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Abstract
Sustainable intensification of agricultural lands might reconcile the conservation of tropical forest with food production, 
but in-depth assessments considering uncertainty and extreme values are missing. Uncertainty prohibits mapping prob-
abilities to potential future states or ranking these states in terms of their likelihood. This in turn hampers the assessment of 
possible decision outcomes. Here, we use simulations to investigate how uncertainty may influence the social acceptability 
of alternative land-use strategies to halt tropical deforestation (including sustainable intensification), based on indicators 
representing farmer satisfaction. The results show how extreme values (worst values) for indicators of farmer satisfaction 
may undermine the adoption of sustainable intensification. We demonstrate that a pure forest conservation strategy leads 
to lower food production, but outperforms a sustainable intensification strategy that maintains food security. Pure forest 
conservation performed better, i.e., could secure higher farmer satisfaction, than sustainable intensification across a range of 
indicator groups. This suggests strong barriers to achieving sustainable intensification. Using agricultural subsidies breaks 
the dominance of pure forest conservation by enhancing the economic returns of sustainable intensification. We discuss the 
importance of access to labor and farmers’ preferences for the use of already cleared lands, which achieved the worst values 
under sustainable intensification and conclude that any assessment of land-use strategies requires careful consideration of 
uncertainty and extreme values.

Keywords Land allocation · Tropical deforestation · Agricultural intensification · Farmer preferences · Off-farm income · 
Multiple objective robust optimization

Introduction

Agriculture represents an unrivalled threat to the natural 
environment, putting ever-increasing pressure on planetary 
boundaries (Gerten et al. 2020), with tropical deforestation 
being among the most prominent negative consequences of 
agricultural activities (Erb et al. 2016). Sustainable inten-
sification could reconcile tropical forest conservation with 
agricultural production (Beltran-Peña et al. 2020; Brandt 
et al. 2018; Godfray and Garnett 2014). While sustainable 

intensification is not restricted to any single agricultural 
system (Pretty and Bharucha 2014), a standard definition 
is to increase agricultural yields and associated economic 
returns per unit of cleared land and time, without harm-
ing the underlying natural resources or integrity of other 
ecosystems (Cassman and Grassini 2020). By 2018, only 
around 9% of the world’s agricultural lands had undergone 
sustainable intensification (Pretty et al. 2018). Deforesta-
tion remains a major problem, particularly in the tropics 
(Seymour and Harris 2019; Silva Junior et al. 2021), with 
dramatic consequences for global biodiversity (Gomes et al. 
2019). Zero deforestation is thus an undisputed objective in 
recent studies and global policies (Erb et al. 2016; Gomes 
et al. 2019). To support approaching the path toward zero 
deforestation, we demonstrate the importance of accounting 
for uncertainty when assessing land-use strategies. We ana-
lyze alternative land-use trajectories in the Andes of Ecuador 
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to achieve food security by increasing future pasture yields 
per unit of already cleared land, as an example for sustain-
able intensification (Pretty and Bharucha 2014).

Uncertainty implies that we lack important information 
(Lindley 2006), which will only become known in the future, 
meaning that we face multiple futures when making deci-
sions today. Lacking information may include not knowing 
the future preferences of key stakeholders or decision-mak-
ers (Knoke et al. 2016) and how plurality of perceptions will 
influence what is desirable and what not (Pereira et al. 2020). 
In addition, when dealing with long-term decisions, we are 
often neither able to associate any specific probability to 
possible states of nature, nor to prioritize these future states 
in terms or their importance or likelihood. Uncertainty is 
often discussed in association with Knight (1921), who was 
the first to clearly distinguish risk and uncertainty in an eco-
nomic context. The concept of risk considers random vari-
ables with known probability distributions to describe states 
of nature and associated decision outcomes, while “Knight-
ian uncertainty” implies that information about probability 
distributions is unavailable (Bewley 2002). Examples of 
economic studies on the theory of “Knightian uncertainty” 
include Bewley (2002) as well as Baumgärtner and Engler 
(2018). Bewley (2002) showed that aversion to uncertainty 
exists, because people prefer situations of risk with known 
probabilities over situations of uncertainty, with vague or 
missing information about probabilities. Baumgärtner and 
Engler (2018) developed a new axiomatic foundation to 
quantify and model such uncertainty aversion.

Uncertainty forms a common decision environment for 
climate change related (Lawrence et al. 2020) or forestry 
problems (Radke et al. 2020), but is so far often unad-
dressed in the assessment of land-use strategies. The concept 
of uncertainty is strongly associated with extreme values 
(minima or maxima) and extreme value theory (Embrechts 
et al. 1999). For example, the construction of dams and 
dykes to protect citizens against flooding requires consid-
eration of maximum values of sea levels and not statistical 
average values (Cirillo and Taleb 2020). Similarly, a small-
holder farmer cannot use average expected economic returns 
for decision making, as smallholder farms lack resources 
to compensate for potentially much poorer than expected 
economic outcomes. For these farms, extreme values rep-
resented by worst cases are relevant for decision making. 
Reliable assessments of sustainable intensification must 
account for such worst-case values for multiple indicators 
of farmer satisfaction, such as economic performance for 
various time preference levels, labor demand or farmers’ 
perceptions of specific land-use/land-cover (LULC) types. 
To integrate uncertainty of each indicator into decision-
making a large range of possible futures must be considered 
(Lempert et al. 2003), without relying on any stochastic 
information, such as probabilities, weightings or priorities 

(Lawrence et al. 2020). Approaches to integrate uncertainty 
into decision-making include information-gap decision the-
ory (Ben-Haim 2006; Hayes et al. 2013) and robust optimi-
zation (Ben-Tal and Nemirovski 2000), but the influence of 
uncertainty on the acceptability of sustainable intensification 
for farmers has yet not been investigated. To help fill this gap 
we develop a novel approach to assess land-use strategies 
against uncertainty.

For our analysis, we devise possible land-use trajectories 
to achieve sustainable intensification. The implicit aim of 
these land-use trajectories is to increase productivity of agri-
cultural land to reduce the need for agricultural expansion 
and hence spare land for nature (Latawiec et al. 2014; Phalan 
et al. 2011). However, agricultural intensification in itself is 
unlikely to reduce or halt deforestation. In contrast, due to 
rebound effects it may even accelerate deforestation (Ceddia 
et al. 2013; García et al. 2020; Phelps et al. 2013). Innovative 
concepts are thus needed to combine preservation of tropical 
forest with agricultural intensification. A higher independ-
ence of farmers from agricultural income is an essential 
precondition to reduce or halt deforestation. For example, 
alternative revenue sources such as off-farm income would 
directly reduce the need for income from deforestation-based 
agriculture (Shively and Pagiola 2004; Araujo et al. 2019). 
In addition, labor reallocated to obtain off-farm income lim-
its the ability of farmers to pursue deforestation activities 
(Vasco et al. 2020).

