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The stability of rigidly rotating spiral waves is a very important topic in the study of

nonlinear reaction-diffusion media. Computer experiments carried out with a slightly

modified Barkley model showed that, in addition to one region of instability observed

earlier in the original Barkley model, there is another one exhibiting completely different

properties. The wave instability in the second region is not related to the Hopf bifurcation.

Moreover, hysteresis effects are observed at the boundary of the region. This means that

in the vicinity of this region of instability, direct integration of the model equations leads

either to a rigidly rotating or meandering spiral, depending on the initial conditions.
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1. INTRODUCTION

Excitable media represent a broad class of non-equilibrium reaction-diffusion systems that play an
important role in physical, chemical, and biological applications [1–4]. For example, wave processes
in excitable media are intensively studied in various distributed systems, including the colonies of
Dictyostelium discoideum [5], the Belousov-Zhabotinsky chemical reaction [6], the heart muscle
[7], the eye retina [8], the neocortex [9], CO oxidation on the platinum single crystal surface [10],
and many others.

An excitable medium can be viewed as an ensemble of active elements coupled locally by
diffusion-like transport processes. Each individual active element has a resting state, resistant to
small external perturbations. However, it can be excited by the application of a suprathreshold
stimulus or by interacting with their neighbors. Therefore, locally induced excitation can propagate
through the medium as a self-sustaining wave. Such a wave represents a rapid transition from a
stable resting state to an excited one followed by a slow recovery transition (refractory) back to the
resting state. Under normal conditions, the wave back follows the wavefront, and they never touch
each other.

However, under some special conditions, the propagating wavefront can be broken [1, 11]. Then
the front and the back of the wave propagating in a two-dimensional medium coincide at one point
called a phase change point [2]. Near this point, the front and the back are moving in opposite
directions and the boundary of the excited region curls around this singularity point. As a result,
the broken wave is winding up into a spiral permanently rotating within the medium.

Such self-sustained activity unexpectedly appearing in cardiac or neuronal tissues strongly
destroys their dynamics that results in life-threating diseases. In this context, an understanding of
possible scenarios of spiral wave dynamics is of great theoretical importance and has many practical
applications.

One important aspect of this study is investigation of spiral wave stability. In a homogeneous
low excitable two-dimensional medium spiral wave rigidly rotates around a round core. However,

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.903563
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.903563&domain=pdf&date_stamp=2022-05-13
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:vladimir.zykov@ds.mpg.de
https://doi.org/10.3389/fams.2022.903563
https://www.frontiersin.org/articles/10.3389/fams.2022.903563/full


Zykov and Bodenschatz Two Domains of Meandering

under a variation of the medium’s parameters this well-ordered
dynamics can be destroyed that leads to a transformation of
a circular trajectory of the spiral wave tip into the so-called
meandering one, e.g., hypotrochoid or epitrochoid [12, 13].

Spiral wave meander has been observed in experiments with
chemical solutions [14] and in computations performed with
different reaction-diffusion models [15–17]. The investigation of
spiral wave instability attracts a great attention from a theoretical
point of view [18–21].

In this study we would like to find out domains of the
spiral wave meandering within the parameter space of a slightly
modified Barkley model of an excitable medium.

2. MODEL

In many studies it was demonstrated that the basic features of
the wave dynamics can be reproduced by the two-component
reaction-diffusion system

∂u

∂t
= D∇2u+ F(u, v),

∂v

∂t
= ǫG(u, v), (1)

where the variables u and v represent the activator and inhibiter
species, respectively. Typically the nullcline F(u, v) = 0 is a
non-monotonic function creating possibility for undamped wave
propagation. The second nullcline G(u, v) = 0 is monotone
and intersects the first one at only one point (u0, v0). Below the
functions F(u, v) and G(u, v) are taken in the form proposed by
Barkley [22]:

F(u, v) = u(1− u)[u− (v+ b)/a)], (2)

G(u, v) =

{

u− v, u ≥ v,
kǫ(u− v), u < v.

