
the kx direction is ±kNA/n, and along the kz direction k[1 −√

1 − (NA/n)2]. Numerical aperture NA of the microscope’s ob-
jective was set to 1.2, refractive index n of objective’s immersion
medium (sample space) to 1.33 (water immersion), and image mag-
nification M to 60. (c) OTF of wide-field microscope as convolution
of (a) with (b), i.e., the autoconvolution of Ẽ (k) with an extent double
as large in all directions as that of the Fourier transform in (a) and (b).
All three distributions in (a)–(c) are normalized by their maximum
value.

magnification, and n′ the refractive index of image space
(typically n′ = 1) [20,21].

The PSF is the absolute square of the electric field dis-
tribution, U (r) = |E(r)|2, which means that the OTF is the
three-dimensional autoconvolution of Ẽ (k), as shown in
Fig. 1. For axisymmetric functions such as Ẽ (k) considered
here, such autoconvolutions can be computed using the theory
of Ref. [22]. We follow the numerically efficient and more
generally applicable method using Hankel transforms, see SI
of Ref. [23]. The resulting PSF, i.e., Fourier transform of the
OTF shown in Fig. 1(c), is presented in Fig. 2(a).

Following our hypothesis, the most optimal OTF is
obtained by an autoconvolution of a uniform amplitude dis-
tribution yielding the same support as the original OTF. As
already mentioned, this reduces to finding a set of points M1/2

so that its Minkowski sum with itself yields the support of
the OTF in Fig. 1(c). For such nonconvex sets, no general

FIG. 2. Comparison of actual and ideal PSFs of a wide-field
microscope. (a) PSF obtained via a Fourier transform of the OTF
shown in Fig. 1(c). Length of shown yellow coordinate vectors is
one wavelength. (b) Ideal PSF obtained from the OTF calculated as
the autoconvolution of two uniform amplitude distributions with the
same frequency support as those shown in Figs. 1(a) and 1(b). At the
top of both panels are indicated the square root variances (in units of
wavelength) of the distributions when fitting their lateral and axial
projections with Gaussian functions. The curves on the left show
cross sections along the x and z directions for both panel (a) (solid
lines) and panel (b) (dotted lines).

FIG. 3. OTF of ISM. (a) Autoconvolution of the Fourier trans-
form of the focused excitation electric field, Eq. (6), with Ẽ (k) =√

cos θ , and for a modulus of the wave vector, which is assumed to be
6/5 that of the fluorescence emission light. (b) OTF of light detection
efficiency distribution for light detection with an infinitely small
pinhole. All other microscope parameters were again set to the same
values as for the wide-field microscopy example, i.e., NA = 1.2,
n = 1.33, and M = 60. (c) OTF of ISM obtained by the convolution
of (a) with (b).

solution for finding M1/2 is known, but in the present case,
it is obviously known from the very physics of how the OTF
is calculated, and is the support of the Fourier transform of the
electric field as shown in Figs. 1(a) and 1(b). Thus, the ideal
OTF is found by replacing in (6) the k-dependent amplitude
by a constant one, Ẽ (k) = const, and then autoconvolving
the result. We do not show the resulting OTF, which looks
very similar to the original one, but present the result for the
corresponding PSF in Fig. 2(b). One finds indeed a slight
improvement in spatial resolution (quantified by the square
root of the variance values of three-dimensional Gaussian
distributions fitted to the PSFs). However, the improvement in
lateral resolution is only ca. 10%, and in axial resolution it is
negligible. Thus, a perfectly adjusted wide-field microscope
operates close to the absolute optimum in the sense that it
transmits the spatial frequencies of the sample in a close-to-
optimum manner.

