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Abstract
Genetic circuits that control specific cellular functions are never fully insulated against influences
of other parts of the cell. For example, they are subject to periodic modulation by the cell cycle
through volume growth and gene doubling. To investigate possible effects of the cell cycle on
oscillatory gene circuits dynamics, we modelled a simple synthetic genetic oscillator, the
repressilator, and studied hallmarks of the resulting nonlinear dynamics. We found that the
repressilator coupled to the cell cycle shows typical quasiperiodic motion with discrete Fourier
spectra and windows in parameter space with synchronization of the two oscillators, with a devil’s
stair case indicating the Arnold tongues of synchronization. In the case of identical parameters for
the three genes of the repressilator and simultaneous gene duplication, we identify two classes of
synchronization windows, symmetric and asymmetric, depending on whether the trajectories
satisfy a discrete three-fold rotation symmetry, corresponding to cyclic permutation of the three
genes. Unexpectedly changing the gene doubling time revealed that the width of the Arnold
tongues is connected to that three-fold symmetry of the synchronization trajectories:
non-simultaneous gene duplication increases the width of asymmetric synchronization regions,
for some of them by an order of magnitude. By contrast, there is only a small or even a negative
effect on the window size for symmetric synchronization. This observation points to a control
mechanism of synchronization via the location of the genes on the chromosome.

1. Introduction

Genetic circuits control many aspects of the behavior of a cell such as the adaptation of metabolism to
available nutrients and the response to external stresses as well as developmental programs [1, 2]. In many
cases, these circuits, which are based on products of genes controlling the activities of other genes, can be
understood as deterministic or stochastic dynamical systems [3]. Particularly simple dynamical systems
displaying, for example, bistability [4] or oscillations [5–7] have been designed in synthetic circuits, but
often similar circuit designs also form the core of more complex native circuits.

However, one complication in understanding genetic circuits as simple dynamical systems is that they
are never truly isolated systems, but rather coupled to processes going on in the background of the cell.
Thus, a cell is not an inert ‘chassis’ for a genetic circuit, but its physiological state may affect the dynamics
of that circuit in unexpected ways. One case where this coupling has been studied in some detail is the
growth rate dependence of gene expression in bacteria [8], as in many cases the physiological state of a
bacterium can be characterized by the growth rate [9–12]. Most interestingly, growth effects can mediate
feedbacks, which may result in bistability that is absent without such coupling [8, 13, 14].

Another background process to which genetic regulatory dynamics is unavoidably coupled is the cell
division cycle [15–17]. Again, this is particularly simple in bacteria, where the cell cycle affects the
concentration of any protein via dilution by volume growth and via the doubling of the gene encoding that
protein. These two effects result in a periodic modulation of the protein’s concentration, which may be
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amplified by gene regulation [18]. A periodic modulation of the concentration by the cell cycle has been
observed in yeast [19] and Escherichia coli [20]. If genes are replicated at different times in the division
cycle, the resulting imbalance in stoichiometry of the corresponding proteins can trigger signaling [17] as
proposed for the induction of sporulation in Bacillus subtilis [21].

Since the division cycle is a periodic perturbation of the dynamics of genetic circuits, its influence on
circuits with oscillatory dynamics is of particular interest, as interaction of two oscillators may result in
synchronization [22, 23]. If an oscillating circuit synchronizes to the cell cycle, this could be considered a
strong perturbation, specifically if the oscillator’s period is relevant for its function, raising the question
whether oscillations are robust against the perturbation by the division cycle. On the other hand, in some
situations synchronization may be functionally desirable, there are for example reports that the mammalian
circadian clock and the cell division cycle are synchronized [24]. The simplest genetic oscillator is the
repressilator, a synthetic bacterial genetic circuit of three transcription factors with cyclic repression [5, 7].
In an early model for cell cycle effects it was found that the repressilator is only mildly affected by the
division cycle with a modulation of the amplitude [18]. Paijmans et al [25] later showed that
synchronization of the repressilator with the division cycle can be observed, however only in small
parameter windows. These synchronization windows became bigger when the genes are duplicated at
different times [25]. Moreover, another design of a genetic oscillator [6] showed more pronounced
synchronization with the division cycle [25]. An experimental test of synchronization between a genetic
oscillator and the bacterial cell division cycle did not show synchronization, unless a backcoupling was
introduced via a control of cell cycle protein by the oscillator to obtain mutual entrainment [26].