(3)

Note, that in the original Barkley model the value of the
parameter kǫ is fixed as kǫ = 1. Three other constants a, b, and
ǫ have been used as important control parameters. A variation of
each of these three parameters results in a simultaneous influence
on such important medium’s characteristics as the propagation
velocity, pulse duration and refractoriness. In themodifiedmodel
under consideration the constant kǫ is introduced, which has no
influence on the duration of a single pulse and its propagation
velocity. However, this parameter allow us to control the recovery
process because its characteristic time is determined as the
product kǫǫ. Thus the activation and the recovery processes
have different time constants, if kǫ 6= 1. Such a jump in the
characteristic time constant is a fairly common and useful tool
in simulations of excitable media [12, 23, 24].

In all computations below the parameter D is fixed as D = 1.
The Laplacian in Equation (1) was approximated using the five-
point finite-difference method on the rectangular 500× 500 grid
with spatial step 1x = 1y = 0.3. After this spatial discretization
the model equations are integrated in time with the explicit
forward Euler method with time step 1t = 0.01 and no-flux
boundary conditions. The spiral wave tip is determined as a point
where u = 0.5 and du/dt = 0. A part of an isoconcentration line
u(x, y, t) = 0.5 corresponds to the wave front where du/dt > 0,
and another part, where du/dt < 0, represents the wave back.

FIGURE 1 | Parameter space of the modified Barkley model with ǫ = 0.01

and kǫ = 2. Within the SE region wave segments created in two dimensional

medium are shrinking. Within the BI region the system (1)–(3) exhibits the

bistability. Rotating spiral waves are analyzed between these two regions.

Within the white domain spiral waves rotates around a circular core, while they

are meandering within the light gray domain. Black spots correspond to

parameter values used in Figure 2.

FIGURE 2 | Spiral waves dynamics obtained for the system (1)–(3) with

ǫ = 0.01, kǫ = 2 and b = 0.01 for different values of the parameter a. In (A)

a = 0.22, in (B) a = 0.4, in (C) a = 0.6, and in (D) a = 0.8. Thick and dotted

solids represent the wave front and back, correspondingly. The trajectory of

the spiral wave tip is shown in red.

3. RESULTS

3.1. Single Domain of Meandering Spiral
Waves
As the first step of our study the parameters are fixed as ǫ =

0.01 and kǫ = 2, while the constants a and b are used
as important control parameters. The obtained computational
results are illustrated in Figures 1, 2.
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Within the parameter space shown in Figure 1 there is a line

b = a− 1, (4)

which determines the boundary of the bistability (BI) domain,
where b < a − 1. Here the nullclines of the system (1)–(3) have
two intersections points.

We analyse another part of the parameter space, where b >

a − 1 and the system has only one rest point. Here he existence
of spiral waves is limited by another line, where the radius
of the core of the spiral wave becomes infinitely large. In the
subexcitable (SE) region above this line, the wave segments
formed after a wave break are not able to curl around the created
singularity point, but simply shrink and disappear. An analytical
expression for this line was obtained earlier [25] and has the form

b = [a− (
4ǫa2

Bc
)1/3]/2, (5)

where Bc = 0.535 is a critical value of the parameter B =
2D
duc

2
p
, as it was shown in [26]. Here du and cp are the duration

and the propagation velocity of a single pulse through a one
dimensional medium, correspondingly. It can be seen, that
the analytical approximation expressed by Equation (4) is in
good agreement with the direct reaction-diffusion calculations
illustrated by asterisk in Figure 1.

In order to analyse the dynamics of the spiral wave, numerous
calculations were performed at various points in the parameter
space. A broken plane excitation wave [2] was used as initial
conditions. Initially, we fixed a relatively small value of the
parameter b. A rigidly rotating spiral wave with a large core
was generated near the boundary of the SE region. Then the
parameter a increases step by step from one calculation to the
next. The size of the core decreases as a increases, and the rotation
period decreases. At some computational step, rigid rotation
becomes impossible, and a meandering trajectory of the spiral
wave tip is observed. This occurs on the left boundary of the light
gray region in the Figure 1.

Meandering spirals were observed in the entire light gray
region. It is found that in this meandering region the trajectory
of the spiral wave tip may look like an epitrochoid (Figure 2A)
or a hypotrochoid (Figure 2B). In the white region, to the right
of the light gray region and until the BI domain, the tip of the
spiral wave moves along a circular trajectory. The radius of this
trajectory strongly decreases as a increases.