IV. IMAGE SCANNING MICROSCOPY

Next, we consider an image scanning microscope (ISM),
that scans the sample with a diffraction-limited focus, and
records at each scan position an image of the excited fluores-
cence. From the resulting 3 + 2-dimensional data set (three
dimensions for scan positions, two dimensions for the im-
ages taken at each scan position), a final image is calculated
that is equivalent to an image recorded with a conventional
laser-scanning confocal microscope having an infinitely small
confocal aperture. Thus, the PSF of the final ISM image is
given by the product of the excitation intensity distribution
and the light collection efficiency of detecting light through
an infinitely small confocal aperture. The Fourier transform of
the former is given by the autoconvolution of the Fourier rep-
resentation of the electric field in sample space when focusing
a perfectly plane wave through the objective. This Fourier
representation is given again by (6), but now with amplitude
function Ẽ (k) = √

cos θ , and at the wavelength of the exci-
tation light (which is smaller than that of the fluorescence
emission, resulting in a larger modulus k of the wave vec-
tor). This autoconvolution of this Fourier transform is shown
in Fig. 3(a). The Fourier transform of the light collection
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FIG. 4. Ideal OTF of ISM. [(a),(b)] Uniform amplitude distribu-
tions over the frequency support of the convolution of the Fourier
transforms of excitation and detection electric fields. Please note
the hole of missing frequencies in the middle, which is due to the
different wavelengths (and thus lengths of the wave vectors) of
excitation and emission. (c) Ideal OTF of ISM as obtained by the
autoconvolution of (a) and (b).

efficiency for an infinitely small pinhole is the same as the
OTF of a wide-field microscope as shown in Fig. 1(c), and is
reproduced in Fig. 3(b). Finally, the result for the OTF of ISM
is shown in Fig. 3(c), and the corresponding PSF in Fig. 5(a).

Again, following our core hypothesis, the ideal OTF is
obtained as an autoconvolution of a uniform amplitude distri-
bution yielding the same support as that of the OTF shown in
Fig. 3(c). For finding the corresponding M1/2, we can use the
associative property of Minkowski addition: For example, for
two sets A and B we have (A ⊕ A) ⊕ (B ⊕ B) = (A ⊕ B) ⊕
(A ⊕ B). Thus, in our case of ISM, the sought-after M1/2

is the support of the convolution of the Fourier transform of
the excitation electric field with the Fourier transform of the
detection electric field. This is shown in Figs. 4(a) and 4(b).
Thus, the ideal OTF of ISM is found as the autoconvolution
of a uniform amplitude distribution over this support and is
shown in Fig. 4(c). The resulting PSF is presented in Fig. 5(b).
As can be seen, for ISM, the optimal amplitude distribution
yields a significantly smaller PSF, and thus an appropriate
deconvolution of ISM images using this PSF can indeed sig-
nificantly improve image resolution and contrast (brightness
per image area) [24].

V. 4PI MICROSCOPY

As a third example, we consider the case of a so-called
type-C 4pi microscope [25,26]. In such a microscope, the
sample is illuminated from both sides through two identical

FIG. 5. (a) PSF of ISM as obtained via the Fourier transform of
the OTF show in Fig. 3(c). (b) Ideal PSF of ISM as obtained by a
Fourier transform of the ideal OTF shown in Fig. 4(c). The curves
on the left show cross sections along the x and z directions for both
panel (a) (solid lines) and panel (b) (dotted lines).

FIG. 6. OTF of a type-C 4pi microscope. (a) Fourier transform of
the excitation intensity distribution. Again, excitation wavelength is
set to 5/6 of fluorescence emission wavelength. (b) Fourier trans-
form of the light detection efficiency distribution. All microscope
parameters were again set to the same values as for the wide-field
microscopy example, i.e., NA = 1.2, n = 1.33, and M = 60. (c) OTF
of a type-C 4pi microscope obtained by the convolution of (a) with
(b).