Here we revisit synchronization of the repressilator with the cell division cycle by analyzing the
synchronization windows in more detail. We find that in the symmetric case where the three proteins are
characterized by the same parameters and the same gene duplication times, there are two types of
synchronization windows that reflect the cyclic symmetry of the system in different ways. Moreover, when
the symmetry between the three proteins is broken by duplicating the genes at different times in the cell
division cycle, the two types of synchronization windows show different behavior: large increases of the
width of the synchronization windows are only seen in the case of asymmetric synchronization. This
observation suggests a relation between a discrete symmetry of the trajectories and the efficiency of
synchronization as reflected in the width of the synchronization regions. From the point of view of
optimizing synchronization, maximizing the width of the synchronization window is one of several possible
target features [27] (others include the speed of entrainment [28] or phase resetting [29, 30]). Our results
point towards an intriguing connection with the symmetry properties of the trajectories and suggest that
the timing of gene duplication can play a role in such optimization for genetic oscillators.

2. Cell cycle dependent repressilator

2.1. Repressilator without explicit coupling to cell cycle
The repressilator is a synthetic gene network of three transcription factors with circular repression as shown
in figure 1(a). We start from a description of the production and degradation of a single protein expressed
from an unregulated gene. The copy number of that protein per cell is denoted by P. Its dynamics is given
by

Ṗ = α · g − β · P (1)

with the synthesis and degradation rates α and β, respectively, and the gene copy number g. This equation
can be derived from a system of equations describing the copy numbers of the protein and the
corresponding mRNA (also used in earlier studies of the repressilator [5, 25]) by taking the mRNA
dynamics to be in its steady state, as mRNA dynamics is typically faster than protein dynamics due to the
short lifetime of mRNA [2, 15]. At cell division, which we will consider below, the protein copy number is
halved.

Next we need to model the repression of protein production. A common approach is to describe
repression by a Hill function

R([P]) =
1

1 +
(

[P]
K

)n , (2)

which multiplicatively modulates the synthesis rate. R([P]) describes the activity of the repressed gene as a
function of the repressor concentration [P] in relation to a reference concentration K and the Hill
coefficient n. Because the Hill function depends on the concentration of the repressor, [P] = P/V with cell
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Figure 1. (a) Schematic diagram of the repressilator. The three proteins A, B and C repress each other in a cyclic manner.
(b) Stability diagram of the free repressilator. In the stable regime the fixed point of the repressilator is stable. By increasing the
Hill coefficient n or the dimensionless quantity c = α[g]

βeffK the fixed point becomes unstable and trajectories converge towards a
stable limit cycle.

volume V, we rewrite equation (1) as

˙[P] =
d

dt

(
P

V

)
=

Ṗ

V
− V̇

V

P

V
. (3)

This expression shows that equations for concentrations have the same form as the corresponding equation
for protein copy number with two modifications: the gene copy number g is replaced by the gene
concentration [g] = g/V (alternatively, a factor V−1 is often absorbed into α, which then becomes a
synthesis rate per volume) and the degradation rate β is increased by the dilution term V̇/V . Importantly,
concentrations are not affected by cell division, as in cell division both volume and protein copy numbers
are halved, so the concentration is continuous at the times of cell division [15].

If the cell cycle is not considered explicitly, one can approximate the volume as time independent and
take cell cycle effects into account in an implicit fashion through the two modifications of the equation
discussed above. This has been done in many studies of gene regulatory systems and will be used as a
reference system here (free repressilator with implicit cell division). In that case, the dynamics of the
repressilator with its cyclic repression of three genes can be expressed by the following system of coupled
differential equations

˙[P1] = α1 · R ([P3]) ·
[
g
]
− βeff,1 [P1]

˙[P2] = α2 · R ([P1]) ·
[
g
]
− βeff,2 [P2] (4)

˙[P3] = α3 · R ([P2]) ·
[
g
]
− βeff,3 [P3]

with the constant average gene concentration [g] and effective degradation rates βeff,i = βi + V̇/V (for
i = 1, 2, 3) that include the dilution term with the average volume growth rate V̇/V (which below we will
specify for exponential growth as V̇/V = ln 2/T).

For simplicity we will consider the symmetric system with α1 = α2 = α3 = α and β1 = β2 = β3 = β

(and, thus, βeff,i = βeff = β + V̇/V) and only introduce an asymmetry in the gene replication times towards
the end of the paper.

