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The statistical geometry of material loops in
turbulence

Lukas Bentkamp® 2, Theodore D. Drivas>#, Cristian C. Lalescu'® & Michael Wilczek@® 2%

Material elements - which are lines, surfaces, or volumes behaving as passive, non-diffusive
markers - provide an inherently geometric window into the intricate dynamics of chaotic
flows. Their stretching and folding dynamics has immediate implications for mixing in the
oceans or the atmosphere, as well as the emergence of self-sustained dynamos in astro-
physical settings. Here, we uncover robust statistical properties of an ensemble of material
loops in a turbulent environment. Our approach combines high-resolution direct numerical
simulations of Navier-Stokes turbulence, stochastic models, and dynamical systems techni-
ques to reveal predictable, universal features of these complex objects. We show that the
loop curvature statistics become stationary through a dynamical formation process of high-
curvature folds, leading to distributions with power-law tails whose exponents are deter-
mined by the large-deviations statistics of finite-time Lyapunov exponents of the flow. This
prediction applies to advected material lines in a broad range of chaotic flows. To comple-
ment this dynamical picture, we confirm our theory in the analytically tractable Kraichnan
model with an exact Fokker-Planck approach.
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haotic flows tend to fold, writhe, and wrinkle material

elements into a state of seemingly infinite complexity over

time (see Fig. 1 and Supplementary Movie). A funda-
mental question is whether this tumultuous process has any
predictable features which persist over long periods of time.
Answering this question provides insights into the process of
mixing which occurs in a whole range of systems, from the dif-
fusion of dye into water, the dispersion of plankton colonies on
the ocean surface, to the blast propagation in supernovae ther-
monuclear explosions!. Material lines and interfaces, in parti-
cular, provide idealized descriptions of nutrient, temperature, and
salinity fronts in the oceans?, and potential vorticity fronts in the
atmosphere3. They are also closely related to the dynamics of
vorticity filaments in fully developed turbulence*®, the con-
formation of polymer chains®-8, the dynamics of flexible phyto-
plankton chains?, as well as the motion of magnetic field lines at
high conductivity (or high magnetic Reynolds numbers)!0. The
latter is related to the dynamo problem, in which chaotic
stretching, folding, and twisting processes are essential for sus-
taining the growth of a magnetic field. The progress we make in
understanding how material elements react to turbulent flows
stands to advance our understanding of these fundamental
problems.

The geometry of material objects advected and deformed by a
turbulent flow can be very complex. While volumes are preserved
by incompressible flows, the length of lines and the area of sur-
faces typically grow exponentially!!-1>, with their geometry
appearing fractal'®-18. Since any curve in space is uniquely
described by its curvature and torsion!?, there have been
numerous works attempting to characterize the curvature of
material lines but also of material surfaces?9-3* and Lagrangian
trajectories>>~37. Although material lines seem to become unfa-
thomably complicated over time, the above works suggest that
curvature distributions do in fact settle down to a well-defined
stationary state which features robust power-law tails (see Fig. 2),
sparking hope that certain features can be predicted by theory.

Fig. 1 Visualization of material loop evolution. The initially circular loop
(color corresponds to initial angle) is advected by a turbulent flow field for
2717, where 7, is the Kolmogorov time. The twisting and folding action of
the turbulent flow creates a complex loop geometry while the length of the
loop increases exponentially on average (cf. Fig. 3). The loop shown is a
comparably extreme case; loops in less turbulent regions develop an
extended and complex structure after a longer time. Inset: material fold
causing a peak of curvature. (See also Supplementary Movie).

Here we present a line of arguments based on the dynamical
mechanism of sling or fold (i.e., curvature peak) formation and its
relation to finite-time Lyapunov exponents that leads to a
quantitative prediction of the power law of the curvature dis-
tribution observed in Fig. 2, panels b and c. We show that the
high-curvature regime of the material line can be understood as
an ensemble of persistent parabolic folds, which are formed by
random stretching of the line. In this way, we illustrate how
understanding dynamical mechanisms can be used to make
deductions about statistical geometry. For example, our predicted
curvature PDF power-law exponent —2.54+0.11 (3% relative
error to the measured exponent) implies that, in the long-time
limit, the average curvature along advected loops is finite but all
higher moments diverge. The only input of our theory is the
distribution of Lyapunov exponents of the underlying flow field
and, as such, our results apply to a wide range of chaotic
dynamics. Our predictions are confirmed by direct numerical
simulations of fully developed homogeneous, isotropic Navier-
Stokes turbulence as well as by exact results in the analytically
solvable Kraichnan model.

Results
To investigate the evolution of material loops L(¢,t) in fully
developed turbulence, we consider initially circular loops and
parameterize them by the initial angle ¢ € [0, 27). Each point of
the loop follows the velocity field u(x, t) according to the tracer
equation

o, L(¢, 1) = u(L(¢, 1), 1). 1)

The evolution of such a loop is shown in Fig. 1, which illustrates
that the loop rapidly grows in length and diameter, while
attaining a complex geometry due to the stretching and folding by
the underlying turbulent flow.

As a key metric to characterize the geometry of the loop, we
here focus on the curvature

(2L)x (9,L)
R(g,1) = M @

3
oo

Material lines grow non-uniformly in length over time. Hence for
an evolving ensemble of loops, the distribution of curvature can
be defined in different ways, depending on the probability mea-
sure we associate with the points along the loop. A simple way of
defining the probability density function (PDF) of curvature
f(x; t), which does not depend on the initial parameterization, is
to take curvature samples uniformly along the arc length of the
loops. Specifically,

1 L(t) ~
Flet) = o < /0 ds 8 — &(s, t))>

where § is the Dirac delta function, L(t) is the length of the loop at
time t, and (s, t) is the curvature of the loop as a function of arc
length s at time t. The average (-) is taken to be uniform over
loops, and we have here used « to distinguish the loop (realiza-
tion) dependent curvature from its sample-space variable .

We use fully resolved turbulence simulations to investigate this
measure of the statistical geometry of material lines (see Meth-
ods). Here, we focus on a data set at the Taylor-scale Reynolds
number R, =216, in which we track 1000 randomly placed loops
with an initial diameter of 107 (# is the Kolmogorov length scale).
We test the robustness of our results with additional simulations
at various Reynolds numbers in Supplementary Note 1.

