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The analysis of kinematics, locomotion, and spatial tasks relies on the accurate detection

of animal positions and pose. Pose and position can be assessed with video analysis

programs, the “trackers.” Most available trackers represent animals as single points in

space (no pose information available) or use markers to build a skeletal representation of

pose. Markers are either physical objects attached to the body (white balls, stickers, or

paint) or they are defined in silico using recognizable body structures (e.g., joints, limbs,

color patterns). Physical markers often cannot be used if the animals are small, lack

prominent body structures on which the markers can be placed, or live in environments

such as aquatic ones that might detach the marker. Here, we introduce a marker-free

pose-estimator (LACE Limbless Animal traCkEr) that builds the pose of the animal de

novo from its contour. LACE detects the contour of the animal and derives the body

mid-line, building a pseudo-skeleton by defining vertices and edges. By applying LACE to

analyse the pose of larval Drosophila melanogaster and adult zebrafish, we illustrate that

LACE allows to quantify, for example, genetic alterations of peristaltic movements and

gender-specific locomotion patterns that are associated with different body shapes. As

illustrated by these examples, LACE provides a versatile method for assessing position,

pose and movement patterns, even in animals without limbs.

Keywords: animal tracker, zebrafish, Drosophila larva, gender dimorphism, Hough transform, intermittant

locomotion, saccades, undulatory swimming

1. INTRODUCTION

Neuroethology encompasses many behavioral paradigms ranging from complex tasks such as
learning and communication (Von Frisch, 1974; Brown, 1976; Dubnau and Tully, 1998; Riley
et al., 2005) to more basic activities such as reflexes or locomotion (review: Corthals et al.,
2019). Regardless of the complexity of the behavior, behavior is inherently noisy. This noise arises
from different internal states of each individual, such as hunger, thirst, or reproductive needs
(Abbott, 2020). The noise of the internal states neccessitates repeated measurements and authentic
quantification of the examined behavior. Quantifying behavior started with simple observations
and written description of animal’s behavior (e.g., Yerkes, 1903; Jensen, 1909; Turner and Schwarz,
1914) and developed into artificial intelligence (AI) assisted video analysis (Mathis et al., 2018;
Pereira et al., 2018; Werkhoven et al., 2019; Gosztolai et al., 2020).

Most computer assisted methods of video analysis rely on either marker recognition or
difference image tracing. Marker recognition filters out physical markers (white balls, stickers,
or paint) attached to the animal based on marker properties such as contrast, luminescence, or
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color (Zakotnik et al., 2004; Spence et al., 2010). Alternatively,
marker recognition can exploit the ability of AIs to recognize
markers in complex scenes (Mathis et al., 2018; Pereira et al.,
2018, 2020; Gosztolai et al., 2020). AIs are able to use visual
structures (e.g., limbs, joints, etc.) as markers, obviating the
need to attach physical markers. Lightweight animals, however,
may neither be able to carry physical markers nor may their
bodies bear prominent features that can be recognized by AIs.
Markers are also difficult to attach to aquatic or ground-dwelling
animals as they might easily be removed by the substrate through
which these animals move. In such animals, difference image
analysis provides an alternative. Difference image analysis is
the basis of LACE, a motion tracker that is presented here.
LACE derives the posture from the contour of the animal and
is therefore independent of markers. We illustrate the workings
and versatility of LACE using two different examples.

In example I, we analyse the peristaltic movement of
Drosophila late 3rd instar larvae. The ion channel mutants
nan36a and iav1 display disturbed chordotonal neuron function
(Kim et al., 2003; Gong et al., 2004; Zhang et al., 2013),
causing locomotion and contraction defects (Zanini et al., 2018;
Katana et al., 2019). We use these mutants and the wild-type
to illustrate the ability of LACE to detect genetic alterations in
the body movements of small limbless animals. LACE is also
able to differentiate between contraction anomalies and course
changes of the animal. This ability relies on the mathematical
reconstruction of the antero-posterior axis, which sets LACE
apart from other insect motion trackers (Branson et al., 2009;
Fontaine et al., 2009; Donelson et al., 2012; Kain et al., 2013; Risse
et al., 2013).

In example II, we use LACE to analyse the undulatory
swimming movements of zebrafish (Danio rerio). Undulatory
movement is the principal mode of locomotion in a wide range
of limbless animals whose body propagates train of waves that,
running laterally from head to tail, propels the animals forward
(Gray, 1939). To track such locomotion behaviors, a number
of computer-based videography methods have been developed
over the past few decades (Fontaine et al., 2008; Green et al.,
2012;Maaswinkel et al., 2013; Pittman and Ichikawa, 2013; Pérez-
Escudero et al., 2014; Kim et al., 2017; Zhiping and Cheng, 2017;
Husson et al., 2018; Walter and Couzin, 2021). These trackers
all faithfully report the animal’s locomotion behavior, but with
variations in focus on larvae (Fontaine et al., 2008; Green et al.,
2012), individuals in shoals (Maaswinkel et al., 2013; Pérez-
Escudero et al., 2014; Zhiping and Cheng, 2017), single (Geng
et al., 2004; Tsibidis and Tavernarakis, 2007; Leifer et al., 2011;
Stirman et al., 2011, 2012) and multiple worms (Liewald et al.,
2008; Ramot et al., 2008; Swierczek et al., 2011; Wang andWang,
2013; Brosnan et al., 2021) simultaneous physiological recordings
(Kim et al., 2017) or available hardware (Geng et al., 2004; Tsibidis
and Tavernarakis, 2007; Ramot et al., 2008; Leifer et al., 2011;
Stirman et al., 2011, 2012; Swierczek et al., 2011; Brosnan et al.,
2021).

Especially the aforementioned worm trackers (Geng et al.,
2004; Tsibidis and Tavernarakis, 2007; Liewald et al., 2008; Ramot
et al., 2008; Leifer et al., 2011; Stirman et al., 2011, 2012; Swierczek
et al., 2011; Wang and Wang, 2013; Brosnan et al., 2021) are

quite similar to our software and surpass its functionality by
being able to control lights, camera and in some cases even the
x,y-stages of a microscope (compare Table 1). The bodysize of
Caenorhabditis elegans (ca. 1 mm) makes microscopic recordings
necessary. One of the major benefits of behavioral recordings
under a microscope is that the background is usually clear and
uniformly illuminated. LACE is also capable to detect animals in
more complex backgrounds (see Supplementary Material), but
has no hardware control integrated.