The repressilator as defined by equation (4) is a dissipative system with a single fixed point. In the
symmetric case that fixed point is given by [P1] = [P2] = [P3] = pK where p > 0 is determined by the
implicit equation p = c/(1 + pn) with the dimensionless constant c = α[g]

βeffK
, which describes the ratio of the

concentration obtained by unregulated gene expression (α[g]/βeff ) and the threshold concentration for
repression, K.

Standard linear stability analysis shows [31] that the fixed point is stable for small c and becomes
unstable through a Hopf bifurcation at a critical value of c, which depends on the Hill coefficient n and for
large n is ≈1. In the unstable regime, the repressilator develops stable relaxation oscillations.

A map of a stable and unstable regime of the oscillator is shown in figure 1(b).
Typical trajectories of the three proteins in the oscillating regime are shown in figure 2 and will be

compared to the case, where the repressilator is explicitly coupled to the cell cycle below.
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Figure 2. Trajectories of the repressilator (a) and (c) without and (b) and (d) with explicit coupling to the cell cycle with T = 60
min. The grey vertical lines in (d) indicate the times of cell division and, thus, the periodic driving of the repressilator. In (a) and
(c), cell cycle effects are included implicitly through a constant average gene concentration

[
g
]
= 1

V0

1√
2 ln 2

and an effective

degradation rate βeff = β + ln 2
T that includes dilution due to volume growth. In (a) and (b) for different β and in (c) and (d)

with β = 0.2 min−1. The free repressilator in the oscillatory regime develops stable oscillations whereas the trajectories of the
driven repressilator typically covers a broader region in the phase space, for example for β = 0.2 and 0.02 min−1 (blue and
orange in (b). However, one can get stable periodic trajectories as well, e.g. for β = 0.01 min−1 (green).

2.2. Cell cycle effects
The cell cycle provides a periodic modulation of parameters of the repressilator and thus an external driving
force for the oscillator. To implement the cell cycle into our model explicitly, we introduce two effects. The
first one is the volume growth and division of the cell. The cell volume grows exponentially [32] and after a
period of the cell cycle of time T, the cell is twice as big as at the beginning of the cell cycle. At that time, the
cell divides and the volume is set back to its initial value. As a side remark, we note that the difference
between linear and exponential volume growth is rather small for such a model for protein synthesis [15].
To simplify the expressions for cell cycle-dependent parameters, we introduce a second time variable
τ = t mod T, the age of the cell, which measures the time since the last division. Divisions are taken to
occur at times nT with integer n, corresponding to τ = 0.

The second effect is the gene doubling. At times τ = td, all three genes of the repressilator are duplicated
simultaneously. This is a good assumption if the genes are close together on the chromosome, but there may
be significant impact if that is not the case, as shown in reference [25] and discussed further in section 3.3.
At cell division, τ = 0, the copy number of all genes is reduced again to a single copy. Like for proteins, the
concentrations of the genes are continuous at times of division.

All in all we get the following equations for the cell cycle effects

V(t) = V0 exp

(
τ ln 2

T

)
(5)

g(t) =

{
1 0 � τ < td

2 td � τ < T,
(6)
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where both the cell’s volume V and the gene copy number g depend on time via the cell’s age τ = t mod T.
As a consequence, the equation for the dynamics of the concentration of an unregulated protein takes the
form

˙[P] = α
[
g
]

(t) −
(
β +

ln 2

T

)
[P] . (7)

Importantly, the gene concentration

[
g
]

(t) =
g(t)

V(t)
=

⎧⎪⎪⎨
⎪⎪⎩

1

V0
exp

(
−τ ln 2

T

)
0 � τ < td

2

V0
exp

(
−τ ln 2

T

)
td � τ < T,

(8)

is time dependent and acts as a driving oscillator with unidirectional coupling. At the gene doubling time td

the production rate α
[
g
]

will increase by a factor of two, initiating a phase of increased protein production.
In addition, the dilution term added to the degradation rate β takes the form ln 2

T due to the exponential
volume growth with doubling time T.

Likewise, the repressilator driven by the cell cycle takes the form

˙[P1] = α1 ·
1

1 +
(

[P3]
K

)n ·
[
g
]

(t) −
(
β1 +

ln 2

T

)
[P1]

˙[P2] = α2 ·
1

1 +
(

[P1]
K

)n ·
[
g
]

(t) −
(
β2 +

ln 2

T

)
[P2] (9)

˙[P3] = α3 ·
1

1 +
(

[P2]
K

)n ·
[
g
]

(t) −
(
β3 +

ln 2

T

)
[P3] ,

where we have inserted the repression function from equation (2) and where
[
g
]

(t) is given by
equation (8). Below, we will again use symmetric rate constants α = α1 = α2 = α3 and β = β1 = β2 = β3.

