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Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell

lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of

PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and

transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and

36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell

receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%)

and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal

deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational

signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL.

TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-

DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct

molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hot-

spots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished

from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as

well as specific combinations of genetic alterations.
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Central nervous system (CNS) lymphomas are predomin-
antly aggressive neoplasms involving brain, meninges,
spinal cord, and eyes1,2. Two clinical subtypes of CNSL

can be distinguished: primary central nervous system lymphoma
(PCNSL), which is confined to the CNS; and secondary central
nervous system lymphoma (SCNSL) presenting initially with
systemic, non-CNS or synchronous systemic and CNS involve-
ment. The term SCNSL comprises all systemic lymphomas that
spread to the CNS and its presentation, tropism, outcome and
therapeutic options differ from PCNSL3,4. Typically, SCNSL are
classified as diffuse large B-cell lymphoma (DLBCL), while other
types such as follicular lymphoma (FL), T-cell lymphoma or
Hodgkin lymphoma are extremely rare5,6.

PCNSL incidence is increased in immunocompromised
patients, in which the tumor cells are typically Epstein-Barr virus
(EBV)-positive1,7,8. In contrast, PCNSL in immunocompetent
patients is typically EBV-negative. The mechanisms leading to the
observed exclusive topographical restriction of PCNSL to the
CNS are not fully elucidated9. PCNSL is classified as DLBCL in
the vast majority of cases (approx. 90%) which immunohisto-
chemically most often show a non-germinal center B-cell-like
(non-GCB) immunophenotype1,10,11 according to the Hans
classification12. The tumor cells express pan B-cell markers
(CD19, CD20, and CD79a), the germinal center (GC)-associated
molecule BCL613, and the post-GC-associated marker MUM1/
IRF414. By gene expression profiling, the tumor cells are most
closely related to late germinal center (exit) B-cells15. Patho-
mechanistic genomic alterations involving Toll-like- and B-cell
receptor (TLR, BCR) signaling pathways are identified in previous
studies revealing a very high frequency of somatic nonsynon-
ymous mutations in genes such as MYD88, CARD11, and
CD79B16–20. Additionally, often homozygous HLA class II21,22

and CDKN2A loss, recurrent BCL6 translocations23,24 and
structural variants at chromosome band 9p24.1 (affecting
CD274/PD-L1 and PDCD1LG2/PD-L2)25 as well as TBL1XR1
variants26 are repeatedly described in PCNSL27,28. These muta-
tional patterns suggest PCNSL to be genetically similar to recently
described “MCD”, “C5” or “MYD88-like” subtypes for which a
derivation from long-lived memory B-cells is proposed29–35.

The outcome of PCNSL, even in immunocompetent hosts, is
poor compared to most primary systemic DLBCL36, though
probably not worse than that of DLBCL of the MCD/C5 group in
general30. High-dose methotrexate (MTX) remains the commonly
administered therapy but the use of rituximab (monoclonal anti-
CD20 antibody) is shown to be effective37,38. However, reports on
rituximab efficiency in PCNSL are conflicting39–42. Genomic
studies suggest that lymphoma cell proliferation and survival
are driven at least in part, by deregulated TLR, BCR, JAK-STAT,
and NFκB signaling pathways inducing constitutive NFκB
activation43–45. Therefore, inhibitors up- and downstream of
NFκB such as ibrutinib, known to inhibit Bruton’s tyrosine kinase
(BTK) as critical mediator of BCR signaling, and lenalidomide
which is shown to have indirect effects on tumor immunity
are applied and seem to be effective therapeutic alternatives
in PCNSL46–51. PD-L1/2 blockade is discussed as another ther-
apeutic option52.

Despite all progress in the molecular characterization of
PCNSL in the last decades, our understanding of the genetic and
transcriptional alterations of PCNSL is by far not comprehensive.
The few previous next generation sequencing (NGS) studies
of PCNSL are limited to target enrichment only of exons, or
whole-genome analysis of very few samples44,53–58. Therefore,
pathogenic mechanisms other than coding variants, such as non-
coding and regulatory changes, structural variants or mutational
mechanisms related to the genome-wide distribution of somatic
hypermutation (SHM) are not fully elucidated in PCNSL.

Unbiased omics profiling, such as whole-genome sequencing
(WGS) studies integrated with transcriptome sequencing, are
currently the methods of choice to illuminate the role of non-
coding mutations59,60. In addition, these approaches can unravel
various molecular mechanisms deregulating driver genes in
PCNSL, which are necessary for diagnosis, risk stratification, and
treatment in the era of precision and targeted therapies.

In this work, we perform whole-genome and transcriptome
sequencing in 51 B-cell lymphomas presenting in the CNS,
including 42 PCNSL samples from immunocompetent patients,
to comprehensively describe the mutational and transcriptional
landscape of PCNSL.

Results
Study cohort. We enrolled CNSL samples from 51 adults diag-
nosed with PCNSL or SCNSL. According to the site of manifes-
tation, the following subgroups were defined: PCNSL within the
brain parenchyma (PCNSL; n= 39), PCNSL with meningeal
manifestation (PCNSL-M; n= 3), SCNSL within the brain par-
enchyma (SCNSL; n= 3), SCNSL with meningeal manifestation
(SCNSL-M; n= 3) and EBV-positive lymphomas (EBV+; n= 3).
Median age was 69, mean age was 66.5 years at diagnosis (range
40–82 years). The female:male ratio was 1.3:1. Follow up data were
available for 44 patients. The follow up time ranged from 1 to
104months with a median survival of 15.0 months (Supplementary
Fig. 1a). The detailed study cohort information and subgroup-
specific demographics are given in Fig. 1a, b and Supplementary
Data 1. Patient samples were histologically and immunohisto-
chemically classified according to the WHO criteria2,11,61,62, and
further stratified according to the Hans classification12 into non-
GCB (n= 37) and GCB subgroup (n= 5, Fig. 1c, Supplementary
Data 1). For nine samples, the tissue was not sufficient for non-
GCB/GCB characterization. Furthermore, we integrated data from
the ICGC MMML-Seq cohort (www.icgc.org) for comparison of
WGS and transcriptome data from systemic DLBCL, FL, naïve B-
cells, and GC B-cells34,59,60

Mutational landscape of central nervous system lymphoma
(CNSL). WGS data of 38 CNSL (30 PCNSL, 1 PCNSL-M, 2
SCNSL, 3 SCNSL-M, and 2 EBV+ samples, Fig. 1b) was obtained
with a median coverage of 77 (range 31–100) for tumors and 45
(range 27–85) for matched germline controls. We identified a
median of 18584 (range: 1987–48280; median of the 30 PCNSL:
20263 (range: 9185–48280)) total SNVs, of which a median of
5759 (range: 686–16731; PCNSL: 6274 (range: 2850–16731)) were
intronic, a median of 10218 (range: 983–24033; PCNSL: 10790
(range: 5063–24033) were intergenic, and a median of 194 (range:
47–436), PCNSL: 200 (range: 100–436) were nonsynonymous
exonic variants (1% of all SNVs). Furthermore, we identified a
median of 2406 (range: 711–9430; PCNSL: 2485 (range:
941–9430)) indels per CNSL sample, of which the majority was
intergenic (1333 (range: 403–5218), PCNSL: 1375 (range:
517–5218). The median number of variants (SNVs and indels) in
non-coding RNA genes was 2744 (range: 551–6913), PCNSL:
2901 (range: 1220–6913). Selected variants were verified using
Sanger sequencing (see “Methods” section).