BEEtags are lightweight, their handling and application
can significantly affect stress levels and behavior in animals.
To overcome these obstacles, many other trackers have been
developed which are automated and markerless. For instance,
Deeplabcut is one such automatic and markerless pose estimator
which works on the principle of transfer learning. Though, it
provides outstanding results with minimal training data and has
been proved successful on multiple species, it does not prove
to be equally good for tracing the undulatory movement in
limbless animals.

Here, we introduce a tool (LACE) for automated, markerless
detection of wave-like movement in limbless animals. The
importance of this approach lies in the very fact that it does not
consider the organism as a point source or uses any marker to
track the pose of the animal, but instead builds a pseudo-skeleton
from the contour of the animal. This increases the flexibility
of the pose description and circumvents occlusion problems.
We illustrate the versatility of LACE by tracking the peristaltic
movement of Drosophila melanogaster larvae and undulatory
swimming in adult zebrafish.

2. MATERIALS AND METHODS

2.1. LACE Limbless Animal TraCkEr
LACE consists of nine toolboxes that solve different tasks: file I/O,
background calculation, image manipulation, ellipse detection,
ad-hoc correction, post-hoc evaluation, animal-pose detection,
image to world coordinate transformation, and computational
load management (see Figure 1). Each of these tasks can be run
via the integrated command-line-interface (CLI) of MATLAB or
custom graphical-user-interfaces (GUIs).

2.1.1. File Input/Output
LACE can read most video formats through MATLAB’s own
VideoReader and uses the image manipulation toolbox to load
image series, stacks, or single images. We also included a small
toolbox (LACE_norpix toolbox) that can read in the NorPix
Sequence video format (NorPix, Inc., 1751 Richardson Street,
Suite 2203, Montreal, Quebec H3K 1G6 Canada), based on the
script developed by Brett Shoelson (Mathworks). There is a newer
implementation available by Paul Siefert1.

2.1.2. Background Calculation
After loading the image sequences or videos, images are prepared
to detect the animal. First, one needs to acquire a background

1Paul Siefert (2020). ReadCompressedJpegSEQ https://www.mathworks.com/
matlabcentral/fileexchange/68341-readcompressedjpegseq, MATLAB Central File
Exchange. Retrieved November 9, 2020.
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TABLE 1 | Comparison table of LACE to some prominent Caenorhabiditis elegans trackers.

Tracker Representation Code No of organisms Hardware control License Reference

CoLBert O,S Matlab 1 C,T Free Leifer et al., 2011

LACE C,O,S Matlab 24+ None Free -

Multi worm tracker O,S C++ <120 C,L Free Swierczek et al., 2011

Multimodal illumination O,S LabVIEW 1 C,T Free Stirman et al., 2011, 2012

Nemo O,S Matlab 1 C Free Tsibidis and Tavernarakis, 2007

Opto C Matlab <50 C,L Free Liewald et al., 2008

Parallel worm tracker C Matlab <50 C Free Ramot et al., 2008

Track-a-worm S Matlab 1 C,T Free Wang and Wang, 2013

Worm tracker O,S Matlab 1 C,T Free Geng et al., 2004

Wormlab C,O,S Closed source 1+ C,L Comercial Brosnan et al., 2021

The representation column shows the type of tracking the software can produce: C notes a single xy point coordinate per animal and frame, called a centroid. S notes a skeleton

representation. O notes that the outline of the animal is available. The Hardware Control column shows the ability of the tracker to directly control cameras (C), lighting (L), and

microscope x-y-tables (T).

FIGURE 1 | The analysis flow of LACE. The user interacts with most toolboxes through a graphical user interface (GUI). The GUI results in an execution script that

holds all information and file positions to run an analysis on the entire video. By testing the script inside the GUI, the system is able to calculate the analysis duration,

which is used in the computational load management. The bash scripts can be run over night.

image, as a subtrahend for the difference image. The background
image can be acquired in different ways: A) If the background
is monotone or very stable between recordings (lighting, color,

position, etc.), one can record an image without an animal
being present. B) In a temporal sequence of images, in which
the recorded animal moves through the scene, one can use the
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differences over time in each pixel to calculate images without
the animal being present.

For example, if the animal is dark on a bright background,
a maximum intensity projection over time will produce an
image without the animal. If the animal is white against
a dark background, a minimum intensity projection will
provide an empty background. In cases in which the
background changes mildly, due to e.g., lighting changes,
an average intensity projection might yield the best contrast
between animal and background and provide an image of
the background without animal. Regardless of the type of
projection, these calculations only function as long as the animal
does not occupy a subset of pixels all the time, that is when
it moves.

LACE offers all three options to calculate your background
using the LACE_bg toolbox. The LACE_bg toolbox includes
functions for all image and video formats and is usually
called through the LACE_GUI_script GUI. As the calculation
of the background takes up most computational time,
the LACE_GUI_script GUI plays a chime at the end of
the calculation.

2.1.3. Image Manipulation
After LACE has executed the file I/O and background calculation
steps, it performs image manipulation, ellipse detection, and
ad-hoc corrections frame by frame (see Figure 1). The image
manipulation functions are collected in the LACE_im toolbox.
The purpose of LACE_im toolbox is to derive candidate edges of
the animal from a given frame and the background. Each frame
of the image data is analyzed in 6 steps:

1. subtracting the background from the frame -> difference

image

By subtracting the background (see Figure 2A) from the
frame (see Figure 2B) all structures of the footage that are
not moving (background) are removed while moving objects
remain (see Figure 2C).

2. normalization of the difference image

Provided that the animal clearly contrasts with the
background, it should be the brightest object in the difference
image. The image is normalized to the maximum, assigning
pixel values close to 1.0 to the brightest regions of the animal.