The equations of motion as described so far are integrated numerically with the standard SciPy RK23
integrator. For numerical examples we choose α = 60 min−1, K = 50 μm−3, V0 = 0.5 μm−3 and n = 4
unless stated otherwise. The gene doubling time td is set to T

2 .
Example trajectories with and without the coupling to the cell cycle are shown in figure 2. The

repressilator with implicit cell cycle exhibits stable oscillations (all trajectories shown here are for
parameters in the oscillating regime), corresponding to a simple limit cycle. By contrast, the trajectories of
the repressilator driven by the cell cycle are more complex. The oscillations show additional frequencies,
reflected in a modulation of the amplitudes of the three concentrations. In the three-dimensional phase
space the region occupied by the trajectories generally become broader, like for example for β = 0.2 and
0.02 min−1 (blue and orange trajectories in figure 2(b); the Fourier spectra discussed below indicate
that these trajectories are quasiperiodic, thus the blue and orange trajectories cover the projection of a
torus-like object). However, for some parameter values, one can also get simple limit cycles as shown for
β = 0.01 min−1 (green trajectory in figure 2(b)).

3. Synchronization with the cell cycle

3.1. Period and power spectrum of the driven oscillator
To obtain the frequency of the repressilator coupled to the cell division cycle, we introduce a phase variable
and measure its derivative. To that end, we compute the analytic signal, a complex valued representation of
the original signal, H (s(t)) = s(t) + ih(s(t)), with the real part given by the original signal s(t), here with
s(t) = [P1], and the imaginary part by its Hilbert transform

h(s(t)) =
1

π

∫ ∞

−∞

s
(
t′
)

t − t′
dt′. (10)

An instantaneous phase φ(t) can then be obtained by representing the analytic signal by

H(s(t)) − z0 = A(t)eiφ(t) (11)

with a properly chosen origin z0. For a periodic or quasi-periodic oscillator, the analytic signal represented
in the complex plane typically resembles a circle as shown for the repressilator in figure 3(a), so a linear fit
to the phase φ(t) provides a well-defined average frequency.
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Figure 3. (a) Analytic signal for the repressilator with β = 0.011 min−1, T = 60 min. (b) Average period of the repressilator
determined via the Hilbert transform with β = 0.0215 min−1 for multiple cell division times T. One notices that there are
regions where the period follows straight lines starting from the origin.

Figure 3(b) shows the period measured in this way as a function of the cell cycle time T. Superimposed
on an overall increase, we obtain characteristic windows, in which the dependence on T is linear, indicating
synchronization of the repressilator with the cell cycle, for example around T = 400 min and T = 150 min,
in agreement with earlier results [25]. The most prominent ones among those linear segments have simple
integer or rational slopes as indicated by the dashed lines in figure 3(b).

We note that the Hilbert transform is not the only option for determining the phase. For example, a
phase can also be extracted by projecting the dynamics in the three-dimensional space of the three
concentrations onto a suitable two-dimensional subspace in which again a circle-like orbit is obtained (we
used the projection y1 = −2[P1] + [P2] + [P3], y2 = [P2] − [P3] and obtained the same results). The
advantage of the Hilbert transform is that it only needs the time series of one of the variables, so it can also
be applied to experimental data if only one of the concentrations is observed with a fluorescence reporter.
We further note that the period determined via the Hilbert transform agrees with the dominant period
obtained from the power spectrum (see below), while the average peak-to-peak time, which was used in
reference [25], systematically underestimates the period, as shown in the appendix A. Finally, to determine
only the period without the phase, one can also use the zero crossings of a shifted time series and get the
same results as with the Hilbert transform (see appendix A).