The resulting curvature PDF at different times is shown in
Fig. 2b. Remarkably, persistent power-law tails form within a few
Kolmogorov time scales 7,, which eventually range over several
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Fig. 2 Localized peaks of curvature along the loop cause heavy-tailed curvature distributions. a Curvature along a material loop at t =29.157, as a
function of arc length s. The function is highly spiked, indicating that high curvature only occurs in isolated narrow regions. These isolated peaks contribute
to the high-curvature tails of the curvature PDF. b Curvature PDF of material loops at times t = 4.16z, (light green) up to t =29.15z, (violet). ¢ PDF of
curvature peaks of material loops at the same times. The high-curvature regime is fitted by power laws in the regions indicated by the dashed lines by
means of a linear fit to the logarithm of the PDF using binomial error estimates.

decades of curvature after the loops have been deformed for 297,
(~1.5 integral times). Within this observation window, the shape
of the distribution appears to become stationary, whereas the
support, ie., the range from minimum to maximum curvature,
grows indefinitely in extent. Hence the largest curvatures corre-
spond to structures significantly smaller than the Kolmogorov
length scale 7. As we show in Supplementary Note 1, the dis-
tributions are almost indistinguishable for different Reynolds
numbers when nondimensionalized by #, but they shift to larger «
when displayed in units of the integral length. This is a first
indication that the curvature distribution is generated by the
smallest scales of the flow, in particular by velocity gradients.
Given the markedly complex shape of the deformed material
loop, the universal shape of the distribution calls for a theoretical
explanation, which we develop in the following.

Ensemble of material folds. The high-curvature regime of the
curvature distribution is heavy-tailed and characterized by rare
events. Over time, the material line will form isolated sites of
extremely high curvature30-34, as can be seen in Fig. 2a. Such
curvature peaks mark sharp folds in the material line geometry.
In the following, we reveal how such folds form stochastically and
how this is related to the power-law exponent of the curvature
distribution.

This picture in view, we estimate the high-curvature tail of the
PDF (3) in the statistically steady state by replacing the ensemble
average over entire loops in (3) by an ensemble of folds,

f(x) ~ /0 ~ dx, f(x,) [ : ds&(;c — (s, KP)). (4)

Here, «;, is the peak curvature of a fold and f(x;) its distribution.
The second integral is the contribution of curvature around each
curvature peak. As we will elaborate in more detail below, high-
curvature folds develop a universal, locally parabolic shape. The
curvature function around a peak with maximum «,, therefore,

can be estimated as32

Kp

<1 + F’l(lxps|)2>3/2 )

where F~1(x) denotes the inverse of the primitive of /1 + x* on
the positive real line, originating from parameterizing the
parabola by arc length. Remarkably, the curvature profile is
characterized by the peak curvature as the only parameter. To
further evaluate (4), we substitute the inner integration variable
by & = xP°(s; x,) with the Jacobian

dsPb(x'; K,)

b
KPO(si k) =

(©)

1

©)

dw’ 3K’2\/(KP/K/)2/3— 1’
which yields
00 dsPb(x; K,)
g0~ [ i gl =g . %)

This equation expresses the curvature PDF as a composition of
the curvature peak PDF with the contribution from the locally
parabolic folds.

Statistical evolution of curvature peaks. In what follows, we
determine the curvature peak distribution f(x,), which can be
achieved by capturing the essence of the curvature peak
dynamics. Since peaks are generally generated at medium cur-
vature and then grow stochastically, we may define the generation
time #, of a large peak as the time where it has first surpassed an
(arbitrary) threshold x, and its age as =1t — to. At time ¢, the
ensemble of peaks larger than x, can thus be attributed a dis-
tribution of ages f(7; ). By the law of total probability, the peak
distribution above x, can be estimated as

f(@gt)~'j€ de f(, | 0f (7 1), ®)
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Fig. 3 Mean number of curvature peaks above different thresholds over
time. The lines are vertically shifted for comparison, showing that the peaks
are generated at a clearly defined exponential rate. Moreover, the curves
appear to be asymptotically proportional to the mean arc length of loops
(red). The dashed line indicates an exponential fit to the last third of the
total peak number curve (violet), yielding the rate = (0.21619 + 0.00014)/
7, The standard error of this rate is so small that we neglect it in the
following. Note that without vertically shifting the curves in the plot, they
would remain ordered as a function of the threshold condition. Inset:
Curvature peak distribution at t = 29.15¢, indicating the different thresholds.

where f(x,|7) is the probability of a peak with curvature «, at time
to to have curvature «, at time #, + 7. This decomposes the cur-
vature peak distribution into a distribution of peaks with a given
age and the distribution of ages. In (7), we are interested in the
stationary regime f(x,) := lim,_, , f(x,; t), which we expect to be
well captured by the estimate (8) and to be independent of the
arbitrary threshold .

The peak age distribution can be estimated from the
mean number of curvature peaks. Figure 3 shows that the mean
numbers of curvature maxima above different thresholds grow at
the same exponential rate = 0.216/t,, which coincides with the
growth rate of the mean length of the loops. Intuitively, this can
be explained by the fact that the generation of folds is a random
process along the loop. Since the loop length grows on average
exponentially over time, so does the number of folds. Neglecting
the disappearance of peaks, we, therefore, estimate the probability
of a high-curvature fold at time ¢ to be generated before some
time ' (with 0<# <t) by the fraction of peaks that existed at ¢/,
given by ¢f* /ef!. This cumulative distribution function of peak
birth times implies the probability density function of peak age

f(r;t) ~ Be P, 0<T<t. ©)

This shows that, since curvature peaks are generated at an
exponential rate, their age distribution also decays exponentially,
implying that the bulk of the peaks is young even after a long
evolution of the loop.

In the following, we investigate the dynamics and statistics of
peak curvature in an effort to estimate the remaining conditional
probability f(x,|7) and form our theory.

Amplification of folds by turbulent stretching. We observe that
those rare peaks that have existed for a long time can exhibit
extremely high curvature. This is caused by fluid element
stretching, a process quantitatively captured by the deformation
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Fig. 4 Formation of a parabolic fold. a lllustration of the deformation
tensor F. v; denote the principal axes of stretching before deformation and
u; the corresponding axes after deformation. A fluid element (blue) will be
predominantly stretched along the direction of most stretching v; and
compressed in the direction of most compression vs over time. If a material
line element (violet) is initially orthogonal to the direction of most
stretching, a fold will form. Such a fold is then compressed onto the u;-u,
plane and tends to align with the uy direction along which it is amplified.
b Stretching creates a locally parabolic curve. An initially non-parabolic
curve is stretched vertically as indicated by the red arrows. Viewed on the
appropriate horizontal scale, the line becomes increasingly parabolic. For
comparison, the dashed line indicates a parabola with the same peak
curvature.

tensor

_ 9Xi(x,1)
Fij(X7 t) - ax] )

(10)

where X(x, f) is the Lagrangian map, mapping the initial condi-
tion x of a tracer particle to its position X at time ¢. The singular
value decomposition of the deformation tensor associates two
coordinate systems v; and u; with the deformation (see Methods),
as illustrated in Fig. 4a. The associated exponential stretching
rates are given by the finite-time Lyapunov exponents (FTLE)
pi(t).