The CNSL cohort presented a median of 152 (PCNSL: 147)
SVs (range: 24–517 (PCNSL: 47–517), inversions: 21 (PCNSL:
20), deletions: 76 (PCNSL: 81), duplications: 20 (PCNSL: 19),
translocations: 14 (PCNSL: 16)). We also investigated chromo-
some level CNVs (based on 30% or more of a chromosome being
amplified or deleted) and found a median of 8 CNVs (median 1
cnLOH (PCNSL: 2), median 4 gains (PCNSL: 4), and median 2
losses (PCNSL: 3)). The detailed mutational statistics (CNVs,
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indels, SNVs, and SVs) of the CNSL, DLBCL, and FL samples are
displayed in Supplementary Data 2.

PCNSL represents MCD genetic subtype of DLBCLs. Recent
exome studies described the existence of different genetic sub-
types of DLBCL, which show activation of distinct signaling
pathways and different clinical outcomes25,30,31. We used the
LymphGen algorithm described by Wright et al.31 to classify our
samples according to these genetic subtypes based on the
obtained WGS data. The results of the CNSL cohort are displayed
in Fig. 1d. In line with previous results17,20,30,31, the majority of
PCNSL samples were classified as MCD (based on the co-
occurrence of MYD88 L265P and CD79B mutations, 67%, 20/30).
One sample was each assigned to BN2 (BCL6 fusions and
NOTCH2 mutations, 3%, 1/30) and ST2 (SGK1 and TET2
mutated, 3%, 1/30), seven samples were non-subtyped cases
(“Other”, 23%, 7/30), and one sample was equally assigned to
both groups BN2/MCD (3%, 1/30; Supplementary Data 1).

PCNSL samples classified as “Other” exhibited different CNV
profiles affecting chromosome arms 1q, 2p, 2q, 3q, 4p, and 11p, as
well as significantly more deletions of CREBBP compared to
PCNSL samples classified as MCD by the LymphGen algorithm
(Supplementary Fig. 2a). CREBBP gene inactivation is considered
an early event in FLs and a subset of systemic DLBCL, mostly of
GCB origin63–67. CREBBP inactivation is also described as a
hallmark of the EZB class, but LymphGen’s classification model is
restricted to CREBBP point mutations and not focal deletions.
The finding of a significantly increase number of CREBBP
alterations (p= 0.046, Mann–Whitney U test) in PCNSLs
classified as “Other” compared to MCD might, thus, imply a
small subset of PCNSL to more resemble GCB-like DLBCL
or, alternatively, the existence of a group of occult systemic

GCB-lymphomas with first clinical presentation in the CNS.
Additionally, PCNSL-Other demonstrated significantly fewer
mutations in GRHPR, ETV6, and PIM1 (Supplementary Fig. 2b, c).

Driver mutations in CNSL. We first identified the genes recur-
rently mutated in CNSL (Fig. 2a) and used Metascape68 for fur-
ther pathway and process enrichment analysis. The top three level
enriched terms were ‘Regulation of hemopoiesis’, ‘Chromatin
organization involved in negative regulation of transcription’, and
‘Cytokine signaling in immune system’ ((hypergeometric test,
FDR 8.91 × 10−9, 1.04 × 10−4, 1.17 × 10−4, respectively; Fig. 2b).
The enrichment analysis in TRRUST revealed ‘Regulated by:
STAT3’ as the most significant term (hypergeometric test, FDR
3.98 × 10−7; Fig. 2c). STAT3 has been associated with intracranial
spreading and poor survival in PCNSL69,70, and reports of STAT3
inhibition via small molecules achieve complete tumor regression
in vivo for lymphoma cell lines71. As STAT3 is not highly
mutated or hit by SVs or CNVs, its activation seems—in line with
previous reports—induced by extrinsic factors such as infiltrating
macrophages/microglial cells72, or intrinsic factors such as acti-
vation downstream of MYD8873.

Next, we used IntOGen and MutSigCV to discover putative
driver mutations in the PCNSL WGS sub-cohort (Fig. 2d and
Supplementary Data 3). We identified a total of 50 mutated
driver genes, of which only 21 were previously known drivers.
Many of the predicted drivers were associated with MCD
enriched genes, including MYD88 (67%), CD79B (63%),
OSBPL10 (83%), HLA-A/B/C (40%/63%/53%), PRDM1 (40%),
TOX (50%), TBL1XR1 (40%), CD58 (37%), PIM1 (70%), ETV6
(50%), BCL11A (30%), CDKN2A (83%), GRHPR (60%), FOXC1
(20%), and DAZAP1 (20%). These driver genes were signifi-
cantly enriched for genes containing the BCL6 binding motif
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Fig. 2 Recurrent coding mutations and genomic drivers in PCNSL. Oncoprints of recurrently mutated genes, excluding IG and chromosome Y
genes (a). Mutated genes are listed from top to bottom depending on their alteration frequency. The corresponding dot plot reflects the log2
fold change and significance of alteration frequencies in the other subcohorts and RNAseq subgroups compared to PCNSL. The recurrently
mutated genes (listed in the oncoprint in a) were analyzed by Metascape68 to identify pathway and process enrichment (b) and transcriptional
regulatory networks (TRRUST) (c). Metascape adopts the hypergeometric test and employs the Benjamini-Hochberg correction for multiple testing.
Oncoprints of driver genes in PCNSL (d). The top panel of the oncoprint shows the total numbers of structural variants (SVs), small insertions/
deletions (INDELs), single nucleotide variants (SNVs), estimated ploidy, and genomic tumor cell content (TCC). Mutated genes are ranked by
IntOGen. The corresponding dot plot reflects the log2 fold change and significance of alteration frequencies in the other subcohorts and RNAseq
subgroups compared to PCNSL. In panels (a) and (d) the size of the dots demonstrate the significance according to a two-tailed Fisher’s exact test not
corrected for multiple testing.
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(TRANSFAC and JASPAR PWMs, Enrichr enrichment test,
adjusted p= 0.03193).

OSBPL10 was previously reported as a target of aSHM in
PCNSL53. Consistent with observations in DLBCL74, most of the
identified mutations in PCNSL were confined to the exon 1
coding region (Supplementary Fig. 3).