Another alternative to support greater financial inde-
pendence of farmers from deforestation-related agriculture 
is conservation payments, which are financial payments to 
land owners conditional on the preservation of natural for-
est (Benítez et al. 2006). Unlike typical off-farm income, 
such as wages from work outside the farm (Ojeda Luna et al. 
2020), conservation payments are directly targeted towards 
forest conservation. Experimental evidence on the effective-
ness of conservation payments in reducing deforestation is 
encouraging (Andersson et al. 2018; Jayachandran et al. 
2017). However, assessing the level of payment needed 
to halt deforestation is complex. Existing approaches tend 
to simplify the assessment, for example by treating tropi-
cal forest and agricultural land uses as mutually exclusive 
alternatives (Fisher et al. 2011; Warren-Thomas et al. 2018). 
The immediate and complete clearing of all forests owned 
by tropical farmers, however, is rarely a realistic scenario 
(Ruslandi et al. 2011). Instead, farmers are likely to convert 
tropical forest to agricultural land more gradually. This type 
of behavior may be better captured by portfolio approaches, 
which consider multiple land-use alternatives simultane-
ously to account for typical land-use diversification patterns 
of smallholder farmers (Ochoa et al. 2019). Portfolio-the-
oretic approaches to land-use problems would suggest the 
optimal allocation of land shares to LULC types to achieve 
a given objective (Macmillan 1992).
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To help address the above described research challenges 
our study provides a new method to assess sustainable 
intensification, including alternative optimized land-use 
trajectories controlled by indicators representing farmers’ 
satisfaction, the indicators’ uncertainty, off-farm income, 
conservation payments and agricultural subsidies. We then 
present a method to investigate the influence of the uncer-
tainty of decision outcomes on the assessment of indica-
tors of farmer satisfaction from alternative optimized land-
use trajectories. The aim of the new method is to elicit the 
acceptability of sustainable intensification for tropical farm-
ers faced with uncertainty.

Material and methods

Concept of land allocation under uncertainty

With our concept, we assume that tropical farmers face a 
range of plausible futures when making decisions, but that 
they cannot associate a probability to such futures and the 
resulting decision outcomes. We thus include an uncertainty 
of level 3 in our assessments, given a frequently used classi-
fication system. Walker et al. (2010) have defined four levels 
of uncertainty for all situations between determinism and 
complete ignorance (Fig. 1) and termed level 3 and level 
4 as “deep uncertainty”. In contrast, more recent publica-
tions consider level 4 (with unknown futures, outcomes and 
rules to assess outcomes) as the only level representing deep 
uncertainty (van Dorsser et al. 2020). Instead of distinguish-
ing risk from uncertainty, Walker’s framework considers a 
progressive transition of the level of uncertainty, where the 
classical concept of risk represents one of those levels.

We consider smallholder farmers as decision-makers 
who are averse to uncertainty (Cerroni 2020). This means 
that farmers would prefer landscape compositions associ-
ated with less uncertain outcomes over those associated 
with more uncertain outcomes. Consequently, farmers will 
organize their land-use activities so that they obtain a high 
worst-case land-use performance. To achieve this, they 
strive to minimize the largest difference between what they 
most desire and what is possible to achieve across multiple 
futures. This largest difference quantifies the magnitude of 
the uncertainty of decision consequences that a farmer is 
confronted with in our concept. In their decisions on land 
management farmers would allocate land to LULC types to 
reduce such uncertainty of decision outcomes, for example 
by land-use diversification, which is typical for farmers (Di 
Falco and Perrings 2005; Ochoa et al. 2019). Decision out-
comes depend on the landscape composition and result from 
the corresponding contributions of various LULC types to 
indicators of farmers’ satisfaction (see Table 1 for the indi-
cators used). To incorporate uncertainty in our analyses we 
always consider an optimistic and a pessimistic possible 
future contribution (measured by input indicator levels) of 
each LULC type, without being able to decide which of both 
levels is more likely. Various combinations between opti-
mistic and pessimistic indicators are possible among our 
LULC types forming the possible futures that farmers are 
confronted with, which means that our assessment builds on 
many sets of input information levels, which however do not 
possess any probability. With our concept we abandon any 
probabilistic consideration or treatment of input or output 
information.

In light of the mentioned understanding of level 3 uncer-
tainty, our analytical concept consists of an assessment from 

Fig. 1  Levels of uncertainty. The matrix shows the different levels of uncertainty between determinism and complete ignorance. Adopted from 
Walker et al. (2010) with slight alterations
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the perspective of farmers, building on three forest conserva-
tion strategies for which farmers obtain forest conservation 
payments (Fig. 2): one strategy with only conservation pay-
ments (pure forest conservation) and two strategies fostering 
adoption of sustainable intensification to conserve natural 
forest but also maintain food security (with and without 
agricultural subsidies). For all conservation strategies, we 
assume that farmers have access to off-farm income. We 
obtain the trajectories (i.e., the change in land-use patterns 
over time) as an important input for our assessment when 
following each forest conservation strategy using a dynamic 
land allocation model (Knoke et al. 2020b), which is based 
on mathematical programming (Berger 2001; Schreinemach-
ers and Berger 2006). This allocation model accounts for 
multiple socioeconomic indicators, their uncertainty, off-
farm income, conservation payments and agricultural 
subsidies.

The land allocation model combines compromise pro-
gramming and robust optimization to simulate target land-
scape compositions pursued by farmers over one generation. 
Compromise programming uses reference points (Estrella 
et al. 2014) to minimize trade-offs across multiple objec-
tives. A reference point represents a most desirable outcome 
level, which cannot be achieved for all objectives simulta-
neously so that the distance between actually obtained out-
comes and the reference points forms an objective to be min-
imized. Robust optimization guarantees minimum outcome 
levels across variable input information contained in uncer-
tainty sets (Ben-Tal and Nemirovski 2000). Considering one 
generation as a planning horizon appeared intuitive to us, 
as smallholder farms often build on the principle of transfer 
of ownership to the next generation (van Vliet et al. 2015). 
Adelaja et al. (2011), for instance, used a planning horizon 
of 30 years for a young farmer. In addition, plausible land-
use trajectories achieved when using a planning horizon of 

30 years support our assumption (such trajectories being 
described in “Results”).