As discussed in ref. 32, generically a line element will align with
the u,-direction and become stretched exponentially with e
(whose mean asymptotically scales like eff). The surrounding
curve will be forced into the u;—u, plane by compression in the
u;-direction. The dominant stretching in the u;-direction locally
decreases curvature. However, an exception to this generic setting
occurs at a finite number of points along the loop when the initial
material line lies perpendicular to v, (see Fig. 4). In this case, the
line element cannot align with u; and will align with u, instead.
The surrounding curve, however, still experiences the stretching
in the u;-direction. This essentially magnifies the local structure
of the curve, which will generically result in a parabolic shape, as
illustrated in Fig. 4b. Therefore parabolas become increasingly
good local approximations of the folds.

To reveal the role of the finite-time Lyapunov exponents, let us
consider a parabola y = x,x?/2 which is already initially lying in
the v;-v, plane. Over time, it is subject to stretching y' = P’y
and x’ = e~®'x, which preserves the parabolic shape, ie.,
y = e O=2:00t 52 /2 In this process, the peak curvature
increases as long as p;(f) > 2p,(t)3?, i.e., the first FTLE must be
more than twice as large as the second one. We illustrate this at
the example of a parabola in a linearized flow in Methods,
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showing that its peak curvature grows as
(11)

for some effective initial peak curvature ¥,. This equation can
already be found in ref.32, where it is derived for a generic
material line. Let us call the growth rate of peaks p,(t) = p;(t) —
2p,(t). In turbulence, this growth rate is typically asymptotically
positive. In our simulation used for obtaining the FTLEs (see
Methods), we can estimate the infinite-time Lyapunov exponents,
A; =lim,_,  p,(t), by taking the mean of the FTLEs at the final
time of the simulation, which yields A, =0.12/7,, A,=0.03/7,,
A3 = —0.15/7,, in good agreement with previous literature®%3,
and thus A, = lim,_, . p,(t) ~ 0.06/7, > 0.

i, (6) R el (0-20:01

Connecting the power-law exponent to fluid stretching. To
relate the dynamical formation of folds to the power-law tails of
the curvature PDF, we estimate the distribution of «,(f) by
making statements about the distribution of FTLEs. By ergodicity,
FTLEs behave like sums of independent and identically dis-
tributed random variables at large times30, The same is true for
the growth rate of peaks p,,(t). Using its Cramér function S(p,), we
make a large-deviations estimate of the PDF,

flpyi t) = N(r)e™ 8, (12)
where N(f) is a normalization. Transforming by (11), the peak
curvature PDF for peaks of age T can thus be written as

fl,l0) ~ %e“ (l"g (*P) / ) , (13)

Note that we here identified the peak age 7 with the time ¢ and the
curvature threshold x, with the effective initial peak curvature .
For the asymptotics that we are interested in, the distinction does
not matter. Inserting this result into (8), combined with (9) and
letting t — oo, gives the asymptotic distribution of curvature peaks
in the high-curvature regime

f(Kp) ~ /O°° dre P %eqs (log <:_§) /T) .

We now use the method of steepest descent*! in order to
extract the large-x, asymptotics of the peak curvature distribution
from our estimate (14). The result (see Methods) is that the

. . . 717 .
distribution scales as a power law, f(x,) ~ K, %, with exponent

(14)

(15)

o = min
P

p

L+ S(pp»} .
P

This minimum is estimated for our data in Fig. 5, where the
Cramér functions have been estimated via (12) using FTLE
histograms from an additional simulation (see Methods). While
we are interested in finding the minimum for the fully converged
Cramér function, the amount of samples needed to resolve large-
deviations statistics increases exponentially with time, limiting
our observation window of the minimum to a maximum time of
about 30 to 407,. In this regime, the minima still lie above the
value of « inferred from the loops simulation (red line). However,
an analysis of the time evolution of minima (Fig. 5, inset) reveals
that they are well described by a slow, algebraic decay.
Extrapolating the desired minimum toward f— oo, we get the
estimate a = 0.54 +£0.11, slightly below but within error bars of
the curvature peak power-law exponent in Fig. 2c. For more
details on the extrapolation, see Methods.

Given the power-law scaling of the peak distribution,
J(x,) ~ Kp’l"", we can perform the integral (7) to obtain the

1.2 7
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1.2 -l‘
1.1 €10 -
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= 1.0 1 = 06
=
097
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Fig. 5 Determination of the steepest-descent minimum. The Cramér
function is estimated from FTLE histograms by (12). We call these finite-
time estimates S(p,, t). Here we show the function minimized in (15) for
estimates of the Cramér function ranging from t = 6.901, (yellow) up to
t =39.68r, (violet). Best fits are indicated by dashed lines with shaded
areas showing their error (see Methods for details). Inset: Minima of these
functions over time. A simple fit of the decay of minima (black dashed line)
yields an estimate of their limiting value a = 0.54 + 0.11 (horizontal blue
dashed line and shaded area). For comparison, the red lines show the value
of a estimated by subtracting 2 from the observed curvature PDF power-
law exponent in Fig. 2b, showing a good agreement within uncertainties. For
more details, see Methods.

prediction for the curvature PDF
flx) ~ K279, (16)

Hence the difference between the curvature power-law exponent
and the curvature peak power-law exponent is 1. This difference
originates from the curvature contributions of parabolic fold
profiles around the peak curvature (5). Comparing Fig. 2b and ¢
shows that this result is consistent with the fully resolved loops
simulations. Likewise, our prediction based on Lyapunov
exponents estimated by extrapolating the minimum in Fig. 5
captures the observed power-law exponents of both the curvature
and curvature peak PDFs very well. In Supplementary Note 1, we
explore our result at various Reynolds numbers, with comparable
or even better agreement depending on how far the minima can
be resolved in time. Therefore, as a central result, we can
quantitatively relate the statistical geometry as characterized by
the curvature PDF to the formation of folds and the statistics of
FTLEs that determine their dynamical evolution.

Interestingly, an alternative formulation of our result can be
obtained by using the Legendre transform of the Cramér
function, which is known as the generalized Lyapunov
exponent3®. It can be shown (see Methods) that « is given
implicitly by

<eo¢pp(t)t> ~ <ep1(t)t> (17)

in the large-deviations approximation, where ~ indicates the same
exponential scaling for large t. This can be understood as the
statement that the power-law exponent is chosen so that
curvature peak generation (represented by the line growth rate
p1(8)) and peak amplification (represented by the peak curvature
growth rate p,(t) = p;(t) — 2p,(t)) are on average balanced. For
example, in a flow with the same peak amplification (same
statistics of p,(t)) but stronger line growth (larger (em D)) and
thus stronger peak generation, a larger fraction of small-curvature
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peaks will accumulate until the stationary state is reached. This
means that the curvature PDF in the stationary state has to decay
faster, corresponding to a larger «, as encoded in (17). We explore
this result numerically in Supplementary Note 2, showing that
this complementary way of computing « comes equally close to
the value observed in the loops simulations.