Concerning MYD88, we only detected the classical pathogenic
hotspot L265P mutation, which was validated by Sanger
sequencing in all PCNSL samples investigated (100%, n= 26,
Supplementary Data 4 and 5). Notably, MYD88 mutation rates in
the extension FFPE cohort were 78.9% in PCNSL and 55.6% in
SCNSL. None of the five EBV-positive cases investigated
harbored oncogenic MYD88 L265P mutations, which is in line
with previous findings25,75. Mutations in TBL1XR1 also modulat-
ing TLR/MYD88 signaling25 were identified in 40% of PCNSL
(Fig. 2a, b). We investigated mutual exclusivity and co-occurrence
patterns for MYD88 among the driver genes that affect at least
five patients using Fisher and CoMET test. We observed mutual
exclusivity between alterations in MYD88 and the NOTCH
signaling inhibitor SPEN30 (Fisher test, p= 0.0009, FDR= 0.033).
In line with previous reports on ABC-DLBCLs76,77, we found
coexisting alterations in MYD88 and CD79B. Nevertheless, this
co-occurrence was not significant (Fisher test, p= 0.16, FDR=
1.0). However, MYD88 was most significantly co-occurring with
TBL1XR1 (Fisher test, p= 0.04), both activating the NFκB
signaling pathway26. Although this was not significant after
correction for multiple testing (FDR= 1, Supplementary Data 6).

Compared to the MCD driver genes identified in the series
presented by Wright et al.31, our PCNSL series exhibited a higher
proportion of samples with mutations in PABPC1 (10% vs 0%),
P2RY8 (13% vs 1.2%), ITPKB (23% vs 2.5%), GNA13 (20% vs
5.1%), and B2M (13.3% vs 2.8%). Furthermore, predicted driver
genes in our PCNSL series included genes enriched in all other
LymphGen classes: BN2 (CCND3, BCL6, HIST1H1D, SPEN,
PABPC1, and UBE2A), EZB (GNA13, IRF8, BCL7A, KM2TD, and
EP300), ST2 (P2RY8, TET2, ZFP36L1, and ITPKB) and A53 (B2M
and TP53).

While the majority of identified drivers were reported by
Wright et al., a number were not, including FBXW7, ATM,
TMSB4X, THRAP3, ID2, GRB2, ZEB2, GLI3, UBA1,MAPKAPK2,
AXIN2, TAP2, ROCK1, CEP290, and HLA-DQB1. These were
previously recognized as general DLBCL drivers by Reddy et al.78

and/or Chapuy et al.29. ZEB2 was additionally identified as a
genetic alteration associated either with the ABC subgroup78 or
the DLBCL C1 cluster29 (Supplementary Data 3).

A remarkable finding was the identification of MYC mutations
in 17% of PCNSL in the absence of MYC translocations. MYC
alteration does not belong to the defining feature of the
LymphGen algorithm nor has it been described as a driver in
DLBCL by Chapuy et al.29, though its functional relevance as
oncogene in DLBCL has been shown by Reddy et al.78. Mutation
of MYC in lymphomas is frequently linked to IGH translocations,
which nevertheless are rare in the PCNSL as shown in the present
as well as previous studies23,79. Whereas previous studies showing
a high frequency of MYC mutations in PCNSL focused on the
region underlying SHM in PCNSL80, we here show that these
mutations scatter across the gene (Supplementary Fig. 4). The
function of the changes remains elusive but it is intriguing to
speculate that at least part of them might contribute to the
“double expression” of BCL2 and MYC in the absence of MYC
translocation in PCNSL which has been associated with
unfavorable outcome in systemic DLBCL81.

Recurrent somatic alterations in non-protein-coding genes. The
landscape of mutations affecting ncRNA in PCNSL was comparable

to ABC-DLBCL, apart from significantly more mutations in
AL122127.1 and AL122127.4 (Fig. 3a), situated in the IGH locus,
and in RP11-211G3.2, situated in the first intron of BCL6. While the
implications of these mutations are unclear, it is possible that these
mutations are accumulated as part of the SHM/aSHM process
affecting IGH and BCL6. Additionally, we identified recurrent
aberrations in the aSHM target MIR142 (80%; Fig. 3a, b) as well as
MALAT1 (70%) and NEAT1 (60%), both located 53 kb apart on
11q13.1. The mechanistic roles of many ncRNAs are poorly
understood because their exact function is difficult to assess.
However, the lncRNAs NEAT1 (nuclear enriched abundant tran-
script 1) andMALAT1 (metastasis-associated lung adenocarcinoma
transcript 1) are well known to play essential roles in the devel-
opment and progression of various cancers by influencing gene
expression by alternative splicing and epigenetic modification of
regulatory elements82–84. Both, MALAT1 and NEAT1, which have
not been linked to PCNSL before are known to be mutated and
highly expressed in DLBCL34 and predict poor prognosis85,86.
Further aberrations in lncRNAs affected KCNQ1OT1 (33%) and
SNHG3 (23%), both reported to have oncogenic functions in
multiple cancers87,88 as well as SNHG14 (37%), promoting immune
evasion in DLBCL89.

Kataegis shapes the mutational repertoire of PCNSL. Kataegis
is a pattern of mutational hotspots that has been associated with a
number of cancers90, and is a frequent consequence of AID
activity in lymphomas91. Many of the recurrently mutated genes
in PCNSL were dominated by alterations that are located in these
highly mutated hotspots11, of which several have previously been
described as targets of aSHM, such as OSBPL10, PIM1, BTG2, and
PAX5 (Fig. 3b)25,53,80. Of the 50 identified protein-coding driver
genes and the top 50 mutated ncRNA in PCNSL, 15 and 21 were
targeted by kataegis, respectively (Figs. 2a, b, 3a, b, additional
supplement [https://doi.org/10.5281/zenodo.6054242]92. Con-
sistent with previous reports93, expression of miRNA, lncRNA,
antisense RNA, and protein coding genes with kataegis loci were
expressed significantly higher than those without (Wilcoxon rank
sum test, p < 0.05; Fig. 3c). This implicates that either aSHM
preferentially targets highly expressed genes, or that aSHM may
cause hyperactivation of these genes. Interestingly, the largest
difference in RNA expression was observed in miRNA genes,
again highlighting the importance of the non-coding alterations
in PCNSL. This observation was consistent for subgroups,
including systemic DLBCL (Supplementary Fig. 5).