Figure 4(a) shows a full power spectrum of the oscillation. For comparison, the power spectrum of the
free repressilator is also included. Some prominent peaks of the driven spectrum are seen to coincide
between the two spectra. The position of the dominant peaks can be approximated by

ω ≈ |n · ωcell + m · ωfree| (12)

with integers n, m as indicated in figure 4(a) by the dashed vertical lines. While this expression is not exact,
it provides a rather accurate approximation of the position of the peaks. The two frequencies in this
approximation, ωcell and ωfree, correspond to the two uncoupled oscillators, i.e. the cell cycle and the free
repressilator (with implicit cell division). More precisely, ωfree is the frequency of an free repressilator with
the average gene concentration

〈[
g
]〉

= 1
T

∫ T
0

[
g
]
= 1

V0

1√
2 log 2

. Such a behaviour is typical for

quasi-periodic motion [22]. The power spectrum also provides a quantitative description of the modulated
oscillations observed in earlier studies [18]. The highest peak of the spectrum is seen to be the one with the
lowest frequency among those peaks without a contribution from the cell cycle frequency, i.e. the peak with
n = 0, m = 1 in equation (12). Its frequency (which is approximately, but not exactly that of the free
repressilator) agrees with the frequency obtained from the Hilbert transform.

Figure 4(a) compares the power spectra of the driven and free repressilator. The dominant peaks of the
two spectra coincide. This observation suggests already that the influence of the cell cycle on the frequency
of the repressilator is small enough that it can often be neglected. Indeed, if we directly measure the period
of the driven and free repressilator and compare them (figure 4(b)), the difference is seen to be small, apart
from certain areas in parameter space, where the driven repressilator speeds up and slows down quite
rapidly.

6
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Figure 4. (a) A power spectrum of a repressilator with β = 0.011 min−1, T = 60 min. Additionally the dashed vertical lines
correspond to frequencies |n 2π

T + m 2π
Tfree

| with Tfree the period of a corresponding free repressilator. In the graph they are labeled
as [n, m]. The red dashed line is the power spectrum of the corresponding free repressilator. (b) The difference between the
period determined for the driven and the free repressilator. Overall the difference between both oscillators is rather small, apart
from areas where the driven repressilator speeds up and slows down again rapidly. After that the difference converges for
increasing β to a smaller value.

3.2. Two types of synchronization
To further analyze the dynamics in the windows in which the observed period shows a linear dependence
on the division time T, we plot the period (figure 5(a)) together with an orbit diagram in figure 5(b). In this
diagram, we display the values taken by the concentration [P1(nT)] at integer multiples of the cell division
time as a function of the division time T. Synchronization with the cell division cycle at a given T (and thus
periodic dynamics of the full system) is seen as a discrete set of values that repeat after a finite number of
cycles, while without synchronization (quasiperiodic dynamics of the full system) a continuous distribution
of values is obtained. The comparison reveals that the trajectories of the oscillator become periodic in the
windows with the linear dependence of the period on the division time. For the parameters used here (with
a realistically small degradation rate β = 0.01 min−1), the biggest interval with periodic behavior is seen
around T = 352–375 min, which corresponds to very slow cell growth, but two smaller windows around
T = 60 min and T = 130 min are in the range accessible for the growth of E. coli with common growth
media. As observed above, in the windows with linear dependence, the period of the repressilator is locked
to rational multiples of the cell division time T. For the three mentioned windows, the dependencies are 3T,
6T and 9T, respectively. Another small window near T = 215 min shows a 3

2 T dependence (inset in
figure 5(a)). The observed locking of the repressilator period to the cell cycle together with the periodic
orbits seen in the Poincare maps indicate the synchronization of the repressilator with the cell cycle.

Another hallmark of synchronization can be obtained from the phase φ(t) extracted from the Hilbert
transform. By calculating the winding number

Ω = lim
n→∞

φ(n · T) − φ(0)

n
(13)

one obtains areas of synchronizations in parameter space, also called Arnold tongues, as areas of constant
winding number. In the plot of the winding number (figure 5(c)), these areas appear as intervals of constant
winding number that correspond to the windows of linear dependence in figure 5(a) and the windows of
periodic dynamics in the orbit diagram (figure 5(b)). The values of the winding number in these intervals
are given by the inverse of the slope of the linear dependence of the period on the division time. The
winding number, which indicates the ratio of the driven repressilator frequency to the driving frequency of
the cell cycle, allows for a geometric interpretation of synchronization [22, 33]: it indicates the number of
full turns of one oscillator in one period of the other oscillator. An integer or rational value as in the
synchronization windows thus distinguishes periodic from quasiperiodic motion of the coupled system. As
the orbit of two oscillators is located on a torus, the former case is characterized by a closed orbit on that
torus, while in the latter case, the orbit ‘fills’ the whole torus [22, 33].