objectives that constructively focus the light of two mutually
coherent laser beams, and the excited fluorescence emission
is detected through the same two objectives by constructive
interference, as is done also in 3D interferometric photoac-
tivated localization fluorescence microscopy (iPALM) [27]
or isotropic stimulated emission depletion (isoSTED) mi-
croscopy [28]. The Fourier representation of the excitation
electric field is again given by Eq. (6), but now with an
integration domain � consisting of two segments of the sphere
|k| = nk0 defined by | arccos(k‖/k⊥)| � θmax. The resulting
distribution looks very similar to the one shown in Fig. 1(a),
but with a second spherical segment that is a mirror image
of the one shown reflected on the horizontal axis, and both
having a larger radius (due to the excitation wavelength being
shorter than the emission wavelength). The autoconvolution
of such a distribution and thus the Fourier transform of the
excitation intensity distribution is presented in Fig. 6(a). The
Fourier transform of the light collection efficiency distribution
is obtained analogously and is shown in Fig. 6(b). Thus, the
OTF of a type-C 4pi microscope is finally obtained by the
convolution of both Fourier transforms and shown in Fig. 6(c).
The corresponding PSF is seen in Fig. 8(a).

Using the same considerations as in the previous example,
the set M1/2 is obtained as the support of the convolution
of the Fourier electric field representations for excitation and
detection, and is shown in Figs. 7(a) and 7(b). The autocon-
volution of a uniform amplitude distribution over this support

FIG. 7. Ideal OTF of a type-C 4pi microscope. [(a),(b)] Uniform
amplitude distributions over the frequency support of the convolution
of the Fourier transforms of excitation and detection electric fields.
(c) Ideal OTF of a type-C 4pi microscope as obtained by the auto-
convolution of (a) and (b).
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FIG. 8. (a) PSF of a type-C 4pi microscope, being the Fourier
transform of the OTF seen in Fig. 6(c). (B) Ideal PSF of a type-C
4pi microscope calculated as the Fourier transform of the OTF seen
in Fig. 7(c). The given values of square root variances, σx,z, refer to
fits of the lateral and axial projections of the central peaks of the
PSFs with Gaussian functions. The curves on the left show cross
sections along the x and z directions for both panel (a) (solid lines)
and panel (b) (dotted lines).

then yields the ideal OTF of a type-4 4pi microscope and is
shown in Fig. 7(c). Its Fourier transform then gives the ideal
PSF as presented in Fig. 8(b). As can be seen, this PSF is in
size not much different from that of the central peak of the
original one, but now the axial side peaks are significantly
suppressed. Using this ideal PSF for image deconvolution
promises an efficient suppression of ghost images due to the
axial side peaks in the original PSF, which is a serious issue
in 4pi microscopy.

VI. STRUCTURED ILLUMINATION MICROSCOPY

As a last example we consider a three-dimensional
structured illumination microscope (3D SIM) [9–11]. This
example is different from the previous ones because the OTF
and PSF now, as will be seen, are no longer axially symmetric.
In a 3D SIM microscope, illumination is done by the superpo-
sition of three plane waves, one traveling along the optical axis
and two with propagation angle θ = ± arcsin(βNA/n) with
respect to the optical axis while sharing a common incidence
plane. Here β is a numerical coefficient that is chosen to be
close to 1. For the sake of simplicity we will set it to the
best possible value β = 1 in the following. This generates a
3D periodic excitation intensity pattern in sample space. The
Fourier transform of this intensity distributions consists of
seven delta-function peaks in the plane of incidence of the
inclined excitation plane waves and is shown in Fig. 9(a).
The OTF of detection of the 3D SIM is the same as that of
a wide-field microscope, Fig. 1(c), and is shown, for the sake
of completeness, again in Fig. 9(b). By taking several images
for different relative positions and orientations (usually by
rotating around the optical axis in angular steps of 60◦) of
this excitation intensity pattern with respect to a sample, and
applying a sophisticated image reconstruction algorithm, one
finally obtains an image with doubled lateral resolution (as
compared to a wide-field microscope) and an axial resolution
and sectioning comparable to a confocal microscope.