Exact results in the Kraichnan model. To demonstrate the
robustness of our results beyond Navier-Stokes turbulence, we
consider the exactly solvable Kraichnan model*2. The Kraichnan
model of turbulence replaces the advecting velocity with a spa-
tially correlated Gaussian random field, white in time, which
mimics turbulence. While we do not expect the predictions of the
curvature PDF power law from the Kraichnan model to be in
quantitative agreement with our DNS results, it serves as a test
case in which our approach can be compared rigorously against
exact independent Fokker-Planck calculations.

In this setting, all of our argumentation about fold formation
and its statistical implications can be made exact. First, the
Cramér function takes the parabolic form*0

(Pp - /lp)z

2D,

with A, =3Q, D, =14Q and Q a constant related to the energy
spectrum quantifying fluctuations of the velocity gradient (see
Methods). A, and D,/t are the mean and variance of the Gaussian
distribution of p, that can be computed from the known
multivariate Gaussian distribution of the p;40. Now, the integral
(14) can be performed exactly, yielding a power law Kp_l_“ with

S(p,) = (18)

A X
» »
a=—2+4 | L+ (19)
D‘[7 DP DP

The growth rate of the mean length of line elements in the
Kraichnan model is 8 =4Q, determined by e ~ (en®*). This
evaluates to « = 4/7, a curvature peak PDF power law — 11/7, and
a curvature PDF power law — 18/7 = —2.571. Although this is
very close to the exponent — 2.622 + 0.002 that we find in Navier-
Stokes turbulence, we believe that our measurements are precise
enough to conclude that the exponents are in fact different and
that their closeness is coincidental.

Importantly, this result based on our picture of curvature
growth due to fold formation is consistent with an independent,
complementary approach facilitated by the rapidly fluctuating
velocity field. Using It6 calculus, one can obtain an exact Fokker-
Planck equation for the curvature distribution (see Methods) and
study its steady state. The equation takes the form

o,f = —8K<—18Qxf —7Qk*9, f + %f — 9Pa,€f), (20)

and features the stationary solution

—25/14

f) = (9P +7087) ", 1)

where P is a constant quantifying fluctuations of second-order
derivatives of velocity (see Methods) and Z is the normalization
constant. This exact solution transitions between a x! power law
in the small-curvature regime and a x~18/7 power law in the
large-curvature regime. Hence our framework based on the
dynamical evolution of curvature peak statistics and It calculus
yield exactly the same large-curvature exponent. The shape of the
PDF is also in qualitative agreement with our numerical
observations in Navier-Stokes turbulence, see Fig. 2b. A
numerical analysis of the Kraichnan case can be found in
Supplementary Note 7. Analogous computations*> have been

done for the curvature PDF of magnetic field lines in the context
of the turbulent dynamo problem without compensating for arc
length.

We remark in passing that it would be interesting to study
material line curvature statistics in the compressible d-dimen-
sional Kraichnan model#? also from the complementary perspec-
tive of fold formation. There, the compressibility can be
parameterized by an index ¢ and Lyapunov exponents can be
explicitly computed (see §2.4 of ref. **). The chaotic phase
characterized by positive leading Lyapunov exponent A; >0
occurs when ¢ < d/4. In this regime, one can vary A, =1, — 2\,
and analytically study its effect on curvature statistics. As such,
the compressibility can be used to precisely control the curvature
statistics.

Discussion

We investigated the curvature statistics of material loops in fully
developed turbulence to characterize their statistical geometry.
We find that the curvature PDF rapidly converges to a stationary
distribution and establish a theory of curvature peaks forming
along the loop to explain the power law in its high-curvature
regime. Using the connection between curvature peak dynamics
and finite-time Lyapunov exponents, we are able to theoretically
link the power-law exponent to FTLE large-deviations statistics.
In Navier-Stokes turbulence, we find our theory to be in very
good agreement with direct numerical simulations. In the
Kraichnan model, our theoretical prediction agrees precisely with
exact analytical calculations.

An important issue concerns how the results presented here
depend on the Reynolds number. In Supplementary Note 1, we
provide numerical evidence that moderate variations of the
Reynolds number lead qualitatively to the same picture with only
very slight quantitative changes in the power-law exponents.
When nondimensionalized by the Kolmogorov length scale, the
curvature PDFs for different Reynolds numbers collapse in very
good approximation, consistent with the notion that turbulent
stretching and folding is driven by the tentatively universal small-
scale velocity gradients in turbulence. In light of this, it seems
plausible to us that the shape of the curvature distribution we
observe is universal and will persist in the limit of large Reynolds
number.

Our methods and theoretical predictions can be applied to a
large class of chaotic flows and can thereby provide a new
statistical-geometry perspective on the intricacies of their evolu-
tion. Since a host of processes are closely related to the transport
of material lines, our results may help to shed light on such
problems from biophysics, geophysics and astrophysics. For
example, in polymer turbulence, the conformation tensor
describing polymeric stresses is a materially transported quantity
modified by (internal) restoration forces. As such, our compu-
tational and theoretical techniques used to study ideal material
transport in the form of material lines, suitably adapted to
accommodate internal degrees of freedom, provide a framework
to study fluid-polymer interaction.

Our work may also shed new light on classical questions in
magnetohydrodynamic (MHD) turbulence and, in particular, the
dynamo problem. For example, curvature PDFs of magnetic field
lines in MHD have been observed to form power-law tails in the
kinematic stage. It would be very interesting to study how this is
related to the formation of folds in the magnetic field and how
these folds behave in the non-linear stage of the turbulent
dynamo. Furthermore, it is well known that flux cancellations in
turbulent magnetic dynamos occur in part due to the folding/
bundling of magnetic field lines*>#0. In fact, our simulations
indicate that tightly wound bundles along the loop are in close
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correspondence with curvature peaks (see Supplementary
Note 3). Thus the statistical attributes (generation and growth
rates) of the peaks predicted here may be indicative of the gen-
ericity and intensity of configurations that can stifle dynamo
growth. It is also known that magnetic helicity—a measurement
of the linkage, twist, and writhe of magnetic loops—has a pro-
found effect on the growth rates for the dynamo?’. The tools
developed here can be used to study field lines in MHD in the
highly conductive regime. Conditioning on the level of magnetic
helicity, they could thus offer a new geometric perspective on the
role that magnetic helicity plays in dynamo action.

Finally, we remark that it would be of great interest to gen-
eralize our framework to accommodate higher-dimensional
structures, such as material surfaces. A material surface can be
understood as a continuous family of material lines. We therefore
expect it to form folds extending as one-dimensional structures
across the surface. This could then be applied to study interfacial
problems such as the dispersion of algae blooms or oil spills in the
ocean, where the description of the boundary’s geometry is of
crucial importance for prediction.