The computational data shown in Figures 1, 2 look
qualitatively similar to ones obtained earlier for the original
Barkley model with kǫ = 1 and ǫ = 0.02 [22, 27]. However,
the size of the instability domain is considerably smaller in
the case under consideration. Note, that while the used value
of the parameter ǫ is smaller, the characteristic recovery time
determined by the product kǫǫ remains the same.

FIGURE 3 | Parameter space of the modified Barkley model with kǫ = 4 and

ǫ = 0.005. Within the light gray domain tip trajectories look like epi- or

hypo-trohoids, like in Figure 1. Within the dark gray domain the tip trajectories

are more complicated and disordered. Within the white domain spiral waves

rotates around a circular core. Black spots correspond to parameter values

used in Figure 4.

FIGURE 4 | Spiral waves dynamics obtained for the system (1)–(3) with

ǫ = 0.005, kǫ = 4, and b = 0.01 for different values of the parameter a. In (A)

a = 0.22, in (B) a = 0.4, in (C) a = 0.6, and in (D) a = 0.8. Thick and dotted

solids represent the wave front and back, correspondingly. The trajectory of

the spiral wave tip is shown in red. In the left lower corner of (D) the trajectory

is magnified.

4. SECOND DOMAIN OF MEANDERING
SPIRAL WAVES

In the second part of our study the value of the parameter ǫ is
further decreased to ǫ = 0.005 and kǫ is increased to kǫ =

4 in order to conserve the characteristic recovery time. The
data obtained in the corresponding computations are shown in
Figures 3, 4.
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FIGURE 5 | A small part of the parameter space of the modified Barkley model

with kǫ = 20 and ǫ = 0.001. The 2D medium does not support self-sustained

spiral waves within the SE domain. Within the gray region spiral waves are

unstable. Black spots correspond to parameter values used in Figure 6.

As well as in the previous case, the existence of spiral waves
here is limited by the lines defined by Equations (4) and (5).
Note that the accuracy of the analytical estimate represented by
Equation (5) becomes better as ǫ decreases.

Figure 3 clearly shows that there are two regions of instability
in the parameter space. The spiral waves in the light gray region
show dynamics very similar to those observed in the light gray
region in Figure 1. Here, the trajectories of the spiral wave
tips resemble epitrochoids or hypotrochoids, for example (see
Figure 4A).

In the dark gray region, the tip trajectories becomemuchmore
complex and are not as well ordered as shown in Figure 4D.
In the parameter region surrounding these two regions, the
trajectory of the spiral tip is circular.

Note that the light gray domain in Figure 3 is much smaller
than in Figure 1. You can also see that the radius of the circular
trajectory of the spiral tip is much smaller for these ǫ and kǫ

values, while the values of a and b are the same. This follows from
a comparison of Figures 1B,C with Figures 3B,C.

5. HYSTERESIS PHENOMENON

As the next step of our study the value of the parameter ǫ

is considerably decreased to ǫ = 0.001 in the numerical
computations. Simultaneously the parameter kǫ is increased to
kǫ = 20 in order to conserve the characteristic recovery time.

Under these modified values a part of the parameter space
shown in Figure 5 looks qualitatively similar to the picture
obtained for the original Barkley model as well as for one shown
in Figure 1. Within the subexcitable region SE there are no self-
sustained spiral waves. Wave segments initiated in this parameter
region are shrinking and disappear. Within the rest of the
parameter space presented in Figure 5 self-sustained spiral waves
have been observed. They are rotating rigidly within the white
region, while inside the light gray region they are meandering.
Some examples of spiral wave dynamics are shown in Figure 6.

However, this is only a very small part of the entire parameter
space investigated at these parameter values. The results obtained

FIGURE 6 | Four examples of the trajectories of the spiral wave tip observed

within the gray parameter region shown in Figure 5 with b = 0.002 and (A)

a = 0.028, (B) a = 0.04, (C) a = 0.06, (D) a = 0.08.

FIGURE 7 | Parameter space of the modified Barkley model with kǫ = 20 and

ǫ = 0.001. The 2D medium does not support self-sustained spiral waves

within the SE domain. Within the dark gray region spiral waves are unstable.