Physiologically, SHM is the process of introducing mutations
in the antibody genes to alter the antigen-binding site, increasing
the immunoglobulin (IG) diversity94. Kataegis events were at IGH
(100%), IGL (100%) and IGK (70%) loci but were also found
outside IG loci, targeting BTG2 (63%), GRHPR (50%), PIM1
(43%), DTX1 (40%), OSBPL10 (37%), ZNF860 (37%), BCL6
(33%), RHOH (33%), CXCR4 (30%), BACH2 (27%), and PAX5
(27%; Fig. 3b). The recurrently targeted genes in PCNSL mostly
overlapped with those targeted in ABC-DLBCLs. However,
samples with mutational hotspots in BTG2, GRHPR, OSBPL10
and ZNF860 were significantly more frequent in PCNSL (in 18,
15, 11 and 11 of 30 samples, respectively) compared to ABC-like
DLBCL (in 2, 0, 0 and 0 of 13 samples, p= 0.009, 0.001, 0.019 and
0.019, Fisher’s exact test, respectively). Taking all non-IG genes
that overlapped a mutational hotspot in at least one PCNSL
sample (242 genes, Supplementary Data 7), we found the BCR
signaling pathway to be most significantly enriched (Enrichr
enrichment test, adjusted p= 0.0046). Taken together, kataegis
and aSHM play a decisive role in shaping the mutational
repertoire of PCNSL and are associated with functional pathways
in PCNSL pathogenesis.
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While patterns of aSHM and kataegis were similar between CNSL
and systemic DLBCL subtypes, we identified that EBV+CNSL cases
did not share many of the recurrent mutational hotspots apart from
IGH and the HLA-DRB locus. (Fig. 3b, Supplementary Fig. 6a, b,
Supplementary Data 5).

Recurrent copy number alterations (CNAs). Compared to sys-
temic ABC-DLBCL and GCB-DLBCL of which the copy number
profiles reflected previously published results34,60,95, PCNSL
demonstrated significantly more CN losses in 6p21 (HLA-D locus,
Fig. 4a–c, Supplementary Data 8) as well as recurrent losses in 9p21
(MTAP, CDKN2A/B) and 19p13 (CDKN2D). The loss of the HLA-
D locus that encode for MHC class II molecules lead to reduced
immune surveillance and poor survival in DLBCL96. CDKN2A is
an established tumor suppressor gene with roles in angiogenesis,
cell death, invasiveness, and growth suppression97–99. Additionally,

we found deletions on chromosomes 1p13 and 3q13, affecting
genes such as CD58 and CD80, both candidates reported to lead to
immune evasion100. Further CN losses were detected on chromo-
somes 8q12 (TOX), 12p13 (ETV6), and 15q21 (B2M) as well as
3p14, affecting the fragile site tumor suppressor gene, fragile his-
tidine triad (FHIT). TOX deletions have been previously described
by array-based imbalance profiling101. TOX is required for the
development of various T-cell subsets and was described as putative
tumor suppressor in MCD DLBCL30. TOX downregulation has
been associated with poor prognosis in different cancers102 and is a
predictor for anti-PD1 response103. Significant CN gains in PCNSL
mapped to 2q37 and 18q21 affecting DIS3L2 and MALT. DIS3L2
encodes for an exoribonuclease that is responsible for Perlman
syndrome104 and was recently described to promote HCC tumor
progression by upregulating production of the oncogenic isoform
of RAC1, RAC1B105. MALT is a regulator of NFκB signaling and
potential therapeutic target in B-cell lymphoma106.
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Recurrent structural variations (SVs). We defined SVs as
genomic breakpoints, which can correspond the borders of
amplifications and deletion, but also balanced translocations and
inversions. PCNSL showed a median of 147 SVs (range: 24–517,
Supplementary Data 2). IG gene rearrangements were found in all
PCNSL, ABC-DLBCL, and GCB-DBCL cases and affected
the IGH (100, 100, and 100%), IGL (73, 46, and 31%) and IGK

(87, 54, and 63%) loci. Furthermore, direct SVs affected FHIT (73,
23, and 38%), CDKN2A (67, 38, and 25%), BCL6 (37, 21, and
19%), OSBPL10 (33, 8, and 13%), ETV6 (33%, 15%, 6%), PAX5
(27, 0, and 13%), PIM1 (23, 0, and 6%), TOX (23, 8, and 19%),
BTG2 (23, 8, and 0%), WWOX (23, 8, and 25%), as well as CD58
(20, 8, and 19%; Fig. 4d, Supplementary Data 9). WWOX and
FHIT represent common fragile site (CFS) and have been clas-
sified as tumor suppressor genes in DLBCL107,108.

Recent studies have shown that translocation can act as
enhancer hijacking even when the events is several hundred
thousand base-pairs away from target genes109. To investigate
this, we also annotated SV breakpoints to genes within 100 kbp
and also to the closest genes. We found a number of genes
involved in G protein-coupled receptor signaling (ARAP2,
LPHN2, LPHN3, EPHA4, ADGRL2, and GPC5) consistent with
observations in pan-cancer studies110. A number of other genes
exhibited at least three times as many distal translocations (while
still being the closest gene) than directly on the gene, including
PIK3C3, EPHA4, SI, ALCAM, NCAM2, CADM2, CDH9,
PABPC4L, GRIK2, POM121L12, ACO1, KLHL1, SLITRK1, and
SLITRK6. Hyperactivation of PI3K signaling is one of the most
common events in human cancers, and PIK3C3 has been shown
to promote cell proliferation111 and autophagy112, and its
inhibition has shown therapeutic benefit in bladder, hepatocel-
lular (HCC), and colon cancer113–115. EPHA4 has been described
to promote cell proliferation and migration116,117 and was
associated with tumour aggressiveness and poor patient survival
in human breast and rectal cancer118,119. Inhibition of EphA4 has
been shown to overcome intrinsic resistance to chemotherapy120.
Many of these other potential enhancer-hijacking targets do not
have well-established roles in cancer pathogenesis, however, we
did notice a number of genes involved in cell adhesion (ALCAM,
NCAM2, CADM2, and CDH9) and 2 SLIT and NTRK like family
members (SLITRK1, SLITRK6).

Immunoglobulin translocations implicate distinct CNSL sub-
types. IG translocations are established oncogenic drivers of many
lymphatic neoplasms121–123. IGH-BCL6 fusions are recurrent in
PCNSL24, which mirrors observations of ABC-DLBCL124. IGH-
BCL2 fusions are more prominent in GCB-DLBCL125. We inves-
tigated the recurrent translocations (≥2 patients) in our cohort and
identified five CNSL samples with IGH-BCL6 translocations
(Fig. 5a and Supplementary Fig. 7a–d). We also identified three
cases with IGH-BCL2 translocations (Fig. 5b and Supplementary
Fig. 7e, f) one in each of SCNSL, SCNSL-M, and PCNSL-M,
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Fig. 4 Genomic structural variation in PCNSL. Recurrent somatic CNAs in
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showing the presence of at least one copy number gain (orange bars), copy
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shown (upper and lower panel). For GCB-DLBCL, we added TP53 as this
was detected in a significant broad deletion (Gistic2 p-value 0.0311), and
the focal peak falls on the region including TP53. Circular visualization of
genome rearrangements in PCNSL (d). The panels (from outside going
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further implicating that meningeal and secondary CNSL are dis-
tinct from intraparenchymal PCNSLs. Two PCNSL cases showed
IGL and IGH translocations with breakpoints close to CD274 (PD-
L1; Fig. 5c, Supplementary Fig. 7g), which resulted in strong PD-L1
protein expression (Supplementary Fig. 7h) and therefore impli-
cates a potential target for immunotherapy. All other, non-
recurrent translocations are listed in Supplementary Data 10.