Methods

Navier-Stokes simulations for loop tracking. For the direct numerical simula-
tions (DNS), we use our code TurTLE*, It implements a pseudo-spectral solver for
the Navier-Stokes equation in the vorticity formulation with a third-order Runge-
Kutta method for time stepping and a high-order Fourier smoothing*® to reduce
aliasing errors. The flow is forced on the large scales by maintaining a fixed energy
injection rate in a discrete band of Fourier modes at small wavenumbers

k € [1.0,2.0] (DNS units). The simulations presented here were computed on 10243
grid points with a small-scale resolution kp.x # = 2.9, where kp,,y is the maximum
resolved wavenumber. Using the same initial background flow, we conducted two
separate simulations with different sets of Lagrangian tracers.

The first simulation contains 10? initially circular loops of diameter ~10% with
random position and orientation. Each sample point of the loops is treated as a
Lagrangian tracer particle. Over time, the strongly heterogeneous line stretching
necessitates an adaptive refinement of the loops®*>!. Using fifth-order B-spline
interpolation®2, we determine the arc length between adjacent sample points in
time intervals of 0.167,. Whenever their distance surpasses 0.1%, we insert new
sample points along the smooth spline curves, which ensures that derivatives of the
curves up to fourth order and hence their curvature are well-defined. In order to
better resolve high-curvature regions, we additionally require that the distance
between sample points does not surpass 1/(6x). This significantly improves the
resolution of the large-curvature tail of the curvature PDF. Due to the refinement,
the initial total number of sample points across all loops—about 3 x 10°—increases
to about 1.5 x 108 sample points at 297,. The adaptive insertion of particles
prohibits the direct use of multi-step methods for particle time stepping. For this
simulation, we therefore resort to first-order Euler time stepping of particle
trajectories. They are coupled with spline interpolation of the field with continuous
derivatives up to and including third order computed over a kernel of 123 grid
points (as detailed in ref. 33). We verify our determination of the curvature
distribution for different temporal and spatial resolutions of the loops in
Supplementary Note 4.

While the statistical geometry of any type of material line could be equally well
studied, we focus here on material loops due to their important role in fluid
dynamics. For example, the velocity circulation along any material loop is invariant
in inviscid incompressible fluid motion—a fact known as the Kelvin theorem.
While this invariance breaks down in the presence of any non-ideal effect such as
viscosity, properties of material loops at high Reynolds number—a regime in which
the flow is nearly inviscid - may shed light on a variety of features of fully
developed turbulence such as anomalous dissipation and spatio-temporal
intermittency®*. Material loops also arise naturally in the context of astrophysics
where they approximately describe the motion of closed field lines of a magnetic
field at high magnetic Reynolds numbers in a stellar or planetary system.

Computation of finite-time Lyapunov exponents and the Cramér function. The
second simulation contains 108 uniformly distributed Lagrangian tracers. Along
with their trajectories, we integrate the deformation tensor (10). Time stepping is
performed using the Heun method coupled with spline interpolation of the field
with continuous derivatives up to and including second order computed over a
kernel of 83 grid points. In order to ensure numerical stability, we perform a QR-
decomposition of the deformation tensor>” after each time step and store principal
axes and logarithmically scaled stretching factors separately. While in theory the
FTLEs are defined by the singular value decomposition, we here use the logarithmic
stretching factors obtained from the QR-decomposition as proxies (as done in

refs. $3839). In certain regimes, their large-deviations statistics may differ3.
However, in Supplementary Note 8, we show that our theoretical argument can
also be made for the proxies. We therefore expect no differing results in the two
cases. We then determine finite-time Cramér functions S(p; t) from the FTLE
histograms f{p; t) as®

S(py: 1) = — log(f(p, D)/1, @2)

which converge to the actual Cramér function over time. Given that the Cramér
function is known to take its minimum at S(A,) = 0, where A, = lim,_, , p,(t), we
may accelerate convergence by vertically shifting the finite-time Cramér functions
such that their minimum is zero, as done similarly in ref. 3°. The resulting func-
tions are used as input for Fig. 5.
We determine least-square fits of the finite-time Cramér functions using a

Batchelor interpolation between two power laws (corresponding to stretched
exponentials for the FTLE PDF),

ax?
CEraE

where A,(f) is the position of the minimum of S(p,; t), and a, b, and c are fitting
parameters. In order to obtain fits with reasonable accuracy, we restrict the fitting
range to the interval of interest [A,(£), 1/7,]. If the finite-time Cramér functions take
infinite values in this range, then we further restrict the fitting range to their finite
values. In order to obtain the error bars in Fig. 5, we vary the fitting parameters
within their standard error interval and take the minimum and maximum of the
resulting functions. Taking the minimum of the best fits and of their error
envelopes, we obtain the time series of minima in the inset of Fig. 5. If a fit takes its
minimum at the last value of the fitting range, then this value is omitted.

In order to extrapolate the minimum towards ¢ — oo, we determine the best fit
of the minima time series m(f) weighted by the errors using an algebraic decay,

C
m(t) = A+ (?) ,

where A, B, and C are fitting parameters. In order to robustly capture the
asymptotic decay using this simple fit function, we leave out an initial transient
regime of data points for the fit. We choose > 1, & 6.97,, where the weighted
mean squared error of the fit reaches a plateau, i.e., the point at which the fit
improvement from removing more data points diminishes (for more details, see
Supplementary Note 1). The parameters are estimated as A =0.54 +0.11,
B=(0.19+0.15)7,, and C=0.36 £ 0.18.

Note that the overall fitting procedure is very delicate and different choices may
lead to different results. The present analysis is our best effort to systematically
compute the limiting value of the minima.

SAy(6) +x/7,38) = (23)

(29

Peak curvature dynamics of a parabola. Here, we determine the evolution of the
peak curvature of a fold modeled by a parabola,

@—9,)’
2

where ¢ is the initial peak position, x,(0) is its initial peak curvature, 1 and k are
two initially orthonormal vectors, and As is the arc length per angle of the initial
parameterization at ¢. In a sufficiently small range of ¢ around ¢,, the velocity
field can be linearized. Then the parabolic shape is preserved and the dynamics of 1
and k in the Lagrangian frame is determined by the velocity gradient,

L, 1) = L(dg, 1) + (¢ — $l(D)As + 1,(0) k(1A 25)

A Vugy 0,0

= and
a (26)
& =k Vu(ligy, 0,0).
By (2), the curvature of the fold is given by
k(t)x I(t)
(@, 1) = x,(0) | | (27)

‘l(t) + As(p — gbo)xp(())k(t)r

(ko ol - ey 10y?)
=x,(0) (28)

T o+ asto - o 0k)|

Over time, 1(¢) and k(#) cease to be orthogonal and the curvature peak position is
shifted. Minimizing the denominator yields the new peak position

K(t) - 1(1)

‘I’P(t) = ¢y — As|k(t)|zxp(0). (29)
The new peak curvature is therefore given by
- _ kol
K,(£) := x($, (1), 1) = 1,(0). (30)

k()" 10" — &(r) - 1))?
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Since I and k behave like passive vectors, their dynamics can be described by the
deformation tensor