3. binarisation of the difference image -> binarised image

The user defines a threshold above which all pixel information
is treated as 1 and below which as zero. The resulting image
can be seen at Figure 2D.

4. optional: removal of information outside the region of

interest (ROI)

The user can define the region in which the animal resides
during the video footage. This region is called a ROI (region
of interest). All pixels outside the ROI are set to zero (see
Figure 2D).

5. erosion of the binarised image When tracking multiple
animals or objects, two moving areas may collide. In such
cases, LACE might wrongly recognize two objects as a single
one. To avoid this, we use image erosion to remove contact
sites of the two animals.

FIGURE 2 | Image Manipulation. (A) Raw footage of a zebrafish video. The

animal is depicted on the right border of the area. (B) Respective difference

image. (C) Binarised image with a threshold of 0.25 (D) Binarised image after

erosion and dilatation (image morphology).

6. Find edges The edge detection of each animal is done
by the Matlab implementation of Canny’s edge detector
bwboundaries (Canny, 1986).

The toolbox also encompasses some simple GUIs for ROI
definition. Some standard procedures (e.g., image dilatation,
erosion, and rotation) wrap functions of the MATLAB Image
Manipulation toolbox (Gonzalez et al., 2004). This allows the
user to adjust the procedures without having to interfere with the
MATLAB standard toolboxes.

2.1.4. Animal Detection via the Hough Transform
The Hough transformation is a method to test if a given pixel
in an image is a part of a certain geometrical shape, such as
lines (Duda and Hart, 1972), circles (Yuen et al., 1990), or
ellipses (Tsuji andMatsumoto, 1978). The Hough transformation
algorithm is fed with a black and white image that only contains
bright edges of objects (animals) in a given picture. The Hough
transform creates a new image (the accumulator image) in which
each pixel of an edge is tested to be a part of one of the
aforementioned geometrical shapes. If many points on the given
edge belong to the geometrical shape, they will render a bright
spot in the accumulator image. The brightness of the spot is
relative to the number of pixels that participated in this shape.
This allows us to find multiple geometrical shapes inside a given
image and rank them by the quality of their detection (brightness
of the spot).

Many animals feature a torpedo like body shape, due to
aero- or aquadynamic friction. This torpedo like shape can
be approximated by an ellipse, which can be detected in the
Hough transform (Duda and Hart, 1972; Xie and Ji, 2002).
The ellipse detection in LACE (LACE_HTD toolbox) wraps the
MATLAB implementation by Martin Simonovsky2 (Xie and Ji,
2002; Basca et al., 2005). As Hough transform detection is a brute
force approach and therefore computational intensive, we use a

2Martin Simonovsky (2020). Ellipse Detection Using 1D Hough Transform
(https://www.mathworks.com/matlabcentral/fileexchange/33970-ellipse-
detection-using-1d-hough-transform), MATLAB Central File Exchange.
Retrieved November 9, 2020.
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common simplification: We split the frame into smaller images
that only encompass one set of boundaries.

Although the Hough transformation is computational
intensive, it offers many advantages over classic difference image
analysis. Conditions such as maximum and minimum size of the
geometrical shape (in our case, the major axis of an ellipse) are
already implicit to the detection mode and do not have to be
applied post-hoc. The orientation of the shape is part of the output
of the accumulator space. Even partially occluded geometrical
shapes are found, as they still produce a substantially bright spot
in the accumulator image. Especially animal interaction often
leads to problematic detection situations as the animals occlude
each other (see Figure 3) or align so that they become a double
wide ellipse (Figure 3). In normal difference image analysis, this
needs to be solved manually. The Hough transform results in
multiple candidates for these situations, that can be used to solve
this problem automatically via ad-hoc corrections.

2.1.5. Ad-hoc Corrections
Video observations that include multiple individuals can lead
to occlusion problems. One major problem is to decide if two
animals overlay and therefore create overlaying ellipses or if
one animal can be fitted by two overlaying ellipses. Some of
these issues can be solved with a prior information that the user
provides, e.g., the number of animals present in the observation.
This allows LACE to categorize occlusion problems into seven
standard problems that the LACE_ac toolbox tries to solve.

1. Problem 1: Too many overlaying instances of detection

The Hough transform detection found too many ellipses.
The number of ellipses exceeding the user defined number
of animals is identical to the number of ellipses with largely
overlaying surface area. This indicates a case in which one or
more animals are fitted withmore than one ellipse. In this case,
we keep the ellipse with the best quality of detection from the
group of overlaying ellipses.

2. Problem 2: Toomany non-overlaying instances of detection

The Hough transform found too many ellipses but none of
them overlay. This is rather easy to solve, the ellipse with the
lowest detection quality, is deleted.

3. Problem 3: Problem 1 and 2 occur at the same time

First we reduce the overlaying ellipses, if needed, the ellipses
featuring the lowest detection quality are deleted afterwards.

4. Problem 4: Too few ellipses are found

In this case, there are no overlaying ellipses but not enough
detection was preformed. TheHough transform detection also
keeps detection below the quality threshold. We fill up the
detection until we reach the number of predicted animals with
the best sub threshold quality instances of detection.

5. Problem 5: Too few ellipses are found but few are larger

than a single animal - Chaining

We call this problem chaining. If one individual attaches itself
to the extremes of the body long axis and aligns itself roughly
to the body long axis, this produces a figure eight shape that
can be mis-detected as one large animal. From the Hough
ellipse detection (see Section 2.1.4), we can estimate if one of
the detections is at least 1.5 times larger than a single animal.
If this is the case, we split the chain by splitting the oversized

FIGURE 3 | These are illustrations of five standard problems LACE_ac toolbox

can automatically detect and solve. Problem 1 and 2 are superfluous

detections of either the same animal (Problem 1) or other contrast areas in the

video frame like shadows (Problem 2). Both are solved by deleting the

detection with the lower quality rating. Problem 4 results from one of the

detection ellipses not passing all criteria (size, eccentricity, last position) and is

solved by taking the detection with the highest quality from the sub-threshold

detection list. Problem 5 to 7 are all due to a miss-detection in which two or

more animals are lumped together, because of their proximity. These are

mainly solved by deleting detections that are too large and choosing from the

sub-threshold detection list (Problems 5 and 6) or by splitting up the chain in

animal long regions (Problem 7).

detection and refitting ellipses to it with the mean size between
minimum and maximum major axis length.