It is difficult to define a generic OTF for 3D SIM, because
the OTF (and PSF) will depend on the specific details of the
image reconstruction algorithm used, such as the different
spatial frequency filtering steps. Whatever the image recon-
struction algorithm is, the resulting OTF will have the same

FIG. 9. Comparison of spectral support of the OTFs for 3D SIM
and for ISM. For the sake of simplicity, the excitation and detection
wavelengths are set equal. (a) OTF of excitation intensity distribution
of 3D SIM. Shown are the 7 peaks at the center {0, 0, 0} and po-
sitions k = nk0{±2 sin θmax, 0, 0} and k = nk0{± sin θmax, 0, ±2(1 −
cos θmax)}. The green-dotted line shows the frequency support of
the corresponding OTF for ISM excitation, which is identical to the
OTF shown in the middle panel. (b) OTF of wide-field detection.
(c) Superposition of (b) shifted to all peak positions shown in (a) plus
all additional peak positions obtained by rotating the peaks around
the vertical (optical) axis in steps of 60◦. The result visualizes the
coverage of the frequency space by 3D SIM. Green line shows
the limit of the frequency support for the ISM OTF, obtained by
autoconvolution of (b).

support as the linear superposition of copies of the distribution
shown in Fig. 9(b), shifted to the peak positions of Fig. 9(a).
This is visualized in Fig. 9(c) showing a cross section of such
a superposition obtained by shifting the OTF of Fig. 9(c) to
all 19 peak positions in 3D, 7 as shown in Fig. 9(a), and 12
additional from rotations of the nonaxial peaks around the
vertical axis by 60◦ and 120◦. This cross section visualizes the
frequency range covered by SIM. A direct application of our
procedure, i.e., finding the effective pupil support M1/2 given
the OTF support M, appears to be too involved in view of the
complex rotationally asymmetric shape of the OTF support
for 3D SIM. A good approximation, however, can be found
by comparison to the case of ISM. The green line in Fig. 9(c)
delimits the frequency support of the OTF of an ideal ISM
(for the situation of no Stokes shift) as obtained through an
autoconvolution of the distribution of Fig. 9(b). As can be
seen, SIM covers nearly the same frequency space as ISM,
and thus a fairly good approximation of the optimal OTF of
3D SIM is given by that of the corresponding ISM (same
excitation and emission wavelengths). Thus, the ideal OTF
(and PSF) of 3D SIM is expected to be very similar and well
approximated by that of ISM as derived in the section about
ISM above.

VII. HIGH NUMERICAL APERTURE AND
POLARIZATION EFFECTS

Up to now, all above considerations were based on a scalar
approximation of image formation, thus neglecting the vec-
tor character of the electromagnetic field and corresponding
polarization effects in fluorescence excitation and imaging,
which become especially important for objectives with high
numerical aperture. However, as will be explained in the fol-
lowing, our considerations and definition of the ideal PSF and
OTF will be fully valid also for the general vectorial case. As
an example, let us consider image formation in a conventional
wide-field microscope. Following the wave-vector theory of
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Richardson and Wolf [20,21], a point dipole emitter with
dipole amplitude vector d positioned in the focal plane and
on the optical axis generates an electric field distribution in
the image plane of the microscope that is proportional to the
following plane-wave superposition:

E(r) =
∫ 2π

0
dψ

∫ ηmax

0
dη sin η

√
cos η

cos η′ ·

[êp(ê′
p · d) + ês(ês · d)]eik·r, (15)

where η and ψ are azimuthal and polar integration an-
gles, the relation between angles η and η′ is given by
Abbe’s sine condition, M sin η = n sin η′, with M being the
image magnification and n the refractive index of the ob-
jective’s immersion medium (ideally equal to that of the
sample), k = −k0{sin η cos ψ, sin η sin ψ, cos η} is the wave
vector along the propagation direction of the plane waves,
with k0 = 2π/λ its length at wavelength λ, and êp =
{cos η cos ψ, cos η sin ψ,− sin η}, ê′

p = {cos η′ cos ψ, cos η′
sin ψ, sin η′} and ês = {− sin ψ, cos ψ, 0} are azimuthal and
polar polarization unit vectors. The maximum integration
value ηmax is defined by the numerical aperture NA of the ob-
jective via ηmax = arcsin(NA/M ). The factor