The analyses of the IG breakpoints provided in all informative
junctions evidence that these occurred due to illegitimate CSR or
aberrant SHM, with the notable exception of the IGH-BCL2
junctions, which were the consequence of an aberrant VDJ
rearrangement (Supplementary Data 11). Thus, all IG transloca-
tions in PCNSL are supposed to occur in the GC process rather
than in a pre B-cell.

Mutational signatures in PCNSL. Mutational signatures were
analyzed with regard to SNVs (single base substitutions,
SBS) and indels (ID) of all tumor samples as defined by

Alexandrov et al.126 (Fig. 6). For single base substitution sig-
natures (SBS) we found mutational patterns that have been
associated with spontaneous deamination of 5-methylcytosine
(SBS1), defective activity of the AID/APOBEC family (SBS2),
failure of double-strand DNA break repair by homologous
recombination (SBS3), SHM (SBS9), and damage by reactive
oxygen species (SBS18). Additionally, the samples frequently
revealed mutations caused by mutational signatures SBS5,
SBS17b, and SBS40, which are of unknown etiology (Fig. 6a). The
presence of SBS3, hallmark of defective DNA break repair by
homologous recombination, and SBS40 may be therapeutically
relevant as these indicate potential effectiveness of combination
therapy with PARP inhibitors (e.g., Olaparib) alongside cytotoxic
chemotherapy127,128. The three most prominent signatures in
DLBCL, FL, and CNSL were SBS9, SBS5, and SBS40 (Fig. 6b).
Direct comparison of PCNSL and DLBCL revealed that signature
SBS1, which correlates with DNA replication at mitosis (mitotic
clock)126, was significantly enriched in PCNSL (p= 0.0027;
Fig. 6c, Supplementary Fig. 8a–g).
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Analysis of small insertion and deletion signatures (ID)
revealed mutational patterns associated with slippage during
DNA replication of the replicated DNA strand (ID1) and
template DNA strand (ID2); both of these signatures appeared
significantly (p < 1 × 10−4, Wilcoxon) more prominent in PCNSL
compared to DLBCL and FL (Fig. 6d), though different read-
depths may have influence this analysis.

Interestingly, only CNSL samples but not DLBCL or FL
revealed mutations caused by mutational signature ID12 that is of
unknown etiology and has been observed in prostate adenocarci-
noma and soft tissue liposarcoma126.

PCNSL RNA expression signatures are distinct from systemic
DLBCL. The relative rarity of PCNSL and limited availability of
fresh frozen tissue have thus far complicated the implementation
of larger molecular studies needed for patient stratification. To
unravel the molecular signature of PCNSL, we employed an
unsupervised consensus clustering approach (using the cola
tool129) to identify expression groupings between PCNSL samples
and samples from the ICGC MMML-seq project (mainly con-
sisting of non-GCB and GCB type DLBCLs, and FLs). This
yielded the following major clusters: FL, PCNSL, GCB-type
DLBCL, ABC-type DLBCL, non-tumorous GC B-cells, and naïve
B-cells (Fig. 7a). For each cluster, we identified signature gene sets
that significantly correlated with the groupings. Interestingly, all
meningeal PCNSL (PCNSL-M) and SCNSL-M grouped together

with either GCB- or ABC-DLBCL, clearly indicating that these
subtypes are molecularly and pathomechanistically distinct from
intraparenchymal CSNL, which formed one separate cluster
suggesting a distinct signature of CNS tropism. The ABC-type
DLBCL cluster was enriched for MYD88 mutant samples, which
were still distinct from MYD88 mutant PCNSL at the gene
expression level (Fig. 7a).

To further exclude an impact of potentially contaminating
surrounding CNS tissue on gene expression signatures, we analyzed
total RNA from normal brain controls (n= 2) and compared this
to PCNSL. To investigate the gradient of various tumor cell
contents of samples, we spiked increasing concentrations of RNA
from non-diseased brain tissue into a PCNSL sample with very
high tumor cell content (0, 20, 40, 60, and 80%). Then, we further
stratified the PCNSL group by another round of consensus
clustering using two different classification methods, which both
revealed two groups (Fig. 7b and Supplementary Fig. 9a–c). The
first PCNSL expression group (PCNSL subcluster 1) consisted of
samples with high tumor cell content (determined by WGS and
histopathological analysis). Expression of its signature gene set did
not show similarity to normal brain tissue expression. However, the
second PCNSL expression group (PCNSL subcluster 2) contained
mainly samples with lower tumor cell content, and expression of its
signature gene set was indeed similar to normal brain tissue
expression (Fig. 7b). We identified the PCNSL signature gene sets
relative to ABC and GCB type DLBCLs and FLs, and removed
potential background signatures from contaminating brain tissue.
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The marker genes in each group were identified based on
differential gene expression analysis (Supplementary Data 12).
Among the marker genes for PCNSL were e.g., LAPTM5, a CD40-
related gene expressed in malignant B-cell lymphoma130 and
ITGAE, mediating cell adhesion, migration, and lymphocyte
homing through interaction with E-cadherin131. We used
Metascape68 for functional analysis of marker genes. Further
pathway and process enrichment analysis revealed that pathways
such as ‘ribonucleoprotein complex biogenesis, ‘mRNA processing’,
‘cell cycle’, ‘RNA modification’, ‘DNA conformation change’, and
‘DNA-templated transcription, initiation’ were enriched (Supple-
mentary Fig. 9d). The top three level Gene Ontology biological
processes included ‘cellular component organization or biogenesis’,
‘metabolic process’, and ‘localization’ (Supplementary Fig. 9e).

Expression of IGHM is characteristic for PCNSL. Additionally,
we analyzed the expression of IG constant genes, which again
revealed the same clusters as the unsupervised consensus clus-
tering approach, demonstrating that PCNSL can be differentiated
from DLBCL based on only the expression of IG constant genes.
In contrast to DLBCL and FL, PCNSL show generally low
expression of IG constant genes, but higher expression of IGHM
(Fig. 7c).

TERT expression but not telomere content upregulated in
PCNSL. Telomerase activity and telomerase reverse transcriptase
(TERT) gene expression have been reported as prognostic factors

in PCNSL patients132. We used TelomereHunter, a software for
detailed characterization of telomere maintenance mechanisms133

to estimate the telomere content in a representative cohort of
PCNSL, SCNSL, peripheral lymphoma, as well as non-tumorous
naïve and GC B-cells as control59. In approximately 1/3 of the
samples, the TCC-corrected telomere content was higher in the
tumor than in the matched control (whole blood) (Fig. 8a and
Supplementary Fig. 10a). Nevertheless, telomere content was not
significantly different between the different histological, clinical
and molecular subgroups irrespective of whether the results were
corrected for TCC (Fig. 8b and Supplementary Fig. 10b (tumor/
control log2 ratio)) or not (Supplementary Fig. 10c (uncorrected
for the control sample)). As expected, we found a negative cor-
relation between age and telomere content in the control (Sup-
plementary Fig. 10d). However, expression of the TERT gene, the
main activity of the encoded protein is the elongation of telo-
meres, was significantly higher in GC B-cells59 and in PCNSL
compared to ABC-DLBCL (Fig. 8c and Supplementary Fig. 10e).
This was consistent with observations when stratifying samples
by RNA subgroups, where TERT expression was significantly
higher in PCNSL compared to ABC-DLBCL, GCB-DLBCL, and
FL (Fig. 8d).