Input information comprises modeled and measured data 
quantifying the performance of various LULC types against 
multiple decision criteria (which we refer to as indicators 
of farmers’ satisfaction) that previous studies have shown 
to be relevant for land-use decisions. Indicators include net 
present value (NPV) and labor demand (with both crite-
ria associated with either a high or low level of off-farm 
income), payback periods, and the land-use preferences of 
local farmers (Table 1; Table S1). We model pasture-based 
land-use systems in tropical mountain rainforest areas, using 
the example of the Ecuadorian Andes. The LULC types 
include the highly biodiverse natural system (tropical moun-
tain rainforest), the replacement systems (existing and newly 
established low-input pasture), and rehabilitation options for 
abandoned lands (two types of afforestation and recultivation 
toward intense pasture management). As a high-input land 
use, intensive pasture management facilitates the simulation 
of intensified agricultural land use.

The model accounts for uncertainty of input information 
in two main ways. First, it incorporates multiple indicators 
without any weightings (to represent uncertainty associated 
with the future preferences of farmers). Second, the model 
integrates discrete scenarios that capture potential fluc-
tuations in performance of each LULC type against each 
indicator. These scenarios are generated in the absence of 
any probability information. A robust optimization account-
ing for all scenarios drives the simulated allocation of land 
shares to LULC types. The aim is to minimize the maximum 
distance between the most desirable and actually achieved 
indicator levels over all scenarios. The model assumes that 
farmers show satisficing behavior, i.e., will be content with 
less than the maximum expected outcome, if a moderate 
outcome is guaranteed across all (including worst) scenarios 

Fig. 2  Schematic overview of 
study framework. The upper 
part (yellow background) 
outlines the specific study aims, 
methods and analyzed results, 
while the lower part (blue back-
ground) summarizes the model 
components. LULC means land 
use/land cover
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(Hey et al. 2017). The resulting compromise land allocation 
has been described as the nearest possible approach to a so 
called Rawlsian perfectly equilibrated solution (Uhde et al. 
2017; Tamiz et al. 1998).

The model’s output is the future landscape composition 
(percentage of area covered by each LULC type) simulated 
for multiple periods based on 5-year (period length based 
on Simmonds et al. 2013) time steps, from which we can 
calculate annual deforestation rates (annual change in the 
area covered by natural forest divided by its initial share in 
the study area). The adopted model is dynamic and accounts 
for the influence of changes in the landscape context (i.e., the 
initial composition of the forested landscape). The approach 
uses a recursive process by reapplying the same optimiza-
tion algorithm (described below) updated with the land-
scape composition simulated in the previous 5-year period 
to obtain an adapted long-term target of the landscape com-
position for the next 5-year period.

Input data, study region and land‑use strategies

The sustainable intensification land-use strategies expand 
the share of high-input pasture on already converted land 
to ensure the same level of food production that would have 
otherwise been achieved through deforestation-based land 
management (Figure S1). Expansion of high-input pasture 
is either enforced by appropriate constraints in the model 
to simulate a command-based (using laws and regulations) 
strategy (called “command-based sustainable intensifi-
cation”) or incentivized by agricultural subsidies (called 
“subsidized sustainable intensification”). The alternative 
trajectory (called “pure forest conservation”) assumes off-
farm income and conservation payments to stop deforesta-
tion, but tolerates any associated losses in food production. 
For all trajectories we derived and assessed target landscape 
compositions optimized with the land allocation frame-
work described in Fig. 2 and under “Devising land-use 
trajectories”.

Input data used to analyze the pure forest conservation 
and sustainable intensification strategies are representa-
tive of a region covering 62,500 ha in the Andes of Ecua-
dor (Curatola Fernández et al. 2015). Knoke et al. (2014) 
described and documented the modeling of the socioeco-
nomic indicators used to simulate farmer decision-making 
for this region. Table 1 shows how we combined the pre-
viously described indicators with indicators related to off-
farm income. We obtained input information for our land 
allocation model from field experiments, newly developed 
plot-level models, extensive household surveys, remote sens-
ing data on historical land use (Knoke et al. 2014, 2016, 
2020b) and existing literature on off-farm income (Ojeda 
Luna et al. 2020).

The land-use preferences of the local people regarding 
the best use of cleared land form part of the criteria used 
to evaluate the acceptability of the alternative land-use 
trajectories (see Table 1, Figure S2 and Supplementary 
Table 1). Such land-use preferences may capture more 
intrinsic or cultural values that are important for farmers’ 
decision-making (but difficult to measure with other socio-
economic indicators derived from a cost–benefit analysis) 
(Plieninger and Huntsinger 2018). These preferences and 
values will therefore determine local people’s perception 
and acceptance of such novel LULC types (Pohle et al. 
2010).

To measure the food production associated with our land-
use trajectories, we analyzed the dietary energy (from meat 
and milk) provided by the simulated land-use compositions 
(see Supplementary Information for details) (Figure S1). We 
took the baseline level of food production from the deforest-
ation-based scenario (in which farmers do not receive any 
conservation payments nor have access to off-farm income). 
We then computed the additional area of high-input pasture 
needed to reach the same level of food production under 
the sustainable intensification strategies as provided by the 
deforestation scenario. On this basis, we compared the per-
formance of sustainable intensification (with and without 
subsidies) to enhance food production with the performance 
of the pure forest conservation strategy.

Simulation of uncertainty

We considered Yiu as an uncertain decision outcome, 
showing the contribution to farmer satisfaction indicators 
i achieved by a given landscape composition � for a dis-
crete uncertainty scenario u . Such landscape composition 
� consists of the land shares allocated to the seven LULC 
types; � =

{
aaband;aalnus;apinus;ainten;apastu;adefor ;afores

}
.

Included LULC types are abandoned lands, Alnus and 
Pinus plantations, intense and low-input pastures, and new 
deforestation areas and natural forests. The level of Yiu 
depends on the contributions of the single LULC types yliu 
under a given uncertainty scenario and on the area share 
al allocated to the LULC types l.

Each uncertainty scenario u considers a different set of 
input coefficients yliu , representing one plausible future. 
By defining the most desirable indicator levels as reference 
points for each uncertainty scenario, we then computed the 
relative distance Diu between the most desirable indicator 
level Y∗

iu
 (i.e., the reference point) and the actually achieved 

level Yiu.

(1)Yiu =
∑

l

al ⋅ yliu with
∑

l

al = 1 al ≥ 0
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As a min–max normalized distance, Diu characterizes the 
relative underachievement level across all possible futures u. 
These relative distances facilitate computing which achieve-
ments are feasible under a given individual uncertainty sce-
nario. Based on Diu we then derived a performance index Piu 
for a given landscape composition � .