√
cos η/ cos η′

assures energy conservation during imaging. The correspond-
ing magnetic field distribution is given by a similar plane wave
superposition

B(r) = 1

c

∫ 2π

0
dψ

∫ ηmax

0
dη sin η

√
cos η

cos η′ ·

[−ês(ê′
p · d) + êp(ês · d)]eik·r (16)

and the final intensity distribution in the image plane is given
by the time-averaged Poynting vector component along the
optical axis, which is

Ud(r) = − c

8π
�[êz · (E × B)] (17)

with êz being a unit vector along the optical axis (z axis).
Please note that all equations were written in such a coordinate
system where the light from the dipole to the image plane
propagates along the negative z direction. For an isotropic
distribution of emitters, the last expression has still to be
averaged over all dipole orientations, which then yields the
final PSF of the system as

U (r) = 〈Ud(r)〉d = − c

8π
〈�[ez · (E × B)]〉d, (18)

where 〈·〉d denotes averaging over all orientations of d.
Although this expression for the PSF looks now much more

complicated than what we have seen for all PSFs in the scalar
approximation of the previous sections, the core difference is
the presence of the vectorial prefactors in front of the expo-
nents exp(ik · r) in the above integrals, so that the integrals
return vector functions instead of scalar functions. However,
when comparing these integrals with the scalar approximation
of Eq. (6), one can see that the frequency support of the Fourier
transforms of all these functions is identical! Furthermore,
the PSF calculated with the vectorial representations of the

electric and magnetic field is given by the real part of a cross
product of both fields, which corresponds in Fourier space
to a sum of several scalar convolutions. As a result, also the
frequency support of this Fourier-transformed PSF is identical
to that of the OTF calculated in the scalar approximation.
The vector character of the electric and magnetic field makes
the calculations of the PSF and OTF much more compli-
cated than in the scalar approximation, but it does not at all
change the frequency support of the final OTF. This support
remains the same, irrespective of any alterations to the am-
plitude, phase, or polarization in the pupil or the light path
towards the detector.

Thus, all our previous derivations of ideal PSFs and OTFs
remain fully intact, and one can use them with same validity
for optimally deconvolving images that are obtained with
high-NA objectives where vector effects can no longer be
neglected. Even more, in the case of a wide-field microscope,
the complex vectorial structure of the electric and magnetic
fields will lead to a PSF/OTF that is suboptimal (because it
will inadvertently lead to a nonuniform amplitude distribution
of the resulting OTF in Fourier space), but which can now
be improved by deconvolving an image using the ideal OTF
as derived in the scalar approximation. It remains an open
question how close the ideal OTF can be approximated in
a high-NA wide-field microscope by engineering the phase,
amplitude, and polarization in the pupil plane. This would
amount to maximizing the z component of the Poynting vector
in focus, given the total power flowing through the micro-
scope’s pupil towards the detector. An approach similar to
Ref. [29], where the electric field magnitude in focus is op-
timized, could be a good starting point.

VIII. APPLICATION IN LINEAR DECONVOLUTION

The concept of an ideal OTF is important for often applied
linear deconvolution methods. Let us assume, the actual ex-
perimental PSF of a given microscope is Uexp(r), which can
take into account all kinds of imperfections such as optical
aberrations, angle-dependent transmission efficiency of the
objective etc. These imperfections will affect the measured
image Iexp(r) (blurring, reducing contrast, etc.). If one knows
the ideal OTF Ũ (k) over the same frequency support as that
of Ũexp(k), one can calculate a rectified Fourier-transformed
image as

Ĩ (k) = Ũ (k)

Ũexp(k)
Ĩexp(k). (19)

Just dividing by Ũexp(k) seemingly results in a better, more
sharp, outcome of the deconvolution. In that case, however,
the effective OTF will be essentially flat across the OTF
support M, which will violate the PSF positivity constraint.
The key thesis of this paper, namely that the the best possible
bandwidth limited linear representation of any object is the
convolution of the ground truth object with the ideal OTF,
implies that the multiplication with the ideal OTF in Eq. (19)
is a necessary ingredient of the linear deconvolution.