Interestingly, the higher TERT expression in PCNSL signifi-
cantly correlated with normalized telomere content (uncorrected
for the control sample: Pearson’s R= 0.67, p= 0.003; (Fig. 8e)
and telomere content T/C log2 ratio (Supplementary Fig. 10f)).
However, SCNSL-M, DLBCL and FL did not show such trends
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(R=−1, p= 0.3, R=−0.06, p= 0.7, and R= 0.07, p= 0.7,
respectively (Fig. 8e)). This suggests that TERT has an active role
in combatting telomere degradation in PCNSL. Two well-known
promoter hotspot mutations (−124C>T (C228T) and −146C>T
(C250T)) have been described to increase TERT expression and
cell-cycle progression134,135. These mutations have been found in
several solid and hematological malignancies including different
brain tumors and PCNSL136–138. Therefore, we next investigated
the TERT promoter mutation status in our WGS (n= 38) and
FFPE extension cohort (n= 31). Sanger sequencing of the TERT
promoter region was performed (i) for all WGS samples having
only low coverage in the promoter sequence (below 40×, n= 6,
Supplementary Fig. 10g), (ii) the FFPE extension cohort, and (iii)
three oligodendrogliomas, known to carry high frequency TERT
promoter mutation139. We detected no TERT promoter muta-
tions in 67 samples of PCNSL and SCNSL (Supplementary
Data 5, Supplementary Fig. 10h), while the well-known TERT
rs2853669 polymorphism, which has been associated with
increased cancer risk140, was identified in 40% (14/35 (8 PCNSL,
6 SCNSL)) of the patients in the extension FFPE cohort. The
Sanger sequencing results of two samples were not conclusive.

Discussion
Here we have performed a comprehensive analysis of recurrent
protein coding and non-coding mutations, CNVs, SVs, and driver
mutations in a large cohort of PCNSL and compared the
genetic features to systemic DLBCL and FL. The vast majority of
PCNSLs are of non-GCB-DLBCL subtype141 and share many
genetic alterations with non-CNS ABC-DLBCL in the same
signaling pathways. Previous studies made use of whole-exome
sequencing25,53 which (i) limits the investigation to protein-

coding regions and (ii) may not be ideal for understanding the
patterns of mutational hotspots—e.g., attributed to AID induced
SHM in B-cell non-Hodgkin lymphomas142—as well as the
structural variation in genomes143. PCNSL showed significantly
more SNVs and indels compared to systemic DLBCL, even in
intronic and intergenic regions, also underlining the importance
of non-protein coding aberrations in PCNSL pathogenesis.
Many of the recurrent mutations in non-protein coding genes
affected non-coding RNAs (ncRNAs), which are among other
functions involved in epigenetic regulation of gene expression,
cell differentiation, and development82,144. The molecular
profile of SCNSL, on the other hand, corresponded to that of
systemic DLBCL.

In line with previous results25,43,145, we here demonstrate that
PCNSL are defined by recurrent and often biallelic CDKN2A
deletions, MYD88 L265P mutations, and mutations that activate
BCR signaling, genetic hallmarks of the DLBCL subtype MCD/
C530,31. Furthermore, we found high frequencies of SVs affecting
the IGH, IGL, and IGK loci as well as losses of chromosome 6p
affecting the HLA gene complex as a mechanism to escape
recognition by cytotoxic T-cells146. MYD88 L265P mutation and
CDKN2A loss have been described as early mutational events in
PCNSL45 and we confirmed both to be major drivers in PCNSL.
While TP53 alterations seem to play a minor role in PCNSL, the
CDKN2A/B genes encode several proteins that regulate either the
p53 (p19 ARF) or the RB1 (p16 INK4a) pathway147,148, under-
lining the relevance of the TP53 pathway in the context of PCNSL
and cell cycle control.

The frequencies of MYD88 mutations had varied between 38
and 94% in previous PCNSL studies26,31,53,54,149, which might
reflect a selection bias among small study populations, given the
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rarity of PCNSL. This huge range could alternatively result also
from an imprecise definition of PCNSL, which includes all
malignant NHL within the brain, eyes, spinal cord, or leptome-
ninges without systemic involvement. In contrast, we here defined
PCNSL as only intraparenchymal CNS-DLBCL and found a high
prevalence of the MYD88 L265P variant in this cohort (WGS
cohort, extension FFPE cohort; mean: 73%). This is further
supported by our robust classification of PCNSL by the RNA
sequencing results, which demonstrated that the expression
profiles of PCNSLs were distinct from PCNSL-M, SCNSL-M, and
peripheral DLBCL without CNS manifestation, the latter three
entities sharing similar profiles.

Moreover, SHM has previously been described as having a
pathogenic role in PCNSL development and that its extent was
greater there than in systemic DLBCL80. In agreement with
previous reports, we identified several aSHM targets including
the proto-oncogenesPIM1, PAX5, BTG2, and OSBPL1025,53,80.
Exploiting a WGS approach, we observe additional mutational
hotspots indicative of aSHM also in other genes including
MIR142, FHIT, ETV6, BTG1, GRHPR, and CD79B. Our data
suggest that katagis loci are reasonable indications of aSHM. We
observed significantly higher RNA expression of genes with
putative aSHM loci compared to those without. In addition, these
putative aSHM loci were significantly enriched in genes involved
in BCR signaling. Together this implicates that BCR signaling
genes are both upregulated and targeted by putative aSHM,
raising the question of cause and effect—is aSHM upregulating
these genes, or is the high expression levels of these genes priming
them for aSHM? This becomes even more complex when con-
sidering that highly expressed genes should have lower muta-
tional rates due to transcriptional coupled repair150.

The landscape of CNAs and SVs revealed potentially clini-
cally exploitable deletion of TOX as a predictor for anti-PD1
response103, amplification of MALT1, whose inhibition has
been shown to be selectively toxic for ABC-DLBCL151, and
potential enhancer-hijacking events involving PIK3C3 and
EPHA4, whose inhibition has shown therapeutic advantage in a
number of cancer models113–115,120.

While the genetic landscape of PCNSL was described in some
detail before16–18,20,24,25,45,53,55, studies investigating the global
gene expression profile of PCNSL have been scarce so far.
Therefore, we performed RNA sequencing of 37 CNSL samples
and 2 normal brain controls. Global gene expression profiles
demonstrates that PCNSL are indeed distinct and can be dis-
tinguished from systemic ABC-DLBCL. This was perfectly mir-
rored based on the expression repertoire of IG constant genes,
implicating the role of B-cell maturation in classification of
PCNSL and other lymphomas, as employed in leukemia and
multiple myeloma152,153.