Figure 6 shows trajectories in the synchronization windows and also indicates the times of gene
doubling and cell division. Based on these trajectories, we distinguish two types of synchronization, to
which we refer as symmetric and asymmetric. For the symmetric case, the stable trajectory is invariant
under cyclic permutation of the proteins, so

(A,B,C) → (B,C,A) → (C,A,B) → (A,B,C) . (14)

7
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Figure 5. Multiple graphs for a repressilator with β = 0.01 min−1 for changing cell division times T. In (a) the period
determined via the Hilbert transform, in (b) an orbit diagram with the current protein concentration at times n · T with n ∈ N

and in (c) the winding number calculated from the phase of the Hilbert transform. The insets in (b) show a period 9 (blue) and
period 6 (red) window. Note that some values are barely distinguishable in this visualization. The most important feature is that
areas of synchronizations in (a) correspond to periodic windows in (b) and to plateaus in (c). The value of the winding number
in Arnold tongues is the same as the inverse slope of the synchronization straights in (a).

This is equivalent to a three-fold discrete rotation symmetry of the trajectory around the (1, 1, 1) axis.
Reflecting this symmetry, in the corresponding synchronization windows the linear relation between the
period of the repressilator and the cell division time takes the form Trep = 3n

m T with coprime positive
integers n, m.

The largest sychronization windows discussed above (and indicated in figure 5) are of this type. All
synchronization windows that do not show this permutation or discrete rotation symmetry are referred to
as asymmetric. An example is the window with Trep = 1T (figure 6(a)).

3.3. Synchronization for non-simultaneous duplication of the three genes
Pajimans et al observed that synchronization of the repressilator with the cell cycle becomes more
pronounced when the genes are not duplicated at the same time [25]. Duplication at different times in the
division cycle is obtained if the three genes are in different locations on the chromosome. Indeed, if we shift
the gene doubling time of protein A relative to the other two proteins B and C, some of the most
pronounced synchronization windows get bigger and many small windows become more apparent in the
orbit diagram based on the Poincaré map (figure 7(a), varying T) as well as in the plot of the frequency as a
function of the degradation rate β (figure 7(b)). This is shown in figure 7(b), where we compare the case
where all three genes are duplicated at τ = td = T/2 with the case where gene A is duplicated
20 min earlier. Here and in the following figures we plot the frequency of the repressilator as a function of
the degradation rate β (which modulates the frequency of the free repressilator) rather than as a function of

8
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Figure 6. Example trajectories for asymmetric (a), (c) and (e) and symmetric synchronization orbits (b), (d) and (f). The
synchronization 1T (a) and 2T (c) are not symmetric under cyclic permutation of the protein coordinates, which can easily be
seen by the position of the gene doubling (red cross) or the cell division (blue dot) in the synchronization trajectory. For the 3T
(b) and 9

4 T (d) orbit this condition is fulfilled, even though this might be not so obvious for the latter. (e) and (f) Show time
representations for the asymmetric orbit 2T and the symmetric orbit 3T, respectively. Here, the vertical dashed lines indicate the
times of cell division.

the cell division time to avoid complications when the earlier duplication time approaches the beginning of
the cell cycle. The most prominent examples for synchronization becoming more pronounced are the 1T
and 2T windows. However, not all synchronization windows get bigger, the 3T window, for example,
actually gets smaller.

The different responses of the synchronization windows to the shift of the gene doubling time of one
protein are illustrated in figure 7, where we plot two of the synchronization windows as function of the shift
in the duplication time for shifts ranging between the two extremes shown in figures 7(c) and (d). The 3T
window is seen to decrease in size, while the 2T window increases. The two cases correspond to a symmetric
and an asymmetric synchronization scenario, respectively, as shown by the trajectories in figure 6.

9
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Figure 7. (a) The gene doubling time td,A of protein A is shifted Δtd
= −20 min before the other two proteins. The orbit

diagram in this setup shows a increased number of visible windows and the frequency of the driven repressilator (b) shows for
most windows increased Arnold tongues as well. Blue curve: all three proteins doubled at the same time td = T

2 . Red curve:
protein A 20 min before the other two proteins. However not all windows increase in size which can be seen in (c) and (d) where
the size of the 3T and the 2T window in β space (indicated by the arrows in (b)) are drawn for different shifts Δtd

on the protein
A. For increasing |Δtd

| the size of the 2T window increases significantly and the 3T window decreases. T = 60 min in (b)–(d).