To obtain an assessment under uncertainty, our simula-
tion experiments used long-term landscape compositions � 
for various land-use trajectories, optimized with the land 
allocation framework described in Fig. 1 (see Table S2 for 
compositions obtained). Concerning such landscape compo-
sitions � , we assume the following preference relationship:

where P is the guaranteed performance level for given land-
scape compositions and sets of uncertainty scenarios across 
all indicators. We assume that farmers prefer land-use com-
positions that guarantee higher performance under uncertain 
future conditions.

The assessed landscape compositions stem from optimi-
zations with our land allocation model for our three land-use 
trajectories described later. Their assessment under uncer-
tainty reveals the full range of resulting landscape indica-
tor outcomes and thus provides detailed information on the 
performance and acceptability of the trajectories analyzed.

To simulate the mentioned discrete uncertainty sce-
narios, we combined optimistic and pessimistic input 
indicator levels among the seven LULC types, leading 
to a set of  27 = 128 scenarios for each of the 12 indica-
tors shown in Table 1. Optimistic and pessimistic indica-
tor levels form intervals accounting for three times the 
standard error of the relevant indicator (Table S1). Using 
three times the standard error to construct such intervals 
represents an assumption for the possible range of worst 
cases, but not a prediction. This assumption is informed 
by model calibration experiments, which found that using 
a multiple of three times the standard error to obtain worst 
cases allowed for simulating land-use scenarios that best 
fit the observed historical land-use trajectory (Knoke et al. 
2020b), see Fig. 5b for an example. Empirically, the stand-
ard errors stem from measuring, sampling or model pre-
diction errors, heterogeneity of sites, unanticipated future 
environmental changes, unpredictable market develop-
ment and damages by calamities, such as fire (Knoke et al. 

(2)Diu =

||
|
Y∗
iu
− Yiu

||
|

max
{
yliu

}
− min

{
yliu

} ⋅ 100

(3)Piu = 100 − Diu

(4)𝜔1 ≽ 𝜔2 if f P1 ≥ P2,

(5)P = min
{
Piu

}
,

2016). The obtained 1,536 future scenarios (12 indica-
tors × 128 uncertainty scenarios) possess no probability, as 
the uncertainty scenarios cover any possible combination 
between optimistic and pessimistic levels among all LULC 
types, even those being most unlikely (e.g., all indicators 
either with optimistic or with pessimistic levels). Given 
our construction of the uncertainty scenarios, any Piu will 
be equal to or larger than P , independent of the indicator 
or uncertainty scenario considered. This holds for all indi-
cator levels included by the intervals formed by optimistic 
and pessimistic indicator levels.

We finally consider P (5) as a preference function of 
decision-makers being averse to uncertainty. The use of 
the before defined intervals implies that the worst indicator 
level among all Piu is the minimum (guaranteed) landscape 
contribution to farmers’ satisfaction for all input indicator 
levels included in the intervals used.

Devising land‑use trajectories

The three considered land-use trajectories (pure forest 
conservation, command-based sustainable intensifica-
tion and subsidized sustainable intensification) evolve 
from a simulation of land allocation processes depending 
on farmers’ preferences. The land-use trajectories were 
developed prior to the assessment of the full range of their 
uncertain outcomes. Without considering any conserva-
tion payments or agricultural subsidies our land alloca-
tion approach describes the recent deforestation trajectory 
in the study region appropriately, pursuing the historical 
trend in a plausible way (see Fig. 5b in “Reducing farmers’ 
dependency on agricultural income”).

We use our land allocation model to derive long-term 
target landscape compositions which minimize the maxi-
mum distance β between the reference points and the 
actually achieved indicator levels. The reference points 
are the most desirable indicator levels in each uncertainty 
scenario.

where � depends on

� describes the simulated land allocation to the specific 
LULC types l in percent for the desirable long-term land-
scape composition, which minimizes � across all indicators 
and uncertainty scenarios.

The value of indicator i under uncertainty scenario u at 
the landscape level depends on the allocation of land propor-
tions al to each LULC type l, see (1):

(6)min
�

�,

(7)� =
{
aaband; aalnus; apinus; ainten; apastu; adefor ; afores

}
,
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To consider all indicators and uncertainty scenarios, we 
require numerous constraints of the type:

� Maximum relative distance 
between the best possible and 
the achieved contributions to 
all indicators, associated with 
the optimal allocation of area 
proportions to the LULC types 
across all uncertainty scenarios

� Set of allocated area proportions 
to seven land-use/land-cover 
(LULC) types l = abandoned, 
Alnus plantations, Pinus planta-
tions, recultivation to intense 
pasture, low-input pasture, defor-
estation, or natural forest 

Yiu Landscape level indicator value 
(i.e., contribution of a specific 
landscape composition to a 
specific indicator) for indicator i 
under uncertainty scenario u

al Area proportion of a landscape 
allocated to a specific land-use/
land-cover (LULC) type l

yliu Contribution of LULC type l to 
an indicator i under uncertainty 
scenario u

max
{
yliu

}
Maximum land use-related level 

of indicator i among all LULC 
types in a given uncertainty 
scenario u

min
{
yliu

}
Minimum land use-related level 

of indicator i among all LULC 
types in a given uncertainty 
scenario u

Consistent with our preference function (5), the objec-
tive is to improve the guaranteed performance across all 
indicators. In this way, the optimization algorithm seeks to 
maximize the minimum performance level achieved by all 
indicators, even in worst-case scenarios for each of the dif-
ferent land-use strategies. The optimization algorithm thus 
minimizes directly over � (Knoke et al. 2020b), which cor-
responds to maximizing the guaranteed performance P . For 
more details see Methods S1. The described optimization 
model provides solutions that are robust against uncertainty 
by securing the feasibility of our constraints (8) across all 
indicators i and uncertainty scenarios u . Our optimization 
assumes that farmers would allocate land to certain LULC 
types with the aim to either maximize (net present values, 
and land-use preferences of two local groups of farmers) 

(8)

� ≥
|
||
Y∗
iu
− Y

iu

|||
⋅

100

max
{
yliu

}
− min

{
yliu

} ∀i ∀u, 0 ≤ � ≤ 100.

or minimize (labor demand and payback periods) several 
indicators simultaneously (Table 1 and Table S1).