6. Problem 6: Chaining and not enough instances of detection

In this case, solving the chaining problem still can not deliver
enough ellipses. In this case, we again fill up the ellipses with
the best sub-threshold instances of detection.

7. Problem 7: The correct number of animals were found, but

there is chaining

In this case, the chains are refitted as in Problem 5 and the
algorithm chooses from all ellipses, the one with the lowest
detection value and deletes it until the correct number of
ellipses is reached.

Whenever an ellipse-detection is corrected via an ad-hoc
algorithm, its detection quality is set to –1 to help identify
weak instances of detection for later analysis. With the exception
of the user provided information, ad-hoc corrections employ
only information about the current detection frame. Some
problems, however, are solved more reliably with information
from the detection results before and after the frame in which the
problem occurred. These problems are solved by LACE’s post-hoc
evaluation toolbox.

2.1.6. Post-hoc Evaluation
After LACE detected ellipses via the LACE_HTD toolbox and
performed ad-hoc corrections (see Figure 1), there might be still
some problematic frames left. In nearly all problematic frames,
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we have a number of candidate ellipses for the animal either
above or below the detection threshold. If, for example an animal
is not detected in framex, there are usually a large number of sub-
threshold candidate instances of detection to choose from. The
LACE_eva toolbox uses information from framex−1 and framex+1

to choose the best sub-threshold candidate in framex.
The LACE_eva toolbox uses three estimators, which evaluate

the detection based on position, surface area, and contour, and
then score instances of detection on the basis of their parameter.
The user can weigh the scores with factors: For example, if the
user wants problematic instances of detection mainly solved via
the position of previous instances, he sets the weight of the pose
estimator to 1.0 (highest value) and all other estimator weight to
relatively low values. Setting the estimator weight to zero omits
this estimator for scoring.

1. Position estimator

The position estimator scores possible ellipse detections by
the euclidean distance between them and the last detection
of the animal.

2. Surface estimator

This estimator scores the candidates by their surface area.
Candidates with similar surface area to the detected animal,
score higher than those candidates with vastly different
surface area.

3. Contour estimator

The contour estimator scores candidates in a similar fashion
to the surface estimator, but for the length of the contour.

The evaluation runs automatically and allows so for detection
rates of more than 99% during optimal lighting environments
(FTIR, Case study I) and over 96% in more difficult lighting
environments (Case study II).

2.1.7. Pose Detection
After LACE detected the animal in the first round via the
LACE_HTD toolbox and executed automated corrections and
evaluations, LACE calculate the pose of the animal de novo. The
pose detection is performed by the function LACE_ana_getPose
of the LACE_ana toolbox. We return to the edge picture derived
from Canny’s edge detector (see subsubsection 2.1.3 step 6).
LACE_ana_getPose selects 100 evenly spaced pixels from border
between the detection object and its background. These pixels
are the centers of Voronoi cells (see Figure 1, line 3), which
encompass all space that is closer to its center than to the other
centers (Dirichlet, 1850; Voronoi, 1908). As a consequence, many
new borders and vertices are created inside the silhouette of the
object. The vertices are mainly distributed around the mid-line of
the object (see Figure 4, line 4).

A Dijkstra shortest path algorithm3 is then used on the points
inside the detection object (Figure 4, line 4) (Dijkstra, 1959). The
start and the end of the path are determined via the closeness
to the boundary. LACE_ana_getPose then choose shortest path
between the start and the end of the mid-line vertices (line

3Joseph Kirk (2021). Dijkstra’s Shortest Path Algorithm (https://www.mathworks.
com/matlabcentral/fileexchange/12850-dijkstra-s-shortest-path-algorithm),
MATLAB Central File Exchange. Retrieved February 22, 2021.

FIGURE 4 | Schematic overview of the pseudo skeleton calculation. The figure

illustrates the general procedure used to derive a pseudo-skeleton, therefore

all vertices, contours, etc. are schematic drawings and not based on data or

results of the algorithms. The pose detection uses the center of the ellipse

detected by LACE_HTD toolbox as the center for a simple contour detection

(solid orange line) via Canny’s edge detector. One hundred evenly spaced

pixel-coordinates (translucent orange dots) on the contour are chosen. Note

that these contour-coordinates are not evenly spaced in the schematic

drawing. These contour-coordinates are used as seeding coordinates for

Voronoi cells (teal colored lines and dots). A Voronoi cell encompasses all

space that is closer to its contour coordinate than to the other contour

coordinates. Each cells is enclosed by a number of edges. The Voronoi

calculation also generates edges of the Voronoi cells outside the contour of the

animal, which are ignored in the algorithm and therefore not drawn here. These

Voronoi-edges (teal lines) are represented by their vertices (teal dots). The

algorithm selects the vertices that are inside the animal’s contour for further

computation. Those central Voronoi-edge vertices are now used in Dijkstra’s

path algorithm to select (teal dots with orange border) the central line along the

anteroposterior-axis (dashed orange line).

Figure 4, line 5). This concludes the detection part of LACE as
we detect the animal and know its mid-line.

2.1.8. Coordinate Transformation
Upon this point in the LACE analysis pipeline, all instances
of detection and analysis are kept in a pixel coordinate
system. In most cases, biologist are more interested in physical
measurements. To converge our measurement from pixels
to meters, LACE offers two distinctly different types of
conversions and a number of measurements. Functions for this
transformation can be found in the LACE_p2m toolbox.

In all cases, an object of known size is marked inside a frame.
These objects can be circular, rectangular or a simple line. In cases
of the circles and rectangles, the LACE_p2m toolbox interpolates
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the position of the animal inside the circle or rectangle. Thereby,
the coordinate system in which the animal moves, not only
changes dimensionality from pixel to meter, but also changes the
origin of the coordinate system. For example, if one of the corners
of the rectangle is set to (0,0), it becomes the actual coordinate
origin. The line measurement only shifts the dimensionality from
pixels to meters, but keeps the original coordinate system origin.