_ X,(L(9,0), )

ij

F,'j(t) (31)

where X(x, t) is the Lagrangian map. The singular value decomposition of F,
F(t) = UOAD VT (@), (32)
defines the orthonormal bases (u (t)) =U; (t) and (v (t)) =V, (t) and the finite-

time Lyapunov exponents p(t) by A; = e “ " where A is dlagonal. Expanding 1(0)
and k(0) in the v;-coordinate system yields

1(0) =X a,(t)vi(t) and

2 bi(t)vi(D). 49

k(0) =

Observing that F(£)I(0) =1(¢) and F(t)k(0) =
tensor to the previous equations, we get

I(H) = Za,(He"P'u,(t) and

k(t), and applying the deformation

34
k() = 2 b(He"Dhuy(t). G
Inserting these expansions into (30) yields
> b2 et 32
k(1) = ( ) y(0). (35)

S bi(ab, — ab)e 7

As long as the infinite-time Lyapunov exponents (the ¢ — co-limits of the FTLEs)
are distinct from each other, we will have e > eP2() 5 /O for large t.
Assuming furthermore that the random coefficients in (35) are non-zero, we can
drop those terms with slower exponential growth:

£20 IAGIK
(a,(Db, () — a, (Db, (1))’ K

While the FTLEs are known to converge slowly, V() and thus a,(t) and b,(f)
converge exponentially fast>®7, We therefore have (cf. ref. 32)

() ¥ s (0)elP 72201 (36)

1 () R Tyl 02000, (37)
for some effective initial peak curvature
i b, (1)1
1m
=00 (a ()b, (1) — a, ()b, (1))

which may differ from the actual initial peak curvature x,(0) depending on the
relative orientation of the initial parabola and the converged basis vectors
lim,_,  v;(®).

Ko =

3 5,0), (38)

Extracting the power law by the method of steepest descent. In order to
extract the asymptotic regime of the integral (14), we substitute the integration

variable
py=-log (g) , (39)
0
which yields
N(log(k,/x5)/p,) <Kp) (B+S(p,))
~— dp,———— log| = | ————|. 40
flx,) / o p( ol 7 (40)

We now explore the regime where log(x,/x,) becomes large. Assuming that the
normalization function N(7) is algebraic, the scaling of the integral with x;, is
dominated by the exponential, and in particular by the part that has the slowest
decay. To first order, we therefore have?!> Chapter 9, Theorem 2.1

~Lex % min| L
flig) ~—e p( log <K0> min Py B+ S(pp))D 1)
« K;l *,
with
a= mln (,8 + S(pp))} (42)

Relating our results to generalized Lyapunov exponents. Let us define a gen-
eralized Lyapunov exponent of curvature peaks by

L(@ = Jim —og(explap, (). 3)

It differs from the usual definition of generalized Lyapunov exponents only by the
fact that we have replaced the standard FTLE by our curvature peak FTLE

pp(t) = p1(t) — 2p5(t). It is related to the Cramér function by a Legendre
transform3?,

Ly = sup [qpp - S(pp)]- (44)

This strongly resembles our steepest-descent formula established in the main text

(cf. (15)),

oc—mm

(ﬁ +s<pp>)} (45)

where, recall, 8 is identified with line growth quantified by the first FTLE (see Fig. 3
and subsequent discussion)

B= llirglg%log{exp(pl(t)t)) (46)

We claim L,(«) = B. If so, then equating (43) evaluated at a with 3 given by (46),

we find

1 1
lim ?log<exp(o¢pp(t)t)> = lim ~log(exp(p, (1)), (47)

which we write in short form as (17).
To verify that L,(a) = 8, we insert « into (44) to find

L,(a) = sup [ocpp — S(pp)} . (48)
Pp

Assuming that S(p,) is differentiable and strictly convex, the supremum in (48)
occurs at a unique value pj. Moreover, somewhat remarkably, we will show that
this value coincides with that at which the minimum of (45) occurs. Once
established, this gives the claimed result upon substitution of & = %(,B + S(py))
into L,(a) = ap; — S(p;)

To see that the extrema in (48) and (45) occur at the same point pp, we note that
under our assumptions (48) is minimized at the p = p for which

=a—S(p". (49)
p=p"

d
= gp [ = S

Uniqueness follows from our assumption that §'(p) is an mvertlble function of p.

On the other hand, the minimum in (45) occurs for p = p satlsfymg
-% [;(/s +50)]
p=p*
= <T* B+SE™)-S$ (P“)) (50)
1

= (a=S(p™)

Where we have inserted the expression for « in terms of the minimizing argument
p given by (45). It is clear from comparlng (49) and (50) that the extrema are
realized at the same value p* = p™ =: py. This concludes the proof.

Fokker-Planck equation of curvature in the Kraichnan model. In the Kraichnan
model, the velocity field u(x, ¢) is Gaussian with correlation tensor

<u,.(x, t)uj(x’, t’)> =8(t— t’)R,-j(x —x), (51)

where R;j(r) denotes the spatial part of the correlation tensor.
Equivalent to (3), the curvature PDF weighted by arc length can be defined by

(1ayLio(x — &(9, 1)

(o)

where we distinguish between the realization x and the sample-space variable .
Angular brackets (-) denote an average along ¢ and over realizations of the
velocity field.
In order to derive the Fokker-Planck equation of curvature, we take the time
derivative of (52), which yields
o, 1oLl

<5(K - k)a,|a¢L|> e
) (53)

(i)
3K<6(x - ;c)|a¢L|a,fc>.

Sl ) = (52)

0, f(x; t) =

1

o)

The averages can be evaluated using the Gaussian integration by parts formula8-60

and the evolution equations?2
0,04L = ((04L) - V)u, (54)
ot=(t-Vu—tt-(t-V)u), (55)
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3= bb- (- V) — i V) +%13(13 G-V, (56)

= k(A (A - Vu—2i- @ V)u) +a-{ V) u (57)
Here, 1, i, and b denote the tangent, normal and binormal vector of the Frenet-
Serret frame, respectively. As shown in Supplementary Note 5, the evolution
equations derive from the definitions of the various quantities combined with the
tracer equation (1). All quantities are evaluated along the same Lagrangian
trajectory.

In order to simplify the resulting expressions, we need to further restrict the
spatial correlation structure of the model. Isotropy and incompressibility determine
the form of the even derivatives of the spatial correlation tensor Ry(r) at 0 (odd
numbers of derivatives vanish) to be®!

*akaIij(O) = Q(46[j8kl - 6ik6jl - 5116jk) (58)

and®?
3,919,,9,R;(0) = P(éa,.jak,amﬂ + 60010, + 68,04, — (all others)), (59)

with Q and P scalar constants that depend on the exact form of Ry(r). The last pair
of brackets contains all 12 other permutations of Kronecker deltas. All terms
arising from the Gaussian integration by parts formula can be evaluated using this
result and the orthonormality of the Frenet-Serret frame. The resulting Fokker-
Planck equation is (20). In Supplementary Note 6, we list results for all terms and
exemplify computing one of them.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability

The simulation results have been generated with our code TurTLE*®, which is available
on https://gitlab.mpcdf.mpg.de/TurTLE/turtle. The loop refinement and post-processing
codes are available from the corresponding author upon reasonable request.