Of course, a naive scheme such as Eq. (19) is numerically
dangerous because the denominator Ũexp(k) tends to zero
when the frequency vector k approaches the boundary of the
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frequency support M, so one has to apply some regulariza-
tion to prevent numerical boosting of high-frequency image
noise, see, e.g., Ref. [24] for the case of image scanning
microscopy (ISM), Ref. [30] for the case of super-resolution
optical fluctuation imaging (SOFI), or Ref. [31] for the case
of structured illumination microscopy (SIM). In the simplest
case, one adds a small number to the denominator to prevent
divergence effects, i.e.,

Ĩ (k) = Ũ (k)

ε + Ũexp(k)
Ĩexp(k), (20)

where ε is typically chosen to be much smaller than the max-
imum of |Ũexp(k)|. As an example we have recorded movies
of single luminescent quantum dots (QDs) with a wide-field
microscope, so that we could apply a super-resolution flu-
orescence optical imaging (SOFI) analysis for obtaining a
super-resolved second-order SOFI image. In second-order
SOFI, one calculates from the movie of recorded images
I (r, t ) a second-order cumulant image via

ISOFI(r) =
∑
τ>0

〈δI (r, t )δI (r, t + τ )〉t , (21)

where δI (r, t ) = I (r, t ) − Ī (r) with Ī (r) being the average
(over the whole movie) intensity recorded at position r, the
angular brackets denote averaging over time t , and cumulants
are summed for all possible correlation delay times τ (for
more details, see Ref. [30]). The PSF of a second-order SOFI
image is equal to the square of the PSF Uexp of the original
wide-field microscope, or equivalently, its OTF is the auto-
convolution of the wide-field OTF. Thus, the “ideal” OTF
for second-order SOFI is the autoconvolution of a uniform
amplitude distribution having the same frequency support as
that of the wide-field OTF Uexp. In Fig. 10 panel (a), the sum
image of the movie recorded for a single QD is shown (emis-
sion wavelength 670 nm, oil-immersion objective with 1.35
NA, pixel size 55.6 nm), and panel (b) shows the resulting
second-order SOFI image. We fitted the wide-field image of
the QD (i.e., the wide-field PSF Uexp) with a scalar approxima-
tion of an ideal wide-field 2D-PSF, Uexp(ρ) ∝ (J1(κρ)/ρ)2,
where J1 is the first-order Bessel function of the first kind,
and κ is a fit parameter. This PSF corresponds to an OTF
that is the autoconvolution of a uniform amplitude distribution
over a disk of spatial frequencies with radius κ . Thus, this
wide-field PSF is “ideal” in the sense of our paper, and for the
second-order SOFI image the ideal PSF is thus given by this
fitted PSF scaled down by a factor of two. This corresponds to
an upscaling of the corresponding OTF by the same factor. In
panel (c) of Fig. 10, we show the resulting image when apply-
ing the deconvolution of Eq. (20) with this upscaled OTF, an
the curves in panel (D) are cross sections for the images shown
in panels (a)–(c). When fitting the images with 2D-Gaussian
distributions, we indeed find that the three widths of the re-
sulting Gaussians scale ca. as 1 : 1/

√
2 : 1/2, as expected for

second-order SOFI and its optimal deconvolution Eq. (20).
Algorithms of more sophistication take into account the

frequency-dependence of image noise [4,32,33]. A recent pro-
posal of one of us for Wiener filtering for SIM [31] would
translate in the current context to finding the Wiener filter

FIG. 10. SOFI imaging of a single blinking quantum dot on
immobilized on a glass cover slide. Panel (a) shows a sum image
of a movie of 1000 images, taken with a frame rate 31 Hz on an
oil immersion objective with 1.35 NA. Yellow bar is 0.5 μm. Panel
(b) shows the second-order SOFI image as calculated following
Eq. (21). Panel (c) shows the deconvolved image using Eq. (20), with
ε = 0.1 max |Ũexp(k)|.