Within the white region between these two domains rigidly rotating spirals with

a circular core have been observed. Black spots correspond to parameter

values used in Figure 8.

in a wider parameter space are shown in Figure 7. The regions of
subexcitability (SE) and bistability (BI) are indicated here. Self-
sustaining spiral waves are observed between these two regions.
Within the narrow white region, the rigid rotation of spiral waves
is stable. The transition to meandering spiral motion occurs in a
very small light gray region with a≪1 and b≪1, which is almost
invisible in Figure 7 but is shown in Figure 5.

In the dark gray region, the trajectories of the spiral tips are
very different from those of the hypotrachoids and epitrachoids
shown in Figure 6. A step by step increase of the parameter a
within the dark gray domain results in a strong transformation of
the spiral tip trajectory. Indeed, rigidly rotating spiral describing
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FIGURE 8 | Four examples of the trajectories of the spiral wave tip observed

within the gray parameter region shown in Figure 5 with b = 0.01 and (A)

a = 0.22, (B) a = 0.4, (C) a = 0.6, (D) a = 0.8.

FIGURE 9 | The trajectories of the spiral wave tips obtained numerically for the

modified Barkley model with the parameter b fixed as b = 0.015 and varied

parameter a. (A) a = 0.31, (B) a = 0.32, (C) a = 0.325, (D) a = 0.32.

a perfect circular shown in Figure 8A transforms into a jagged
trajectory in Figure 8B. Further increase of a results in increasing
of angular loops of the trajectory in Figure 8C and their dynamics
becomes more irregular in Figure 8D.

Moreover, at the boundary of this region a hysteresis effect in
the spiral wave dynamics has been observed. This phenomenon
is illustrated in Figure 9. Here the trajectories of the spiral wave
tip are shown obtained for different values of the parameter a
and b = 0.015. The computations have been started at a =

0.31 and result in rigidly rotating spiral shown in Figure 9A.
This stationary rotating wave is used as the initial conditions

for the next computations performed with a = 0.32 and
illustrated in Figure 9B. After a short transient process the
spiral wave trajectory approaches the circular shape. However,
a jump to a = 0.325 leads to a destabilization of the rigid
rotation and appearance of a rather complicated trajectory,
shown in Figure 9C. This wave pattern has been used as the
initial conditions for the computations in which the parameter
a has been returned back to a = 0.32. However, the spiral tip
trajectory does not return back to a circular one, as can be seen
in Figure 9D. A rigid rotation restores only for a = 0.31. The
further decrease of a also results in a circular trajectory. Thus,
it is demonstrated that for a = 0.32 the shape of the spiral tip
trajectory depends on the initial conditions.

The observed hysteresis effect exists not only for b = 0.015,
but for all other values of b corresponding to the boundary of
the instability domain represented by a dashed-dotted line in
Figure 9. In particular for a = 1.0 and b = 0.328, as well as
for a = 1.4 and b = 0.51. It has been observed not only by a
variation of the parameter a and fixed parameter b, but also by a
variation of the parameter b and fixed a.

6. SUMMARY

Thus, the numerical computations performed with a slightly
modified Barkley model demonstrate the existence of two quite
different parameter regions of spiral wave instability. Within
a region located near the SE domain a transition from rigid
rotation to spiral meandering follows a well known scenario.
Here the instability is induced by the Hopf bifurcation that
results in a hypotrachoidal or epitrachoidal trajectory of the spiral
wave tip.

The spiral tip trajectories lookmore complex in the new found
region (see Figure 4). The smooth circular trajectory transforms
here into a jagged one and even becomes randomized (see
Figure 8). This resembles a transition to hypermeandering spiral
dynamics reported for the FitzHugh-Nagumo model [13], but is
very unusual for the well studied Barkley model. The observed
instability cannot be explained by the Hopf bifurcation as was
done for the original Barkley model.

At the boundary of this new found instability region the
hysteresis phenomenon was detected (see Figure 9). Note, that
the similar hysteresis phenomenon was recently observed in
the context of the Barkley model within the bistability region
[25]. Moreover, a hysteresis phenomenon has been described in
context of the FitzHugh-Nagumo model [28, 29].

Thus, the results obtained are quite general and applicable to
quite different reaction-diffusion models, which should stimulate
further research in this area.
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