For our optimization, the same uncertainty scenarios as 
described under “Simulating uncertainty” form uncertainty 
spaces for each indicator, ensuring a land allocation with 
acceptable performance for all input information included in 
these uncertainty spaces (i.e., all input values falling within 
the intervals formed by the optimistic and pessimistic esti-
mates). Multiple constraints rather than one objective func-
tion encapsulate our indicators and uncertainty scenarios. 
Such a constraint-wise representation of uncertainty is a 
convenient and reliable assumption in robust optimization 
methods (Gorissen et al. 2015). Given all indicators under 
multiple possible futures, it is clear that a single LULC type 
cannot achieve the most desired outcomes for all uncertainty 
scenarios included. Consequently, the optimization algo-
rithm seeks an acceptable compromise land-use allocation 
by selecting an appropriate mix of LULC types to maximize 
the guaranteed performance across all indicators and uncer-
tainty scenarios.

Off‑farm income, conservation payments 
and agricultural subsidies

To account for the influence of off-farm income on farmers’ 
land-use decisions, we implemented two effects (Methods 
S2). First, off-farm income decreases the economic depend-
ency of farmers on land use-related income (concerning the 
net present value, NPV). Second, off-farm income limits the 
opportunity to carry out agricultural activities and hence 
generate land use-related income (concerning labor avail-
ability). As a result, off-farm income guarantees certain per-
formance levels independent of the allocation of land. For 
example, such income secures elevated farm income, exceed-
ing the land use-related minimum. However, the simulated 
off-farm income requires additional labor, always exceeding 
the minimum required labor for land-use activities.

We represented off-farm income by the NPV of income 
streams earned off the farm for various uncertainty scenar-
ios. We used a common proportion of the off-farm income 
of 30% (Ojeda Luna et al. 2020), depending (in our model) 
on the land use-related income achieved at a given time. 
In Ojeda Luna et al. (2020), a representative study for our 
model case, off-farm income included wages from perma-
nent or seasonal work outside the farm, income from farmer-
owned businesses, and also remittances and pensions. In 
addition to the off-farm income itself, we considered the 
labor in days necessary to obtain the off-farm income. In 
our simulations, we assume that farmers reallocate labor pre-
viously used for on-farm agricultural activities to off-farm 
activities. We consider the impact of uncertainty concerning 
the labor required for off-farm income using an average and 
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a worst-case scenario, based on the average and worst-case 
scenarios for on-farm income.

To account for off-farm income we modified the con-
straints used in the existing land allocation model for the 
indicators NPV (n) and labor demand (w) as follows:

Y∗o
nu

Y∗o
nu

= Y∗

nu
+ Ontu , is the maximum 

(most desirable) net present 
value (NPV, sum of discounted 
future cash flows) including off-
farm income.

Ontu  is the NPV of off-farm income (n 
for NPV), changing over time t, 
for uncertainty scenario u

Yo
nu

Achieved NPV including off-farm 
income for a given land alloca-
tion, Yo

nu
=
∑

l al ⋅
�
Ontu + ylnu

�
 . 

Ontu is the NPV of off-farm 
income (n for NPV), chang-
ing over time t, for uncertainty 
scenario u

Δo
nu

Difference between most desir-
able NPV including off-farm 
income and least desirable NPV 
excluding off-farm income, 
Δo

nu
= Y∗O

ntu
− Ynu∗

Yo
wu

Required labor for on- 
and off-farm activities, 
Yo
wu

=
∑

l al ⋅
�
Owtu + ylwu

�

Owtu Off-farm labor (w for work) 
required to obtain the off-farm 
income, changing over time t, 
for uncertainty scenarios u

Y∗
wu

Lowest (most desirable) land 
use-related labor demand among 
all LULC types in a given uncer-
tainty scenario u

Δo
wu

Difference between least desired 
(maximum) land use-related 
labor demand plus labor to 
obtain off-farm income and 
lowest (most desired) land use-
related labor,

                                 .
YO
wtu∗

= Y
wu∗

+ Owtu
 Is the maximum (least desirable) 

land use-related labor demand 
plus labor to obtain off-farm 
income, changing over time t 
with changing Owtu , for uncer-
tainty scenario u 

We assumed that conservation payments are condi-
tional to the conservation of natural forest. To calculate 

(9)𝛽 ≥
(
Y∗o
nu

− Yo
nu

)
⋅

100

Δo
nu

∀i ∀u, 0 ≤ 𝛽 < 100,

(10)𝛽 ≥
(
Yo
wu
−Y∗

wu

)
⋅

100

Δo
wu

∀i ∀u, 0 < 𝛽 ≤ 100.

Δo
wu

= YO

wtu∗
− Y∗

wu

the conservation payment needed to halt deforestation, we 
enhanced the on-farm NPV of natural forests only, keeping 
the NPV of the alternative LULC types at their initial levels, 
until our model simulated constancy of the natural forest’s 
future area (i.e., a cessation of deforestation). We then con-
verted the necessary additional NPV into equivalent annual 
payments (annuities). With the same method, we computed 
the necessary agricultural subsidies to incentivize farmers 
for expanding the high-input pasture area.

Results

Performance profiles

Our experiment to assess different long-term landscape 
compositions from the perspective of smallholder farmers 
facing uncertainty resulted in worsened performance pro-
files for command-based sustainable intensification (with-
out agricultural subsidies), when compared to pure forest 
conservation (forest conservation in both strategies achieved 
through conservation payments). Figure 3a, c shows how 
the frequency distributions of the performance indices for 
sustainable intensification are shifted to the left compared 
to the distributions of the performance indices achieved by 
pure forest conservation, indicating that simulated farmer 
satisfaction decreases.

For pure forest conservation, the worst-case value was 
43% compared to 32% for command-based sustainable 
intensification (period 2015–20); or 43% compared to 28% 
(period 2040–45). On top of that, for all performance thresh-
olds that a farmer could demand (x-axis), the number of 
simulated performance indices greater than such a threshold 
is always higher for pure forest conservation than for sustain-
able intensification (Fig. 3b, d). This shows clearly that the 
performance profile of pure forest conservation dominates 
the performance profile of sustainable intensification with-
out agricultural subsidies under uncertainty.

Incentivizing the expansion of high-input pasture by 
agricultural subsidies (strategy “subsidized sustainable 
intensification”) breaks the dominance of pure forest con-
servation over sustainable intensification (Fig. 3). The 
simulation experiment shows that including agricultural 
subsidies enhances the performance of “subsidized sus-
tainable intensification”. The intersection between the 
cumulative frequency distribution of the “subsidized 
sustainable intensification” and “pure forest conserva-
tion” strategies signifies that the former land-use strategy 
offers a better opportunity of achieving high (> 56%) per-
formance levels than the latter (Fig. 3b, d). Compared to 
the sustainable intensification strategy without subsidies, 
sustainable intensification with subsidies performed much 
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stronger. In fact, in some cases the strategy with subsidies 
achieved a performance level higher than the maximum 
(which we still considered as 100%) achievement level 
under the strategy without subsidies.