W̃ (k) that minimizes

E =
〈∫

dk|W̃ (k)Ĩexp(k) − Ũ (k)S̃(k)|2
〉
, (22)

where the angular brackets 〈. . .〉 indicate averaging over all
noise realizations. That is, we seek a linear deconvolution
Ĩ (k) = W̃ (k)Ĩexp(k) that best matches the ideal OTF represen-
tation of the ground truth object spectrum S̃(k). Using that

〈Ĩexp(k)〉 = Ũexp(k)S̃(k) (23)

〈|Ĩexp(k)|2〉 = |Ũexp(k)|2|S̃(k)|2 + Ñ (k), (24)

with Ñ (k) the noise variance in Fourier space, it may be found
that the optimum Wiener filtered deconvolution is given by

Ĩ (k) = Ũ (k)

Ũexp(k)

[
SSNR(k)

1 + SSNR(k)

]
Ĩexp(k), (25)

where SSNR(k) = |Ũexp(k)|2|S̃(k)|2/Ñ (k) is the spectral sig-
nal to noise ratio. Such an algorithm prevents unwanted
boosting of noise, as the SSNR(k) goes to zero when k ap-
proaches the boundary of the frequency support M, just as
the factor Ũexp(k) in the denominator.

We have applied this linear deconvolution principle in
combination with the proposed ideal OTF concept to a
sample of the so-called synaptonemal complex that was im-
aged both with a Zeiss Airyscan setup, based on the ISM
super-resolution technique [24], and with a rescan confocal
microscopy (RCM, confocal.nl) setup [34] operating on a
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Nikon microscope. The underlying image formation of the
ISM and RCM techniques are identical, even though the ex-
perimental implementations are quite different. In particular,
the experimental OTF is found by convolution of the exci-
tation and detection OTF, as explained earlier in this paper.
This results in a PSF that effectively is a factor

√
2 more

narrow than the PSF of conventional wide-field fluorescence
microscopy, while the OTF support size is increased by a
factor 2. Wiener filtered linear deconvolution as described by
Eq. (25) is therefore expected to lead to an additional

√
2

improvement in apparent sharpness.
There were slight differences between the microscopes, in

particular the magnification (M = 60 for Zeiss and M = 150
for Nikon, using a 1.5× adapter), numerical aperture (NA
= 1.40 for Zeiss and NA = 1.45 for Nikon) and the back-
projected pixel size (a = 42.6 nm for Zeiss and a = 43.3 nm
for Nikon). The slightly higher NA of the Nikon machine
implies that more light is collected for the same exposure
time and that the depth of focus is somewhat less. For a
sample refractive index n = 1.515 there is a 13% smaller
depth of focus (this scales proportional to λ/(1 − cos α) with
sin α = NA/n).

The raw data of all 32 detector segments of the Airyscan
detector, which are arranged on a hexagonal grid [35], were
available. The relative shift of the 32 segments was esti-
mated using the findshift function of DIPlib [36], revealing
a spiral arrangement that enables identification of the correct
grid position of the segment. Then, the images of the 32
segments were added to emulate a confocal image. For the
ISM modality we used the found relative shifts to align the
32 images before adding them. The ISM method prescribes
an image shift that is 1/2 times the true distance between
detector segments. The shift estimation, however, already
takes this correctly into account. The estimated distance be-
tween detector segments on the hexagonal grid appears to
be 2 × (2

√
3) × a = 98.4 nm in sample space, which gives

a distance 5.9 μm in the detector plane. The diameter of the
entire set of 32 segments is then approximately 6 × 98.4 nm
= 590 nm, corresponding to 1.59 λ/NA ≈ 1.30 Airy units,
which fits reasonably well with practical pinhole diameter
settings in confocal microscopy.