2.1.9. Computational Load Management
LACE includes many simple but computational intensive steps
such as ellipse detection via Hough transformation (Tsuji and
Matsumoto, 1978) or minimal cost matching via the Hungarian
algorithm (Kuhn, 1955). Also, it is programmed for CPU usage
and therefore has no option to be used on faster and available
GPU processors. To avoid blocking a workstation for hours, we
have developed a scheduler system.

The general idea is that the user is guided through a graphical
user interface (GUI) to define an executable detection script.
During the definition of the detection script, the user performs
test detection on single images which are later used by LACE to
benchmark the computation duration for the whole data set (e.g.,
a complete movie or image stack). In the second step, the user
uses the LACE_scriptBalancer to divide the executable scripts on
the different CPU cores. As soon as the user does not need the
PC anymore, the user can start the detection process and all cores
will process the detection scripts. Thereby, you can spend the day
recording and defining scripts and run the detection over night.

In a GUI, the user can open the image data (movie, sequence,
or image stack) and test the different parameters of image
manipulation, such as binarisation threshold, erosion radius,
etc. Furthermore, the user has the option to define a ROI and
calculate different backgrounds. In the next step, the user can
define the parameter of the Hough ellipse detection, such as
minimum and maximum length of the major axis of the ellipse
or the number of animals depicted in the image data.

The GUI tests the detection parameters and provides the
user with an example result on which further refinement can
be attempted. In the last step, the user is asked to define a line,
rectangle or circle to transform the data from pixel values to
meter. Finally, the user needs to define where the detection results
should be saved.

Now, the user can save all these parameters as well as the
background, file position of the image data, etc., for later use.
Also, the GUI writes out a ASCII formatted Matlab script which
can be run to analyse the data. As LACE already run several
test detections while the user optimized the parameters, it can
estimate the computation time per frame. This computation
is multiplied by the number of frames in the image data
and saved to a MatLab variable called the toDoManager. The
toDoManger is a simple cell matrix containing the file position
of the executable detection script, the time it has estimated to
run (float) and a Boolean variable flagging if the script has
already run. The LACE_scriptBalancer GUI employs a simple
greedy optimisation algorithm (Krumke and Noltemeier, 2009),
to balance the computational load of all executable scripts on the
available CPU cores. The user can then activate the start script
which will activate the executable script for the different cores.

2.2. Case I - Larval Locomotion
LACE has been used to study the effect of opsins on the
locomotion in Drosophila larvae (Zanini et al., 2018; Katana
et al., 2019), revealing that these animals require visual
opsins for proper locomotion and body contractions. The here
published data set illustrates LACE’s ability to faithfully track the
contractions and locomotion of Drosophila larvae.

2.2.1. Locomotion Recordings
An FTIR assay (Risse et al., 2013) was used to assess the
locomotory body contractions. Single 3rd instar wandering
larvae were recorded crawling on 1% agar with a CCD camera
(OptiMos, QImaging, Germany) at 34 frames per second for
up to 45s with Micro-Manager. An inverted microscope (IX73,
Olympus, Germany) with 1.25X magnification was used for
recordings. To keep the larva in frame, the microscope stage
was adjusted manually. All larvae were reared at 25◦C at
60% humidity in a 12h/12h light-dark cycle on standard fly
food (Corthals et al., 2017). CantonS and w1118 larvae were
used to study wild-type control animal peristaltic contractions
during locomotion, and nan36a and iav1 mutants that lack the
mechanosensory channels NAN and IAV, respectively, and play a
proprioceptive role in larval chordotonal neurons, were used to
study abnormal locomotion.

2.2.2. Locomotion Analysis
To assess the body contractions, we detected the larva with LACE.
Contraction amplitude was calculated as the minimal body long
axis (Dijkstra path length from subsubsection 2.1.7) divided by
their maximal length (see Equation 1).

A =

(

1−
bodylengthmin

bodylengthmax

)

× 100% (1)

The curvature index is calculated as follows: The pseudo-skeleton
is rotated so that the x-coordinate of both ends equals zero. In a
second step, we calculate the integral of the y-coordinates and of
the absolute y-coordinates. If both values are large, the animal is
performing a turn. If only the absolute value is high, the pseudo-
skeleton is in an s-shape form. The integral is subtracted from
the absolute integral and therefore the resulting value is always
positive. To indicate if it is a left or a right turn, we just multiply
the value with the sign of the middle y-coordinate.
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All calculations were performed with MATLAB.

2.3. Case II - Zebrafish Locomotion
Recordings
We tested the versatility of our tracker by studying the undulatory
locomotion in adult zebrafish. This study was performed to
evaluate if there are any sex specific locomotion differences
between male and female zebrafish. Locomotion videos of 59
adult male and 43 adult female zebrafish were recorded in two
different experiments: baseline and startle induced swimming, to
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make a comparison between their locomotion. For both trials,
zebrafish were filmed in a 24.9 x 11.4 cm Plexiglas aquarium
with 1.6 cm water depth from above with a high speed camera
(Genie HM1024, Dalsa, Imaging Solutions GmbH, Eningen u.
Achalm, Germany) linked with a lens system (OptemZoom 125C
12.5:1Micro-Inspection Lens System). The setup was illuminated
with a LED light plate (Lumitronix) and aquarium light control
(Elektronik-Werkstatt SSF, University of Göttingen) from below.
For startle induced swimming, a 474 g metal weight was dropped
on the setup table, which elicits the recording by closing an open
electrical circuit. The fall of the weight was guided by a 13 cm
plastic tunnel and produced an impact force of 18.7 N on the
surface of the table. The weight collision on the setup table creates
a mechanical stimulus which would elicit a certain behavior
among individuals. Every trial lasted for 30 s and was filmed with
200 fps. The baseline trials were started 30 s after transferring
a fish to the setup tank. Startle induced swimming trials were
started immediately after the baseline trials. The recordings were
conducted in the diurnal rhythm between 10 a.m. and 8 p.m.
For both trials, sequences of the experimental individual without
movement for more than 2.5 s were excluded from analysis.