PCNSL are highly proliferative154. TERT activation confers
unlimited proliferation, and activating TERT promoter mutations
are frequent in different types of human cancers155. Mutations at
two hotspots positions (−124G>A and −146G>A) are causal for
enhanced TERT promoter activity. Bruno et al. have previously
reported these TERT promoter mutations to be present in PCNSL
located in the splenium136. Therefore, we investigated 69 CNSL
(including 49 PCNSL), but could not identify any TERT promoter
mutations suggesting that this mechanisms of TERT activation is
likely not relevant in PCNSL. Yet, we observed significantly more
TERT expression in PCNSL compared to non-CNS ABC-DLBCL
and this was consistent when stratifying the cohort based on our
RNAseq subgrouping. However, we were not able to identify
increased telomere content in PCNSL (or MCD) compared to the
other groups, suggesting a role of telomere maintenance to
overcome telomere shortening, which is imposed by the high
levels of proliferation. This concept was supported by a within-

group correlation of TERT expression and normalized telomere
content (Pearson’s R= 0.67, p= 0.0023), implicating a role of
TERT in overcoming telomere degradation in PCNSL. Supporting
the high proliferation in these tumors, PCNSL showed sig-
nificantly elevated presence of the mutational signatures SBS1,
which correlates with DNA replication, as well as of ID1 and ID2
which are associated with slippage during DNA replication.

With our study, we have substantiated the genomic and tran-
scriptomic alterations characterizing PCNSL. We show that
PCNSL can be clearly distinguished from systemic DLBCL,
having distinct expression profiles, IG expression, and translo-
cation patterns, as well as specific combinations of genetic
alterations that are characterized by genomic instability, BCR
activation, and most importantly, oncogenic TLR and NFκB
signaling, which should be in the focus of future drug
development.

Methods
CNS lymphoma (CNSL) study cohort. All procedures performed in this study
were in accordance with the ethical standards of the respective institutional
research committees and with the 1964 Helsinki declaration and its later amend-
ments or comparable ethical standards. The ethics committee of the Medical
Faculty Heidelberg and the Charité ethics committee (Charitéplatz 1, 10117 Berlin,
Germany, approval number: EA1/245/13) approved the study. Informed consent
was obtained from all participants in the study. Fresh frozen and paraffin-
embedded PCNSL and SCNSL tumor tissue and matching blood samples (germline
control) were acquired from the Department of Neuropathology, Charité, Berlin
(Germany), and the Department of Neurosurgery, Heidelberg (Germany) from
chemotherapy-naïve patients. Age at diagnosis, tumor localization, peripheral
manifestation (bone marrow biopsy result, CT/MRI scan), first line therapy, as well
as overall survival (OS) in months were evaluated. Additional control samples from
age-matched, postmortem, and non-neoplastic brain (n= 2) were analyzed. The
diagnosis was confirmed by at least two experienced (neuro)pathologists. The
morphologic characteristics were assessed by using the fresh-frozen (FF) as well as
the formalin-fixed and paraffin-embedded (FFPE) tissue sections of the respective
tumor specimen. The tumor cell content in the cryopreserved sample material was
estimated to be at least 60% based on histomorphological evaluation. Immuno-
phenotypic characterization was performed on FFPE tissue sections (Supplemen-
tary Fig. 1b) of each tumor biopsy using an immunohistochemical panel including
antibodies directed against CD20, CD10, BCL6, CD3, Ki67, MUM1/IRF4, and EBV
(LMP1). To further exclude an EBV association, all cases with unclear EBV
immunohistochemistry (n= 9) were investigated by an EBV-specific PCR as pre-
viously described156 (Supplementary Fig. 1c, see “Methods”). For classifying GCB
or non-GCB types, all samples were stratified according to the Hans classification12

(CD10, BCL6, MUM1). We enrolled CNSL from a total of 51 patients for whole-
genome (WGS, n= 38) and RNA sequencing (RNAseq, n= 37), including
n= 24 samples subjected to both workflows. The study cohort and sample size as
well as the experimental design, analysis workflow, diagnosis, and quality metrics
of WGS and RNAseq are displayed in Fig. 1 and Supplementary Data 1. We
included DLBCL confined to the CNS as PCNSL according to the recent WHO
classification of tumors of hematopoietic and lymphoid organs and one of the
tumors of the central nervous system. DLBCL, which presented initially with
systemic, non-CNS, or synchronous systemic and CNS involvement were included
as SCNSL1,2,11,61,62. In our SCNSL cohort, three patients presented with initial
lymph node manifestation, one patient with testicular involvement, and three
patients with involvement of parotid gland, liver, or urinary tract, respectively.

ICGC MMML-Seq Consortium samples. For comparison, we used and reanalyzed
an early release of meanwhile published whole-genome and RNA sequencing data
obtained by the ICGC MMML-Seq Consortium from systemic diffuse large B-cell
lymphoma (DLBCL, total: n= 36, WGS: n= 29, RNAseq: n= 36, both workflows:
n= 29), follicular lymphoma (FL, total: n= 39, WGS: n= 39, RNAseq: n= 38,
both workflows: n= 38), and one “double hit” (DH)-lymphoma with a molecular
BL signature34. In addition, we included WGS and RNAseq data from a single
EBV-PCNSL case as well as RNAseq data from two nodal marginal zone lym-
phomas (nMZL) as well as naïve (n= 5) and GC B-cells (n= 5) as normal
controls157. These data were obtained by the ICGC MMML-Seq consortium in
accordance to protocols previously published59,60.

DNA and RNA isolation. DNA and RNA were obtained from fresh frozen CNSL
tumor samples. RNA and genomic DNA were isolated from 15 to 30 10 μm
cryosection slices (depending on the tissue size). DNA from tumor samples and
their matched blood controls was isolated according to standard procedures. Total
RNA from tumor samples was extracted using the RNeasy® Plus Mini Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. The RNA integrity
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number (RIN) was determined using an Agilent 4200 TapeStation system (Agilent
Technologies, Santa Clara, CA).

Whole-genome sequencing and data processing
Whole-genome sequencing. The DNA libraries of the tumor and matched control
samples were prepared according to the Illumina TruSeq Nano DNA Library
protocol using the TruSeq Nano DNA library Preparation Kit (Illumina, Hay-
ward, CA; estimated insert size of 350 bp). Paired-end sequencing was per-
formed on Illumina HiSeq X (2 × 150 bp) instruments using the TruSeq SBS kit,
Version 3.