Analyzing the worst performances of the three forest 
conservation strategies across all indicators underlines the 
extremely low performance of the sustainable intensifi-
cation strategy without subsidies from the perspective of 
smallholder farmers (Fig. 4a). However, compared with 
pure forest conservation, incentivizing the expansion of 
high input pasture through subsidies (subsidized sustain-
able intensification) enhanced the worst-case values by 
up to 37 percentage points for economic return (Fig. 4b). 
In contrast, labor demand worsened to the same extent 
as under command-based sustainable intensification. The 

reductions of worst-case values against farmers’ land-use 
preferences were less severe under “subsidized sustainable 
intensification” than they were under the strategy without 
subsidies (Fig. 4a, b).

Reducing farmers’ dependency on agricultural 
income

We tested the effect of both off-farm income and conservation 
payments on the expected level of deforestation. Our deforest-
ation-based, business-as-usual scenario that we used to esti-
mate the expected level of deforestation disregarded off-farm 
income, agricultural subsidies and conservation payments 
(Fig. 5a) and was adopted from Knoke et al. (2020b). Access 
to off-farm income reduced deforestation (Fig. 5b). Off-farm 

Fig. 3  Performance profiles of land-use trajectories: frequency dis-
tributions (upper panel) and cumulative distribution functions (lower 
panel) showing the variation of performance indices obtained for 
target landscape compositions when halting deforestation. The fig-
ure contrasts three strategies: either accepting (pure forest conserva-
tion strategy) or compensating food production losses by expanding 
intensified agriculture. “Command-based sustainable intensification” 
means using laws and regulations and “subsidized sustainable inten-
sification” means inclusion of agricultural subsidies to incentivize 
the expansion of high-input pasture. The input information for each 
indicator and land-use/land-cover (LULC) type consisted of opti-
mistic and pessimistic indictor levels, which were combined in 128 
uncertainty scenarios for each of the 12 considered indicators. Perfor-
mance was measured for these 12 indicators used to model farmers’ 

satisfaction, including economic return (net present value), limited 
access to capital (payback periods) and labor (labor demand), farm-
ers’ land-use preferences for managing their cleared lands, and off-
farm income (Table 1). Achieved indicator levels depend on the long-
term land allocation in each strategy (Table S2). All landscape level 
indicator outcomes were scaled between zero (least desired indicator 
value) and 100% (most desired indicator value). a Frequency distribu-
tion of simulated performance indices for the initial period, 2015–20. 
b Cumulative frequency distribution of simulated performance indi-
ces for the initial period, 2015–20. c Frequency distribution of simu-
lated performance indices for the last considered period, 2040–45. d 
Cumulative frequency distribution of simulated performance indices 
for the last considered period, 2040–2045
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income representing 30% of all farm household income (see 
“Methods”) saved a 4% share of natural forest cover over a 
farmer’s generation. This corresponds to an average annual 
deforestation rate of 1.33% with and 1.73% without access to 
off-farm income. A 70% proportion of off-farm-income (as a 
proportion of all total household income) would suggest zero 
future deforestation according to our simulations. An annual 
conservation payment of US$ 79 per hectare of natural for-
est sufficed in our model to halt deforestation (Fig. 5c) (pure 
forest conservation).

The optimal land-use scenarios to achieve the target 
landscape compositions anticipated a substantial increase 
of afforestation areas, either planted with an exotic or a 
native tree species, both on previously abandoned and low-
input pasture lands. Such afforestation areas enhance land-
scape diversification and help farm households to buffer 
against future uncertainties. However, the recultivation 
of abandoned or low-input pasture lands toward intensive 

(high-input) pasture management played only a minor role 
in the future landscape portfolios, especially when access 
to off-farm income was available. In our approach off-farm 
income and the labor-intensive high-input pasture competed 
for labour, explaining why intensive pasture management 
only covers a small area when farmers have access to off-
farm income. Both trajectories for sustainable intensification 
(Fig. 5d, e) expanded high input pasture mainly by reduc-
ing the area for afforestation. Exotic Pinus plantations are 
reduced most under “subsidized sustainable intensification”.

Effect of conservation strategies on food production

Enhanced forest conservation through access to off-farm 
income and conservation payments strongly compromises 
the anticipated food production of the target landscape com-
position. While deforestation-based farming increased food 
production by 50%, halting deforestation implied a decline 
in food production by 18%, when comparing the simulated 
production levels of the years 2015 and 2045 (Figure S1).

Costs of compensating food production losses

To compensate for food production losses, we would need 
7.6 percentage points in more land covered by intensive 
pasture by the year 2045 compared to the optimized land-
scape trajectory (Fig. 3c), which means more than 4700 
hectares for the landscape considered (which totals 62,500 
hectares) (Fig. 6a). We found that both sustainable intensifi-
cation strategies strongly reduced the conservation payments 
required to stop deforestation, from US$ 79 (pure forest con-
servation strategy) to US$ 46–47 per hectare natural forest 
per year (the required payments varied slightly from period 
to period).

The costs for achieving the conservation land-use tra-
jectories differ between “pure forest conservation” and 
“subsidized sustainable intensification”. Due to additional 
agricultural subsidies “subsidized sustainable intensifica-
tion” requires 75% higher total financial transfers to farmers 
than pure forest conservation, but the higher costs occur in 
the long run (Fig. 6b). During the earlier years of the con-
sidered timeline, “subsidized sustainable intensification” 
may even be more cost-efficient than pure forest conser-
vation. To simulate this strategy, we only used land-use 
preferences (stated by farmers during household interviews) 
that were specific to the scenario where the three rehabili-
tation options would be subsidized (Table 1). Achieving 
the land-use trajectory necessary for sustainable intensi-
fication (without forcing the expansion) required increas-
ing such subsidy payments to US$ 220 (period 2015–20) 
and US$ 390 (period 2040–45) per year for establishing 
one hectare of high-input pasture, which is more than two 
(or four) times the conservation payment required for one 