To test whether there is a general relation between the type of the synchronization and the response to
the shift in the duplication time (which breaks the symmetry between the three proteins), we consider the
sizes of the 28 synchronization windows that can be identified in figure 7. We determine the window size (in
the space of degradation rates β and for T = 60 min) for synchronous gene doubling at td = T

2 and for a
shift of 20 min applied to the gene doubling time of the A protein. The results are shown in figure 8, where
we plot the window size with the shift against that without the shift. Windows of asymmetric
synchronization are shown as circles, those corresponding to symmetric synchronization as crosses. The
dashed line indicates unchanged window size. Strikingly, all windows corresponding to asymmetric
synchronization are above the dashed line and thus get bigger upon the shift, some of them increase by
more than a factor 10. By contrast, the windows corresponding to symmetric synchronization lie very near
the dashed line or even below it. These results thus suggest that asynchronous gene doubling can indeed
make synchronization more pronounced, but only for cases of asymmetric synchronization, while the effect
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Figure 8. Each marker represents a synchronization window which can be found in figure 7(b). On the x-axis we have the size of
the synchronization window in β space with synchronous gene doubling at T

2 and on the y-axis the window size with a shift on
the gene doubling time of protein A by Δtd

= −20 min (a) or with gene doubling times τA = 10 min, τ B = 30 min and
τC = 50 min (b). Every synchronization window above the grey dotted line does increase with the shift and every window below
the line decreases. The crosses correspond to symmetric synchronizations and the dots to asymmetric synchronizations. The
color of each dot indicates the period of the window, that can be found in an orbit diagram.

on symmetric synchronization is small or even negative. To test whether there is a dependence on the
period of the synchronized orbits, we indicated the period by the color of the symbols, but no obvious
pattern is seen.

As a further test of this hypothesis, we shifted the doubling not only of one gene, but of two away from
td = T/2 and repeated the analysis. Figure 8(b) shows the size of the synchronization windows for the case
where gene A is duplicated 20 min earlier and gene C 20 min later than gene B. The overall picture is the
same: breaking the symmetry by shifted gene duplication times increases the size of synchronization
windows for asymmetric synchronization, with big increases for some of them, but has only a small positive
or negative effect for symmetric synchronization.

4. Discussion

Genetic circuits are generically coupled to a periodic forcing by the cell division cycle via volume growth
and gene duplication. Here we have studied the specific case of how this coupling affects a genetic oscillator,
the repressilator. In agreement with earlier studies [18, 25], we see that the perturbations of the repressilator
oscillations are mostly moderate. However, there are distinct windows in the parameter space in which the
two oscillators are synchronized. Some of these windows occur in accessible parameter ranges and should
thus be experimentally observable. Importantly, however, the coupling to the cell division cycle as studied
here applies to the case where the repressilator genes are located on the chromosome. If the repressilator is
encoded on a plasmid, the coupling will be different and should typically be weaker due to asynchronous
duplication of multiple copies of the plasmid. In the context of synthetic circuits, this suggests that
depending on whether one is interested in the periodic forcing by the cell cycle as a feature or whether one
considers it rather as a perturbation, implementation strategies using the chromosome may or may not be
preferable over strategies based on plasmids.

We note that a number of studies have emphasized the competition between genes and allocation of
gene expression machinery [11, 34, 35], including recent work on cell cycle effects [16]. In the description
used here, we have not included such effects, as they can be neglected if the genes considered account only
for a small fraction of the total transcriptome and proteome. Specifically, Lin and Amir [16] have proposed
that instead of the gene copy number gi of a gene i, the gene fraction, gi/

∑
j gj = gi/(gi +

∑
j	=i gj), where

the sum runs over all expressed genes, should be used in the transcription rate and likewise for mRNA
fractions in the translation rate. If the gene of interest only contributes a small amount to these sums,
however, the difference between the two descriptions is small. Specifically, transcription can be expected to
be proportional to the gene copy number.

For the special case where the three proteins of the repressilator are characterized by the same
parameters (synthesis and degradation rates, parameters of the Hill function), we have shown that the
synchronization windows can be grouped into two classes: in one class, the periodic trajectories exhibit a
three-fold discrete symmetry under cyclic permutation of the proteins and the number of cell division
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cycles in one period is an integer multiple of 3. In the other class, there is no such symmetry and instead
three periodic solutions exist that are shifted relative to each other. Unexpectedly, we found that the these
two types of synchronization show different behavior when the symmetry between the parameters of the
three proteins is broken by non-synchronous gene duplication: the synchronization windows without the
permutation symmetry become wider, while those with that symmetry get smaller or remain unchanged. In
general, the width of synchronization windows can be considered as a measure of the efficiency of
entrainment and can be optimized by modulating the waveform of the periodic forcing [27], at least in the
limit of weak forcing. Our observation indicates a relation between such optimal forcing and a discrete
symmetry of the oscillation. Only synchronization windows corresponding to asymmetric synchronization
show a potential for considerable improvement of the efficiency of entrainment. Whether such a relation
holds more general than for the specific system studied here and how the symmetry of the trajectories
influences the width of the synchronization regions remain to be investigated.