Received: 8 July 2021; Accepted: 15 March 2022;
Published online: 19 April 2022

References

1. Dimotakis, P. E. Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329 (2005).

2. Prants, S, Budyansky, M. & Uleysky, M. Identifying Lagrangian fronts with
favourable fishery conditions. Deep Sea Res. Part I 90, 27 (2014).

3. Haynes, P. H. & McIntyre, M. E. On the evolution of vorticity and potential
vorticity in the presence of diabatic heating and frictional or other forces. J.
Atmos. Sci. 44, 828 (1987).

4. Ohkitani, K. Numerical study of comparison of vorticity and passive vectors in
turbulence and inviscid flows. Phys. Rev. E 65, 046304 (2002).

5. Guala, M, Liithi, B., Liberzon, A., Tsinober, A. & Kinzelbach, W. On the
evolution of material lines and vorticity in homogeneous turbulence. J. Fluid
Mech. 533, 339 (2005).

6. Balkovsky, E., Fouxon, A. & Lebedev, V. Turbulent dynamics of polymer
solutions. Phys. Rev. Lett. 84, 4765 (2000).

7. Liberzon, A., Guala, M., Liithi, B., Kinzelbach, W. & Tsinober, A. Turbulence
in dilute polymer solutions. Phys. Fluids 17, 031707 (2005).

8. Bagheri, F.,, Mitra, D., Perlekar, P. & Brandt, L. Statistics of polymer extensions
in turbulent channel flow. Phys. Rev. E 86, 056314 (2012).

9. Musielak, M. M., Karp-Boss, L., Jumars, P. A. & Fauci, L. J. Nutrient transport
and acquisition by diatom chains in a moving fluid. J. Fluid Mech. 638, 401
(2009).

10. Davidson, P. A. Turbulence in Rotating, Stratified and Electrically Conducting
Fluids https://doi.org/10.1017/CB0O9781139208673 (Cambridge University
Press, Cambridge, 2013).

11. Batchelor, G. K. & Taylor, G. L. The effect of homogeneous turbulence on
material lines and surfaces. Proc. R. Soc. Lond. A 213, 349 (1952).

12. Girimaji, S. S. & Pope, S. B. Material-element deformation in isotropic
turbulence. J. Fluid Mech. 220, 427 (1990).

13. Drummond, I. T. & Miinch, W. Turbulent stretching of line and surface
elements. J. Fluid Mech. 215, 45 (1990).

14. Ishihara, T. & Kaneda, Y. Stretching and distortion of material line elements
in two-dimensional turbulence. J. Phys. Soc. Jpn. 61, 3547 (1992).

15. Tabor, M. & Klapper, L. Stretching and alignment in chaotic and turbulent
flows. Chaos Soliton. Fract. 4, 1031 (1994).

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Villermaux, E. & Gagne, Y. Line dispersion in homogeneous turbulence:
Stretching, fractal dimensions, and micromixing. Phys. Rev. Lett. 73, 252
(1994).

Nicolleau, F. Numerical determination of turbulent fractal dimensions. Phys.
Fluids 8, 2661 (1996).

Iyer, K. P., Schumacher, J., Sreenivasan, K. R. & Yeung, P. K. Fractal iso-level
sets in high-Reynolds-number scalar turbulence. Phys. Rev. Fluids 5, 044501
(2020).

Bir, C. Elementary Differential Geometry https://doi.org/10.1017/
CB09780511844843 (Cambridge University Press, 2010).

Pope, S. B. The evolution of surfaces in turbulence. Int. J. Eng. Sci. 26, 445
(1988).

Pope, S. B, Yeung, P. K. & Girimaji, S. S. The curvature of material surfaces in
isotropic turbulence. Phys. Fluids A 1, 2010 (1989).

Drummond, I. T. & Miinch, W. Distortion of line and surface elements in
model turbulent flows. J. Fluid Mech. 225, 529 (1991).

Girimaji, S. Asymptotic behavior of curvature of surface elements in isotropic
turbulence. Phys. Fluids A 3, 1772 (1991).

Drummond, I. T. Stretching and bending of line elements in random flows. J.
Fluid Mech. 252, 479 (1993).

Liu, M. & Muzzio, F. The curvature of material lines in chaotic cavity flows.
Phys. Fluids 8, 75 (1996).

Hobbs, D. M., Alvarez, M. M. & Muzzio, F. ]. Mixing in globally chaotic flows.
Fractals 5, 395 (1997).

Hobbs, D. M. & Muzzio, F. J. The curvature of material lines in a three-
dimensional chaotic flow. Phys. Fluids 10, 1942 (1998).

Cerbelli, S., Zalc, J. M. & Muzzio, F. J. The evolution of material lines
curvature in deterministic chaotic flows. Chem. Eng. Sci. 55, 363 (2000).
Kivotides, D. Geometry of turbulent tangles of material lines. Phys. Lett. A
318, 574 (2003).

Thiffeault, J.-L. Stretching and curvature of material lines in chaotic flows.
Physica D 198, 169 (2004).

Leonard, A. Curvature and torsion of material lines in chaotic flows. Fluid
Dyn. Res. 36, 261 (2005).

Leonard, A. The universal structure of high-curvature regions of material lines
in chaotic flows. J. Fluid Mech. 622, 167 (2009).

Thiffeault J.-L., Gouillart, E. & Finn, M. D. The size of ghost rods, in Analysis
and Control of Mixing with an Application to Micro and Macro Flow Processes,
edited by Cortelezzi, L. and Mezi¢, L. pp. 339-350. https://doi.org/10.1007/
978-3-211-99346-0_10 (Springer Vienna, Vienna, 2009).

Ma, T. & Bollt, E. M. Differential geometry perspective of shape coherence and
curvature evolution by finite-time nonhyperbolic splitting. SIAM J. Appl. Dyn.
Syst. 13, 1106 (2014).

Braun, W., De Lillo, F. & Eckhardt, B. Geometry of particle paths in turbulent
flows. J. Turbul. 7, N62 (2006).

Xu, H., Ouellette, N. T. & Bodenschatz, E. Curvature of Lagrangian trajectories
in turbulence. Phys. Rev. Lett. 98, 050201 (2007).

Scagliarini, A. Geometric properties of particle trajectories in turbulent flows.
J. Turbul. 12, N25 (2011).

Bec, J., Biferale, L., Boffetta, G., Cencini, M., Musacchio, S. & Toschi, F.
Lyapunov exponents of heavy particles in turbulence. Phys. Fluids 18, 091702
(2006).

Johnson, P. L. & Meneveau, C. Large-deviation joint statistics of the finite-
time Lyapunov spectrum in isotropic turbulence. Phys. Fluids 27, 085110
(2015).