Fig. 4  Changes of extreme (worst) values for indicator groups used to 
model farmer satisfaction. The bars indicate the difference between 
extreme values achieved under pure forest conservation and extreme 
values resulting under either of the two strategies for sustainable 
intensification. a Enforcing an expansion of intense pasture manage-
ment based on command and control, without agricultural subsidies, 
to compensate food production losses reduces extreme values for all 
indicators, with farmer land-use preference levels (indicators 9, 10, 
11, and 12 in Table 1) for such a sustainable intensification scenario 
being most eroded. b Including agricultural subsidies to achieve “sub-
sidized sustainable intensification” enhances extreme values for eco-
nomic return and reduces farmer land-use preferences less strongly 
than the sustainable intensification scenario without agricultural sub-
sidies. Land-use preferences are represented by specific indicators 
recorded under the premise “with subsidies” (indicators 10 and 12 in 
Table 1)
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hectare of natural forest to be preserved. However, the area 
of high-input pasture is initially relatively small, despite the 
simulated expansion. At the end of the first period, high-
input pasture covers 3% and at the end of the last period 
12% of the landscape, where the landscape always holds 
a constant cover of 50% of natural forest. For the example 
of the first period, costs account for agricultural subsidies 
across the whole landscape of US$ 6.6 per hectare per 
year (0.03 × US$ 220 per hectare per year). On 50% of the 

landscape’s area, the strategy requires US$ 23 (0.5 × US$ 
46 per hectare per year) as conservation payments to pre-
serve the natural forest, resulting in a total payment of US$ 
29.6 per hectare of the “subsidized sustainable intensifica-
tion” landscape per year (Fig. 6b). For the first two 5-year 
periods, the interaction between agricultural subsidies and 
conservation payments would thus lead even to smaller 
costs than under the pure conservation trajectory. Over the 
other periods, the “subsidized sustainable intensification” 

Fig. 5  Historical development, statistically extrapolated trend for 
non-natural land and simulated trajectories of the proportions of 
land-use/land-cover (LULC) types over one farmer’s generation. a 
Deforestation development on smallholder farms without access to 
off-farm income. b Deforestation development on smallholder farms 
with access to off-farm income. c Pure forest conservation: Develop-
ment for farms with access to off-farm income accepting conservation 
payments for forest preservation. d Sustainable intensification with-
out subsides: development for farms with access to off-farm income 
accepting conservation payments for forest preservation, while simul-

taneously expanding high-input pasture to compensate for conser-
vation-related food production losses under a command-and-control 
mechanism. e Subsidized sustainable intensification: development 
for farms with access to off-farm income accepting conservation pay-
ments for forest preservation, while simultaneously expanding high-
input pasture to receive agricultural subsidies. The pink dashed line 
denotes the starting year of the simulation of the landscape composi-
tion development. “Pinus plantation” is an example of afforestation 
with an exotic tree species, while “Alnus plantation” represents an 
example of afforestation with a native tree species
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strategy would at least not become much more expensive 
than pure forest conservation. Only in the last period, the 
costs for strategy “subsidized sustainable intensification” 
substantially exceed those for pure forest conservation.

Discussion and conclusions

Our study provides for the first time a method to assess the 
influence of uncertainty on the potential acceptability of sus-
tainable intensification. Our method uses a land allocation 
approach that helps to devise optimal land-use trajectories 
for alternative land-use strategies, so that we can always 
compare the best alternatives for achieving sustainable 
intensification or pure forest conservation. The subsequent 
assessment of the uncertainty of decision outcomes uses per-
formance profiles from indicators of farmers’ satisfaction for 

whole landscapes, which is novel for estimating the poten-
tial acceptability of alternative land-use strategies. We hope 
that our optimization perspective to assess the acceptability 
of sustainable intensification for farmers can provide new 
impetus for further study and simulate decision-making by 
farmers to find sustainable and socially acceptable solutions 
to global land-use problems. For example, in future stud-
ies our approach could support developing nature–people 
scenarios, using the nature futures framework (Pereira et al. 
2020). In our current study, we focused on farmer prefer-
ences, whereas including multiple ecological and biodiver-
sity-related indicators (Knoke et al. 2020b) would enrich 
the results of assessing sustainable intensification, account-
ing for plural values of multiple stakeholders. Our current 
analysis already underlines the importance of cultural values 
(Chan et al. 2012) and suggests that problems with the adop-
tion of methods for enhanced food production do not only 
relate to financial aspects as represented by the net present 
value.

Our results are relevant for reconciling food production 
with forest conservation and are representative of a large 
area. Land-use dynamics as in our Andean study region are 
typical for smallholders’ pasture expansion into the tropi-
cal forest area all over Latin America. For example, several 
studies demonstrate the pressing challenge of dealing with 
pasture expansion into tropical forest (Garrett et al. 2018). 
Our focus for sustainable intensification were smallholder 
farms, the backbone of tropical agriculture (Affholder et al. 
2013). Without smallholder farms, discussed as key contrib-
utors for ending hunger and undernutrition worldwide (Fan 
and Rue 2020), reconciling natural forest conservation with 
food production will not be possible. However, smallholder 
farmers face a special set of challenges and constraints, asso-
ciated with their dependency on farm produce and family 
labor (van Vliet et al. 2015) as well as limited access to 
capital (Angelsen and Kaimowitz 1999; Angelsen 2010). As 
typically uncertainty-averse decision-makers, smallholder 
farmers will be inclined to strictly avoid poor outcomes of 
their decisions under uncertainty. Ignoring such uncertain-
ties will leave efforts to establish sustainable intensification 
illusory, even if some studies promise much enhanced net 
present values from sustainable intensification of degraded 
pastures (Oliveira Silva et al. 2017).

The relevance of uncertainty for environmental decision-
making is undisputed (Radke et al. 2020; Fasen et al. 2014; 
Lawrence et al. 2020; Knoke et al. 2021; Xu et al. 2019), but 
the consequences of this phenomena for solving the world’s 
pressing land-use problems remain under-researched. To 
the best of our knowledge, no other study has yet assessed 
the possible distribution of farmer satisfaction levels across 
multiple indicators and uncertainty scenarios, showing such 
a strong potential reservation against sustainable intensifica-
tion. This likely reservation resulted from poor worst-case 

Fig. 6  Additional area of intensive pasture management needed to 
compensate conservation-related food production losses under the 
sustainable intensification strategies and costs to achieve the land-
use trajectories for an average hectare at landscape level. a Relative 
and absolute additional area of intensive pasture management needed 
to compensate for conservation related food gaps. b Conservation 
payments to achieve tropical forest conservation at 50% of the land-
scape’s area and agricultural subsidies to incentivize an expansion of 
high-input pasture up to 12% land cover until 2045. While conserva-
tion payments to preserve natural forests show little variation over 
time, the required agricultural subsidies increased both per hectare 
and through expansion of the area of high-input pasture
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values of sustainable intensification for multiple indicators 
of farmer satisfaction. In addition, we have found that plot-
scale intensification is potentially able to compensate for 
conservation-related food production losses. We revealed 
cost-synergies between agricultural subsidies and conser-
vation payments during the transition phase toward target 
landscapes of sustainable intensification and showed the 
importance of accounting for off-fam income when devis-
ing appropriate land-use strategies.