2.3.1. Locomotion Analysis
LACE was used to automatically extract the mid-line position
from every single frame. LACE was run on MATLAB R2012b
(The MathWorks Inc., Natick, Massachusetts, USA).

3. RESULTS

3.1. Ad-hoc Corrections
We analyzed 1,318 movies of zebrafish for the occurrence of
ad-hoc corrections. In 1,176 (89%) of the videos there was not a
single correction needed (see Figure 5). In 107 (8% of all videos)
videos, less than 0.5% of their frames needed to be corrected.
Whenever the fish made a sharp turn that resulted in a circular
form, the algorithm discarded the detection, as it did not fit the
expected animal length, this was usually solved by triggering the
ad-hoc correction from Problem 4. In the remaining 42 movies,
up to 80% of the frames needed to be corrected (see Figure 5).
The overwhelming reason for this high percentage were wrong
user entries. The expected organisms size (in pixel) was set too
large or too small so that the detection was dismissed in the
first approach. Again the ad-hoc correction for Problem 4 was
triggered and the correct detection was used.

3.2. Case I - Larval Locomotion
To assess the efficacy of our tracker, we first studied locomotion
in Drosophila larvae (Zanini et al., 2018; Katana et al., 2019).
When a larva crawls, peristaltic contractions of the body wall
muscles lead to shortening and elongation of the body that allows
for forward movement (Berrigan and Pepin, 1995; Heckscher
et al., 2012). We measured the change in body length during
forward locomotion. Phases of turning could easily be detected
by the turn detector (Equation 2) (see Figure 6A). The body
length over time of wild-type larvae forms a regular wave pattern,
whereas the body length of the nan36a shows an irregular pattern
(Figure 6C). The same effect can be seen in the eccentricity of

FIGURE 5 | A histogram of the correction frequency per frame for 1,318

different zebrafish video. 1,176 videos needed no correction at all. In 107

videos, less than 5% of the frames were corrected. Note that the counts are

depicted on a logarithmic scale. Above the histogram bars, a rug plot (similar

to a scatter plot) of the occurrences is given. Each vertical marker represents a

video at the given correction frequency on the x-axis.

both larvae Figure 6B). Our data revealed that the wildtype and
control strains tested have similar body contraction amplitudes
(Equation 1). Additionally, our analysis showed a significant
reduction in the contraction amplitudes in the mechanosensory
mutants (see Figure 6D). These effects are in agreement with
previous reports of the role of NAN and IAV in Drosophila
chordotonal organs (Kim et al., 2003; Gong et al., 2004; Zhang
et al., 2013) and the role of these organs in controlling locomotion
(Caldwell et al., 2003).

3.3. Case II - Zebrafish Locomotion
To further test our tracker, we used adult zebrafish, which
propagates undulatory waves along its body during locomotion.
Several studies demonstrate sex-specific differences in the
activity, anxiety, aggressive and exploratory behavior of zebrafish
(Tran and Gerlai, 2013; Ampatzis and Dermon, 2016; Rambo
et al., 2017), which all involves locomotion. We thus wondered
whether female andmale zebrafishmight differ in their respective
locomotion. To assess this possibility, we analyzed translational
and rotational movements during baseline and startle-induced
swimming. Figure 7 shows an example of how LACE traces the
trajectory of a freely moving fish for 30 seconds. Like many other
animals (Kramer and McLaughlin, 2001; Geurten et al., 2017;
Helmer et al., 2017), zebrafish move intermittently (compare
Figure 7C). Intermittent motion alternates between phases of
active propulsion and gliding, which seems to be energy efficient
(Kramer and McLaughlin, 2001).
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FIGURE 6 | Quantification of body peristaltic contractions of freely crawling Drosophila larvae. The results of two trajectories traced with LACE are shown in (A–C): (A)

the curvature, (B) eccentricity, and (C) normalized body length of a wild-type (CantonS) larva (orange) and a nan36a mutant larva (blue). The curve finder (A) detects

portions of the video where turning is detected. The turns appear as gray shaded areas (point 2 for CantonS and points 2 and 3 for nan36a). The white background

shows peristaltic contractions during forward crawling (points 1 and 3 for CantonS and 1 for nan36a). Above (wildtype) and below (nan36a) still frames from the

corresponding times (1,2,3) are depicted. The pseudo-skeleton is superimposed as a light blue line, the contour of the animal is shown as solid green line, the central

contour as a dashed green line, and the gut as a red line. Both markers (gut, central contour) were not used in this analysis. In (D) the contraction amplitude is

quantified for wildtype,w1118, nan36a and iav1 mutant larvae. The nan36a and iav1 mutants have significantly lower body contraction amplitudes compared to wildtype

CantonS and w1118. The dataset consists of 30 wildtype larvae (CantonS), 26 w1118 larvae, 8 nan36a larvae, and 12 iav1 larvae. Statistical significance was tested with

Fisher’s permutation test on different medians. ***p < 0.001, **p < 0.01.

In the example shown in (Figure 7A), the zebrafish separates
its movements into rotations and translations (review on the
strategy: Corthals et al., 2019). Apparently, zebrafish change
their heading when rotating but they also use the rotations for
propulsion, as can be seen for the two example turns (segment
1 and 3) in (Figures 7B,C). Each of the orientation turn elicits a
spike in thrust velocity (Figure 7C). These spikes are coincidental
with pronounced changes in the body yaw (Figure 7D)
and bending angle of the pseudo-skeleton/body of the fish
(Figure 7E). In addition to this turn-propulsion, zebrafish exploit
an s-shaped undulating movement for propulsion shown in
(Figure 7B2). The analysis of the pseudo skeleton reveals that
although the undulating propulsion elicits similar bending and
thrust (Figures 7C,E), there is only negligible change in the
orientation of the fish (Figure 7D).