The dominant noise source is shot noise governed by Pois-
son statistics. This implies a noise variance in Fourier space
Ñ (k) that is constant and equal to the total (expected) number
of collected photons in the image. For the assessment of
signal and noise levels it is therefore needed to convert the
raw image signals into photon counts. The raw ISM detector
segment images and the RCM images were fed into a routine
for estimating the gain and offset [37], giving a gain equal
to 4.45 and an offset equal to 0 for the Zeiss system, and a
gain of 2.51 and offset of 97.4 for an assumed readout noise
of 1.0 e (standard deviation) for the RCM setup, that uses
an sCMOS camera (Hamamatsu Orca Flash 4.0). With these
parameter estimates the raw data is converted to measured
photon counts. It appears that the total number of collected
photons is about 4× higher for the RCM data set compared to
the confocal/ISM data set, implying SNR levels that are about
2x higher.

The SSNR is subsequently estimated by averaging over
rings in Fourier space [31]. It appears that this estimate of the

FIG. 11. Application of the ideal OTF concept in linear decon-
volution. Image of a synamptonemal complex sample with confocal
(a), ISM (b), and RCM (c) modality. Inset of red box in (c) for the
confocal (d), ISM (e), and RCM (f) modality. Linearly deconvolved
inset images for the confocal (g), ISM (h), and RCM (i) modality.
SSNR estimated by Fourier space ring averaging and normalized
SSNR according to Eq. (26) for the confocal (j), ISM (k), and RCM
(l) modality.

SSNR becomes unreliable for the highest spatial frequencies
(where essentially the SSNR goes to zero). To fix this, an ad
hoc normalization

SSNR(k) → |Ũexp(k)|2
γ 2 + |Ũexp(k)|2 SSNR(k) (26)

for γ = 0.05 is applied, enforcing the physical asymptotic
behavior close and beyond the spatial frequency cutoff, with-
out affecting the estimated SSNR for the spatial frequencies
within the OTF support.

Figure 11 shows the results of this analysis. The ISM
and RCM images before linear deconvolution already show a
comparable resolution advantage over the emulated confocal
image. Linear deconvolution has a clear impact on all three
modalities: Noise is suppressed and features appear more
clear, in particular the two-line substructure of the filaments
can be more clearly recognized in the linearly deconvolved
ISM and RCM images.

IX. CONCLUSIONS

We have presented a method for obtaining optimum OTFs
for a given support in Fourier space and computed the
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optimum OTF for a range of microscopy modalities. We ap-
plied the concept to linear deconvolution of spot scanning
microscopy, taking into account the impact of shot noise.
There could be alternative or even more general ways to incor-
porate other noise sources in the treatment, such as detector
thermal noise, read-out noise etc. For example, a possible
modification of our algorithm to incorporate noise effects
could be to adequately reduce the support of the uniform
amplitude distribution, which is used for calculating, via au-
toconvolution, the optimal OTF.

Another possible way to extend the current idea is to ex-
plore a numerical, Gerchberg-Saxton-like approach. In each
iterative step, the ideal OTF is updated by projecting the
Fourier transform of the ideal PSF on the given support M,
and the ideal PSF is subsequently updated by taking the abso-
lute value of the Fourier transform of the ideal OTF. Such an
approach could be of use if the shape of the OTF support is
too complex for an exact direct computation of the ideal OTF,
as, e.g., for 3D-SIM.

However, the main emphasis of the current paper was to
introduce the general idea of an optimal OTF, and to demon-
strate it on four idealized examples. Finally, it should be
mentioned that our considerations may be valid far beyond

the scope of optical microscopy, for example in magnetic
resonance imaging, ultrasound imaging, or for deconvolution
of telescopic images.
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