From the biological point of view, one can ask whether synchronization of a genetic oscillator with the
cell cycle provides a benefit or rather a perturbation of the oscillators dynamics. Indeed, both scenarios are
possible. Both eukaryotic and cyanobacterial circadian clocks have been shown to be coupled to the cell
cycle, however the coupling is typically such that the two oscillators influence each other [24, 36].
Synchronization in that case can stabilize the oscillations and coordinate cellular functions with the
day–night cycle. By contrast, if an oscillator has a precisely tuned function requiring a defined period, the
coupling to the cell cycle amounts to an unwanted disturbance and insulating the oscillations against these
perturbations may be crucial to their function. It has indeed be argued that some features of the
cyanobacterial circadian clock serve exactly that function, for example multiple, independently replicated
copies of the clock genes [37].

In summary, our results show that the generic coupling of genetic oscillators to the cell cycle due to
discrete gene duplication events provides both a source of perturbations and an additional layer of control
of the behavior of such genetic circuits. Synchronization with the division cycle occurs in typically small
parameter regions, which may be optimized via the gene location on the chromosome, with an intriguing
relation between synchronization efficiency and the symmetry of the oscillator’s trajectories in phase space.
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Appendix A. Determining frequencies

A previous study of synchronization of genetic oscillators with the cell cycle [25] used the mean
peak-to-peak time, the time between local maxima of the trajectory, to determine the frequency of the
oscillator. However, this approach is not generally applicable and may systematically underestimate the
period of the driven repressilator: the increased protein production after gene doubling can lead to a rapid
increase of protein concentration. If this increase happens near a maximum of the oscillations this can
result in two closely spaced local maxima as shown in figure A1(a). This lowers the estimated period of the
oscillations.

The period determined with the peak to peak method is plotted as a function of the cell cycle duration T
in figure A1(b) (green line), together with the period obtain via the Hilbert transform (blue line). The peak
to peak time can indeed be seen to be systematically smaller or at most equal to the period determined via
the Hilbert transform. Moreover, the mean peak to peak time appears to be very unstable (green line) and
fluctuates strongly. In addition, we plot the standard deviation of the peak-to-peak time (green area), which
tends to be rather large and indicates the broad distribution of the individual peak-to-peak times. However,
in the synchronization window, see here as intervals where the measured period increases in a linear
fashion, the standard deviation is negligibly small and the peak-to-peak time is in agreement with the
period calculated via the Hilbert transform.

In case of the sinusoidal-like oscillations of the protein concentrations (see figures 6(e) and (f)) an
alternative method to determine an average period is to use the zeros crossings of a shifted time series. This
method also avoids the problems of increased protein production after gene duplication. For this we shift
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Figure A1. (a) Example trajectory of the repressilator with (β = 0.011 min−1, T = 60 min). The local maxima can be very close
together which leads to a systematic underestimation of the period. (b) Period of the repressilator determined by the peak to peak
method for β = 0.01 min−1. The green area displays the standard deviation for the mean of the local maxima and blue line is the
period we obtained by the Hilbert transformation. When the repressilator synchronizes the peak to peak method and the Hilbert
transformation give the same result. (c) Period determined by zero crossings of the time series from which the average of the
maximal and the minimal value has been subtracted, again for β = 0.01 min−1. The standard deviation (orange area) shows a
similar behaviour as the peak to peak method, but is much smaller. The average itself gives the same results as the Hilbert
transform.

the trajectory by the median value of the maximum and the minimum of the protein concentration and
measure the distance between two zero crossings from negative to positive as period. Because this distance is
not constant for quasiperiodic oscillations, we average over many crossings to get an average period. The
results for different cell cycles T are shown in figure A1(c). With this method the average is much smoother
(orange line) and agrees well with results obtained via the Hilbert transform (blue line). In addition, we can
again observe how the standard deviation (orange area) is reduced in the regions corresponding to a
periodic orbit.
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