Acceptance of sustainable intensification 
on smallholder farms

Establishing intensive pasture management may pose sig-
nificant problems for smallholders. In addition to account-
ing for the uncertainty of land-use decision outcomes, our 
analyses considered the low land-use preferences by local 
people for intense pasture management, which could form a 
major barrier to achieving enhanced, sustainable food pro-
duction. While smallholder farmers are generally inclined 
to labor sparing activities (Pichon 1997; Baker et al. 2017), 
some farmers may also be unwilling to use large amounts of 
agrochemicals, not only because of financial reasons (high 
costs) (Nahayo et al. 2017), but also because of ecological 
concerns. In a study which provided the social preferences 
that we used in our optimization model, Knoke et al. (2014) 
document concerns about adverse ecological effects of inten-
sive pasture. Farmers believe that agrochemicals damage or 
‘sterilize’ their soils.

An agricultural redesign of classical agrochemical-driven 
land management types such as high-input pastures toward 
agroecosystems including trees could offer better and more 
acceptable solutions (Pretty 2018). For example, when farm-
ers integrate agroforestry into their land-use activities they 
are less involved in deforestation, as shown by Rahman 
et al. (2017). Integrating nitrogen-fixing tree species that are 
native to the region, such as Andean alder (Alnus acuminata) 
in local pasture systems could help save artificial fertilizer 
and provide a range of ecosystem services, such as carbon 
sequestration (Riofrío et al. 2015).

Subsidies for high-input agriculture may support sustain-
able intensification, because they improve the worst-case 
values for economic return under sustainable intensifica-
tion and break the dominance of pure forest conservation. 
Still, there remain groups of indicators (e.g., labor demand 
and land-use preferences for LULC types on cleared lands) 
which show decreased worst-case values under “subsidized 
sustainable intensification” compared with “pure forest 
conservation”. However, the much better economic returns 
of the target landscapes under “subsidized sustainable 
intensification” could enhance farmers’ wealth in the long 
term, making them more independent from land use-related 

uncertain returns. This could change their attitudes toward 
uncertainty and increase the acceptability of “subsidized 
sustainable intensification”.

Plot‑scale intensification

We have demonstrated that plot-scale intensification may 
compensate the conservation-related food gaps by the 
expansion of high-input pasture. When implemented on 
parcels of limited size (Haber et al. 1990) and appropriately 
embedded into landscapes that also contain parcels with 
afforestation with native tree species, possible ecological 
problems associated with the agrochemicals used to man-
age high-input pasture could probably be overcome (Knoke 
et al. 2016). High-input pasture requires high on-farm labor 
and provides an economically beneficial land-use activity for 
farmers (Knoke et al. 2008), as an alternative to deforesta-
tion activities. The high labor demand of intensive pasture 
management could support protection of natural forests, as 
farmers would lack labor capacity for both intensive pasture 
management and deforestation. We have also demonstrated 
the crucial role of subsidies to incentivize the expansion of 
high-input pasture, which may break the dominance of pure 
forest conservation, causing sustainable intensification to at 
least become attractive for less uncertainty-averse farmers 
(Benítez et al. 2006).

Cost synergies by considering off‑farm income

The integration of off-farm income is a novel aspect that 
facilitated new results (Janssen and van Ittersum 2007), such 
as highlighting the importance of the use of and competi-
tion for the labor capacity among possible farmer activities, 
which otherwise would not have been possible to assess. 
For example, we could show enhanced cost-efficiency of 
conservation payments when considering off-farm income 
in combination with sustainable intensification. In our model 
approach we focused on smallholder farms, for which con-
straints such as labor capacity are important. On such farms, 
we considered in our land allocation model that forcing or 
incentivizing farmers to implement labor intensive LULC 
types such as high-input pasture binds labor, which in turn 
limits the capacity of farms for deforestation activities. This 
effect unfolded in our study on simulated farms where farm-
ers have access to off-farm income, and need to allocate 
some of their labor capacity to the off-farm activities.

Research outlook

Assessing the acceptability of innovative land-use strate-
gies appears to be a much under-researched field. Ignoring 
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the acceptability of land-use alternatives for the concerned 
people will overestimate the potential of optimized land-
use strategies. For example, Runting et al. (2019) have 
shown how optimal land allocation massively expanded 
forest plantations with intense management, accepting a 
reduction of the natural forest area to allow for more effi-
cient conservation of the remaining natural forests. While 
the natural forests to be replaced were managed as com-
munity forests, thus providing benefits for local people, 
most benefits from the forest plantations were obtained 
by plantation companies. It is hardly likely that such a 
strategy of sustainable intensification would be acceptable 
for all people affected by the optimized land allocation 
concept. To assess the acceptability of land-use strategies 
we require indicators of farmer satisfaction that go beyond 
the classical net present value, which is so popular in the 
assessment of land-use projects (e.g., Fisher et al. 2011; 
Warren-Thomas et al. 2018; Butler et al. 2009; Knoke 
et al. 2020a).

In our study, off-farm income was important to reduce 
deforestation. However, off-farm income may have 
diverging implications on industrial farms (compared to 
smallholder farms), even bearing potential for enhanced 
deforestation (Vosti et al. 2000). For example, Chrisendo 
et al. (2021) have recently shown how off-farm income 
increased the likelihood of oil palm adoption. Our model 
approach can integrate such effects by considering the fact 
that off-farm income could facilitate purchasing additional 
labor capacity and/or investing in more capital-intensive 
forms of land use. Future studies should analyze sustain-
able intensification under uncertainty and off-farm income 
effects for industrial farms as well. In summary, our 
enhanced mechanistic portfolio approach has great poten-
tial to evaluate and explore sustainable land-use concepts, 
but also has some limitations. Among the limitations is 
the lack of spatial explicitness, which needs attention in 
future research. One could also further develop the com-
bination of the mechanistic model with empirical research 
approaches, which could deliver valuable information on 
stakeholder opinions and preferences (Ochoa et al. 2019).

We conclude that using multiple futures to represent 
uncertainty in combination with landscape approaches 
facilitates new insights about the interplay of multiple 
farmer preferences, conservation payments, agricultural 
subsidies, off-farm income and tropical deforestation 
under uncertainty. Our approach to uncertainty highlights 
the extent to which strong farmer reservations could 
undermine the social acceptability of sustainable inten-
sification. Social acceptability for smallholder farmers is 
crucial to consider in any analysis of land-use strategies, 
if we want to end hunger and undernutrition worldwide 
(Fan and Rue 2020).
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