The quantification of many trajectories revealed significant
differences between female and male zebrafish locomotion. We
analyzed their translational and rotational movements separately
and used the peaks in yaw velocity to calculate a triggered
average of turning maneuvers (velocity threshold 200◦ ∗ s−1 |
see Figures 8A,B). Female fish achieved significantly lower peak
turning velocities than males (Figures 8B,D), while they turned

as often as males (Figure 8E). The lower peak turn velocities
seen in female trajectories might have an influence on the thrust
velocity given that turns are also used for thrust-propulsion.

As the fish only accelerates during the propulsion phase of
the intermittent motion, the time velocity plot of a trajectory
shows distinct peaks (compare Figure 8C). To test for differences
in thrust-propulsion, we calculated a triggered average for
every peak in the thrust velocity exceeding 10 cm ∗ s−1. The
mean of these velocity peaks was very similar in male and
females (Figure 7C), yet females moved significantly slower
than males, as can be seen in the median thrust and slip
velocities (Figures 8F,G). This gender dimorphism might reflect
differences in body shape and, thus, hydro-dynamic drag. If
so, we expected to see differences in the gliding phase after a
thrust stroke (Figure 8C), but gliding velocities were the same
for females and males. Differences in body shape might cause
difference in body bending, yet also bending seemed to be
the same (Figure 8H). The significantly different thrust velocity
is caused by a significantly different thrust stroke frequency
(Figure 8I). As the turn frequency is similar between the
sexes, we can deduct that the significant thrust-stroke-frequency
difference is caused by a higher frequency of s-shape propulsion.
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FIGURE 7 | An example trajectory of an adult zebrafish traced with LACE. (A) Top view of the trajectory. The body’s pseudo-skeleton is plotted as a line every 50 ms.

Time is color coded by the color-bar. Three segments of the trajectory were chosen for a close up representation in B. 1 and 3 depicts fast turns and 2 shows a phase

of undulatory body wave propulsion. (B) Enlarged view of the three segments from A. The pseudo-skeleton is now plotted every 5 ms. Time is encoded by the color

bar. (C–E) show quantification of the trajectory over time. The gray areas mark the time in which the 3 segments (subplot B) occurred. (C) Thrust velocity in m ∗ s−1.

(D) is a YY-plot. The dark blue axis presents the yaw angle in degrees (shown in the same color). The light blue axis shows the yaw velocity in ◦ ∗ s−1 (shown in the

same color). (E) depicts the mean angle of the pseudo-skeleton parts to each other. If the pseudo-skeleton is a perfect line, the angle is 180◦ and should decrease the

more the skeleton is bent.

4. DISCUSSION

The detection of animals in videos is the basis for many
neuroethological studies, ranging from locomotion analysis
(Muybridge, 1882) to learning tests (Barth et al., 2014). Methods
that facilitate the tracking of animals are evolving constantly,
facilitating the analysis of large sets of behavioral data. Currently,
most trackers fall into two categories: trackers that treat the
animal as a solid object with an orientation (Branson et al., 2009;
Donelson et al., 2012; Pérez-Escudero et al., 2014; Geissmann
et al., 2017; Mönck et al., 2018; Rodriguez et al., 2018;Werkhoven
et al., 2019; Krynitsky et al., 2020) and trackers that represent
the animal as a skeleton (Fontaine et al., 2009; Kain et al.,
2013; Nath et al., 2013; Mathis et al., 2018; Pereira et al.,
2018; Gosztolai et al., 2020). The application of such trackers
to limbless or rather featureless animals is sub-optimal because
skeleton representations are based on readily identifiable body
parts that can be used as visualmarkers (e.g., joints,legs,antennae)
or require the attachment of physical markers, which is not
always possible. The representation of animals as solid lines or
single points also discards important features of the trajectory,
as limbless animals generate propulsion by deformation of
their bodies.

The tracker LACE has been specially designed for tracking
limbless animals, though it can be applied to other organisms as
well. Since limbless animals usually lack clear markers such as
color patterns or joints, arms, and legs, pose estimation requires
information about the mid line of the body. LACE estimates this

mid-line from the contour of the animal and treats this mid-line
as a pseudo-skeleton that allows to quantify body deformations
without using physical or visual markers. To our knowledge, the
only available tracker that represents animals in a similar fashion
is FIM-track (https://github.com/i-git/FIMTrack) which allows
to analyze animal trajectories using frustrated total internal
reflection (FTIR) (Risse et al., 2013). FIM-track was developed
specifically for analyzing FTIR trajectories and we found it to be
less efficient under different lighting conditions. For example our
fish tanks were back lit and therefore the signal to noise ratio, was
significantly lower than in an FTIR experiment.

LACE consists of nine toolboxes that can be used as a stand-
alone software or can be combined with other existing trackers.
The pseudo-skeleton generator, for example, can be used in
combination with other trackers that can detect the contour
of the animal (Fontaine et al., 2009; Nath et al., 2013; Risse
et al., 2013). The video loading module of LACE can read
nearly any standard file format and works for different lighting
conditions. This LACE_bg toolbox offers the advantage of
calculating background images for varying light-dark conditions.
LACE also allows one to define the region of interest (ROI),
allowing to discard irrelevant information. Although already
available software (e.g., Fiji Schindelin et al., 2012, 2015)
could have been used to create ROIs, we wanted to integrate
everything into one GUI for ease of use. The ad-hoc and post-hoc
evaluation toolboxes allow to record multiple animals or objects
together, automatically solving many occlusion problems. LACE
provides the LACE_p2m toolbox to convert pixel coordinates
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FIGURE 8 | Analysis of multiple trajectories by female and male zebrafish during motivated trials. The median yaw angle (A) and velocity (B) of turn triggered averages

plotted against time. The solid line represents the median of all individuals, shaded areas represents 95% confidence interval. Females are represented by the orange

color, males by a blue color. Yaw to the left/right is indicated by positive/ negative numbers, respectively. The yaw angle over time is equal between male and female.