Balkovsky, E. & Fouxon, A. Universal long-time properties of Lagrangian
statistics in the Batchelor regime and their application to the passive scalar
problem. Phys. Rev. E 60, 4164 (1999).

Olver, F. W. J. Asymptotics and Special Functions https://doi.org/10.1201/
9781439864548 (A K Peters, 1997).

Kraichnan, R. H. Small-scale structure of a scalar field convected by
turbulence. Phys. Fluids 11, 945 (1968).

Schekochihin, A., Cowley, S., Maron, J. & Malyshkin, L. Structure of small-
scale magnetic fields in the kinematic dynamo theory. Phys. Rev. E 65, 016305
(2001).

Cardy, J., Falkovich, G. & Gawedzki, K., Non-Equilibrium Statistical
Mechanics and Turbulence, edited by Nazarenko, S. and Zaboronski, O. V.,
London Mathematical Society Lecture Note Series https://doi.org/10.1017/
CB09780511812149 (Cambridge University Press, 2008).

Childress, S. & Gilbert, A. D. Stretch, Twist, Fold: The Fast Dynamo, Vol. 37
(Springer Science & Business Media, 1995).

Ott, E. Chaotic flows and kinematic magnetic dynamos: a tutorial review.
Phys. Plasmas 5, 1636 (1998).

Boozer, A. H. Magnetic helicity and dynamos. Phys. Fluids B: Plasma Phys. 5,
2271 (1993).

Lalescu, C. C., Bramas, B., Rampp, M. & Wilczek, M. An efficient particle
tracking algorithm for large-scale parallel pseudo-spectral simulations of
turbulence (2021), https://arxiv.org/abs/2107.01104 [physics.flu-dyn].

| (2022)13:2088 | https://doi.org/10.1038/s41467-022-29422-1 | www.nature.com/naturecommunications 9


https://gitlab.mpcdf.mpg.de/TurTLE/turtle
https://doi.org/10.1017/CBO9781139208673
https://doi.org/10.1017/CBO9780511844843
https://doi.org/10.1017/CBO9780511844843
https://doi.org/10.1007/978-3-211-99346-0_10
https://doi.org/10.1007/978-3-211-99346-0_10
https://doi.org/10.1201/9781439864548
https://doi.org/10.1201/9781439864548
https://doi.org/10.1017/CBO9780511812149
https://doi.org/10.1017/CBO9780511812149
https://arxiv.org/abs/2107.01104
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

49. Hou, T. Y. & Li, R. Computing nearly singular solutions using pseudo-spectral
methods. J. Comput. Phys. 226, 379 (2007).

50. Kida, S. & Goto, S. Line statistics: Stretching rate of passive lines in turbulence.
Phys. Fluids 14, 352 (2002).

51. Goto, S. & Kida, S. Reynolds-number dependence of line and surface
stretching in turbulence: folding effects. J. Fluid Mech. 586, 59 (2007).

52. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing
in Python. Nat. Methods 17, 261 (2020).

53. Lalescu, C. C,, Teaca, B. & Carati, D. Implementation of high order spline
interpolations for tracking test particles in discretized fields. J. Comput. Phys.
229, 5862 (2010).

54. Eyink, G. L. Turbulent cascade of circulations. C. R. Phys. 7, 449 (2006).

55. Pikovsky, A. and Politi, A. Lyapunov Exponents: A Tool to Explore Complex
Dynamics https://doi.org/10.1017/CB0O9781139343473 (Cambridge University
Press, 2016).

56. Thiffeault, J.-L. Derivatives and constraints in chaotic flows: asymptotic
behaviour and a numerical method. Physica D 172, 139 (2002).

57. Goldhirsch, I, Sulem, P.-L. & Orszag, S. A. Stability and Lyapunov stability of
dynamical systems: a differential approach and a numerical method. Physica
D 27, 311 (1987).

58. Furutsu, K. On the Statistical Theory of Electromagnetic Waves in a
Fluctuating Medium (II), NBS Monograph No. 79 (U.S. Natl. Inst. Stand.,
1964).

59. Donsker, M. D. On function space integrals. Matematika 11, 128 (1967).

60. Novikov, E. A. Functionals and the random-force method in turbulence
theory. Sov. J. Exp. Theor. Phys. 20, 1290 (1965).

61. Pumir, A. Structure of the velocity gradient tensor in turbulent shear flows.
Phys. Rev. Fluids 2, 074602 (2017).

62. Kearsley, E. A. & Fong, J. T. Linearly independent sets of isotropic Cartesian
tensors of ranks up to eight. J. Res. Natl. Inst. Stand. Technol. 79B, 49 (1975).

63. Blender Online Community. Blender—a 3D Modelling and Rendering
Package, Stichting Blender Foundation, Amsterdam. Retrieved from http://
www.blender.org.

Acknowledgements

We would like to acknowledge interesting and useful discussions with Maurizio Carbone.
We thank Itzhak Fouxon, Perry Johnson, and Jean-Luc Thiffeault for comments on the
manuscript. We thank Bérenger Bramas for his implementation of the particle tracking
framework used in our simulations. Computational resources from the Max Planck
Computing and Data Facility and support by the Max Planck Society are gratefully
acknowledged. The authors gratefully acknowledge the Gauss Centre for Super-
computing e.V. (www.gauss-centre.eu) for funding this project by providing computing
time on the GCS Supercomputer SuperMUC-NG at Leibniz Supercomputing Centre
(www.lrz.de). T.D. was partially supported by NSF grant DMS-2106233 and the Charles

Simonyi Endowment at the Institute for Advanced Study. 3D visualizations have been
created with Blender®3.

Author contributions

LB., T.D., and M.W. designed the study. L.B. carried out the numerical simulations and
analysis. C.L. helped with code development. All authors analyzed the data and wrote the
manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/541467-022-29422-1.

Correspondence and requests for materials should be addressed to Michael Wilczek.

Peer review information Nature Communications thanks Moritz Linkmann, and the
other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
BY

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

10 | (2022)13:2088 | https://doi.org/10.1038/s41467-022-29422-1 | www.nature.com/naturecommunications


https://doi.org/10.1017/CBO9781139343473
http://www.blender.org
http://www.blender.org
http://www.gauss-centre.eu
http://www.lrz.de
https://doi.org/10.1038/s41467-022-29422-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	The statistical geometry of material loops in turbulence
	Results
	Ensemble of material folds
	Statistical evolution of curvature peaks
	Amplification of folds by turbulent stretching
	Connecting the power-law exponent to fluid stretching
	Exact results in the Kraichnan model

	Discussion
	Methods
	Navier-Stokes simulations for loop tracking
	Computation of finite-time Lyapunov exponents and the Cramér function
	Peak curvature dynamics of a parabola
	Extracting the power law by the method of steepest descent
	Relating our results to generalized Lyapunov exponents
	Fokker-Planck equation of curvature in the Kraichnan model

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