Males exhibit higher maximal velocities compared to females. (C) The triggered average of all spikes of propulsion is plotted against time. The shaded area represents

standard deviation from the mean. There is no significant difference in the propulsion and gliding motion of male and female. (D–I) show the quantification of different

types of locomotion in the form of box plots. The black line represents the median of all individuals, the box displays the upper and lower quartile, the whiskers denote

1.5 times the interquartile distance and the plus-signs mark the outliers. Color is coded as in A. (D,E) The saccadic peak velocity of females as compared to males is

significantly lower, while there is no significant difference in the saccade frequency between the two. (F,G) The median thrust and slip velocities of male fish are

significantly higher as compared to the females. (H) There is no difference in the body-bending angle during acceleration. (I) There is a significant decrease in the

frequency of thrust stroke of females as compared to males. The data set consists of 59 males and 43 females. Statistic significance was tested with Fisher’s exact

permutation test on different medians. ***p < 0.001, **p < 0.01.

into arena-based SI coordinates. Normally, these computational
intensive steps takes hours. To speed up analysis, LACE is
equipped with a scheduler system that allows for a division of
labor between different CPU cores, allowing users to record data
and define scripts during the day and run the analysis overnight.
Many of those features can be found in other tracking software,
but not in the same combination.

The most comparable trackers to LACE are trackers of the
model worm Caenorhabditis elegans (see comparison Table 1)
(Geng et al., 2004; Tsibidis and Tavernarakis, 2007; Ramot
et al., 2008; Leifer et al., 2011; Stirman et al., 2011, 2012;
Swierczek et al., 2011; Brosnan et al., 2021). This is not
surprising as Caenorhabditis is a limbless organism with very few
distinguishable anatomical markers. Although recording videos

from a microscope has disadvantages (e.g., moving the stage,
low photon yield, etc.) which many of the mentioned trackers
overcome elegantly, there are certain advantages. Two of those
advantages are uniform background and iso-illumination across
the field of view. LACE handles more complex lighting situations
as well (see Supplementary Material).

The most comparable fish tracker is idTracker (Pérez-
Escudero et al., 2014; Romero-Ferrero et al., 2019). idTracker
shares most of LACEs features and has a much more
sophisticated detection of individual organisms in a group.
LACE identifies individuals via their position, direction,
and posture. In contrast to LACE, idTracker identifies the
individuals by the eigenvalues of their Gestalt. To our
knowledge idTracker does not however derive a pseudo-skeleton
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for the identified individuals, which is crucial to most of
our analysis.

LACE is rather computational intensive and therefore cannot
track multiple animals in real-time. Many of the aforementioned
worm trackers and the TRex tracker (Walter and Couzin, 2021)
have real time capabilities. Whereas the worm trackers can rely
on slim algorithms due to bright and uniform backgrounds, TRex
achieves this computational speed by using a non interpreted
language (C++). LACE is written in a less efficient but more
accessible programming language (Matlab), which allows the user
to customize the source code directly.

We have illustrated the versatility of LACE using crawling
Drosophila larvae and swimming adult zebrafish as examples.
Studying peristaltic contractions during locomotion of
Drosophila larvae allows to screen for genes, neurons, and
networks involved in proprioception, mechanosensation,
and locomotion (Caldwell et al., 2003; Hughes and Thomas,
2007; Zanini et al., 2018; Katana et al., 2019). In Zanini
et al. (2018) we used LACE to analyse the role of opsins
in mechano-transduction. We used LACE instead of the
FIM-Track because we needed to analyse locomotion under
infrared-light and visible light conditions. Although FIM-
Track worked well with infrared light, it did less so in the
presence of visible light. A costly infra-red pass filter would
have solved this problem. Another option seemed to express
green-fluorescence protein (GFP) in the larval muscles, as was
done to study the roles of mechanosensory neurons during
peristalsis (Hughes and Thomas, 2007). Our tracker bypasses
the need for GFP expression and can be used to track many
animal species. Its ability to detect turning events during
locomotion allows to analyse exclusively, for example, periods of
forward locomotion. LACE can precisely track this locomotion
and distinguish turns from normal peristaltic movements.
It also allowed us to identify subtle changes in locomotory
body movements in mechanosensory mutants (Zanini et al.,
2018).

By using LACE to track zebrafish, we tested for differences
in locomotion between adult females and males. Several studies
had indicated sex specific differences in different forms of
zebrafish behavior (Philpott et al., 2012; Tran and Gerlai,
2013; Ampatzis and Dermon, 2016; Rambo et al., 2017), yet
whether these differences extend to locomotion, had, to the
best of our knowledge, not been explored. Using LACE, we
found that females swim slower than males and turn less fast
(Figures 8D,F,G). Possibly, the ovary makes it more difficult for
the females to bend their body during turning. We did not find
any sex-specific differences in the bendability (Figure 8H), yet
visual inspection of fish revealed that females with full ovaries are
larger than males. The more slender body of males presumably
experience less drag in water, but thrust strokes and declines
were virtually identical for the two sexes, arguing against pure
effects of drag (Figure 8C). The same argument holds true for
a difference in inertia caused by a difference in weight between
both sexes [males 0.23 g, females 0.36g (Eaton and Farley, 1974)].

Even though a female has to overcome a higher inertia
to change its velocity (2nd law of motion Newton, 1833) the

resulting velocity profile is nearly identical (Figure 8C). When
we analyzed the frequency of thrust strokes, we found that males
perform more thrust strokes in a given time period, allowing
them to swim faster than the females.Moreover, while the turning
frequency is nearly identical for the two sexes, males more often
perform s-shape thrust strokes, propelling them forward with
higher speed. LACE has the potential to reveal such minute but
crucial information from the video data without a need for any
markers or AI-training. Overall, by this study, we have shown
that LACE has the capability to differentiate between different
aspects of locomotion ranging from fast turns to bendability
and forward motion, revealing a hitherto undescribed behavioral
sexual dimorphism in zebrafish.

LACE is a simple, markerless, and fully automated tracker
for studying undulatory locomotion in limbless animals.We have
demonstrated that this tracker can be used to study different
aspects of locomotion behavior in different types of limbless
organisms and in more complex lighting environments. Our
results indicate that LACE has the potential to reveal novel
aspects of locomotion behavior in a variety of larger organisms.
We hope that our tracker will facilitate the study of movements
and pose in various animals species.
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