Alignment of sequencing reads. Sequencing reads were aligned using the DKFZ
alignment workflow from ICGC Pan-Cancer Analysis of Whole Genome projects
(DKFZ AlignmentAndQCWorkflows v1.2.73, https://github.com/DKFZ-ODCF/
AlignmentAndQCWorkflows). Briefly, read pairs were mapped to the human
reference genome (build 37, version hs37d5) using bwa mem (version 0.7.8) with
minimum base quality threshold set to zero [-T 0] and remaining settings left at
default values158, followed by coordinate sorting with biobambam bamsort (version
0.0.148) with compression option set to fast (1) and marking duplicate read pairs
with biobambam bammarkduplicates with compression option set to best (9)159.
To allow the required and meaningful comparability to previous whole genome
sequencing studies in lymphomas34,95,160,161, the human reference genome version
GRCh37/hg19 was used.

Small mutation calling and annotation. Somatic small variants (SNVs and indels)
in matched tumor normal pairs were called using the DKFZ in-house pipelines
(SNVCallingWorkflow v1.2.166-1, https://github.com/DKFZ-ODCF/SNVCalling
Workflow; IndelCallingWorkflow v1.2.177, https://github.com/DKFZ-ODCF/
IndelCallingWorkflow) as previously described162. Briefly, the SNVs were iden-
tified using samtools and bcftools version 0.1.1957163 and then classified as
somatic or germline by comparing the tumor sample to the control, and later
assigned a confidence which is initially set to 10, and subsequently reduced based
on overlaps with repeats, DAC blacklisted regions, DUKE excluded regions, self-
chain regions, segmental duplication records as introduced by the ENCODE
project164 and additionally if the SNV exhibited PCR or sequencing strand bias.
Only SNVs with confidence 8 or above were considered for further analysis.
Tumor and matched blood samples were analyzed by Platypus165 to identify
indels. Indel calls were filtered based on Platypus internal confidence calls, and
only indels with confidence 8 or greater were used for subsequent analysis. In
order to remove recurrent artifacts and misclassified germline events, somatic
indels that were identified as germline in at least two patients in the CNS lym-
phoma cohort were excluded.

The protein coding effect of somatic SNVs and indels from all samples were
annotated using ANNOVAR166 according to GENCODE gene annotation (version
19) and overlapped with variants from dbSNP10 (build 141) and the 1000
Genomes Project database. Mutations of interest were defined as somatic SNV and
indels that were predicted to cause protein coding changes (non-synonymous
SNVs, gain or loss of stop codons, splice site mutations, and both frameshift and
non-frameshift indels), and also synonymous exonic mutations on non-
coding genes.

Tumor in normal contamination detection. We applied the TiNDA (tumor in
normal detection algorithm) workflow to account for potential tumor in normal
contamination leading to false negative calls as previously described162. The
TiNDA algorithm is implemented in the DKFZ indel calling workflow (v1.2.177,
https://github.com/DKFZ-ODCF/IndelCallingWorkflow). Briefly, the B-allele fre-
quency (BAF) was calculated from the tumor and control samples. Positions
overlapping with common variants were filtered out. Then, the clustering algo-
rithm from Canopy167 was applied to the BAF values for the positions in tumor vs
control using a single pass run, assuming 9 clusters. The clusters that were
determined to be tumor-in-normal had to have 75% of positions above the identity
line (where the VAF in the tumor sample is the same as the VAF in the control
sample). These identified mutations were then reclassified as somatic instead of the
original germline annotation. All but 4 CNSL WGS samples exhibited evidence for
tumor in normal. On average 31 SNVs (range 0–136) were “rescued” in PCNSL, 6
in PCNSL-M (6-6, single sample), 27 (19–34) in SCNSL, 22 (9–43) in SCNSL-M,
and 0 in the EBV-positive sub-cohorts (0-0, 2 samples). In total, only 6 SNVs with
protein coding effects were rescued, including the MYD88 p.L265P mutation in
sample LS-0102, which had 3 of 47 read support in the control, and 86 of 170 reads
supporting the variant in the tumor sample (Supplementary Data 13). In our series,
we only found a very low level of tumor in normal. The rescued mutations followed
a genomic distribution similar to the overall mutational landscape of PCNSL. We
observed that rescued mutations were 1% exonic (compared to 1% in the muta-
tional landscape), 32% intronic (c.f. 33%), 53% intergenic (c.f. 55%), and 13% on
ncRNA (c.f. 12%).

Genomic structural rearrangements. Genomic structural rearrangements (SVs)
were detected using SOPHIA v.34.0168 as implemented in the DKFZ structural

variation calling workflow (SophiaWorkflow:1.2.16, https://github.com/DKFZ-
ODCF/SophiaWorkflow). Briefly, SOPHIA uses supplementary alignments as
produced by bwa-mem as indicators of a possible underlying SV. SV candidates are
filtered by comparing them to a background control set of sequencing data
obtained using normal blood samples from a background population database of
3261 WGS samples from patients from published ICGC-PedBrain, ICGC-
MMMLseq and ICGC-Prostate studies and DKFZ-HIPO studies, sequenced using
Illumina HiSeq 2000, 2500 (100 bp) and HiSeq X (151 bp) platforms and aligned
uniformly using the same workflow as in this study. All studies have been approved
by appropriate ethics committees. Gencode V19 was used for the gene annotations.
We used the script draw_fusions.R from the Arriba package169 to visualize SVs
generated by SOPHIA.

Copy number alterations and allelic imbalances. Allele-specific copy-number
aberrations were detected using ACEseq (allele-specific copy-number estimation
from WGS)170 as implemented in the DKFZ CNV calling workflow (ACE-
seqWorkflow:1.2.8-4, https://github.com/DKFZ-ODCF/ACEseqWorkflow). ACE-
seq determines absolute allele-specific copy numbers as well as tumor ploidy and
tumor cell content (TCC) based on coverage ratios of tumor and control as well as
the B-allele frequency (BAF) of heterozygous SNPs. SVs called by SOPHIA were
incorporated to improve genome segmentation.

Final copy number segments were further smoothed to calculate the total
number of gains and losses. Neighboring segments were merged if they rounded to
the same copy number and deviated by less than 0.5 copies in case of segments
<20 kb or deviated by less than 0.3 copies otherwise. Remaining segments <500 kb
were merged with their closer neighbor based on allele-specific and total copy
number and once again segments smaller than 2Mb deviating by less than 0.4
copies were merged. Based on the resulting segments the number of gains and
losses was estimated.

Furthermore, the fraction of aberrant genome was calculated as the fraction of
the genome that is classified either as duplication or deletion (>0.7 deviation from
the ploidy) or was identified as a loss of heterozygosity.

Classification of mutational hotspots (kataegis events). Mutational hotspots indi-
cating putative kataegis events (likely due to SHM or aberrant SHM (aSHM)) were
defined as regions with at least 6 somatic SNVs within an average intermutational
distance of 1000 bp or less, as previously used by Alexandrov and colleagues90. A
gene was described to be targeted by kataegis if its definition (from Gencode
version 19 gene models) overlapped with at least 1 kataegis region in at least
1 sample. While many of these kataegis loci are indeed SHM/aSHM targets, located
2.5 kb from the transcription start site (TSS), we cannot completely control for all
PCNSL-specific TSSs due to the normal brain background tissue.

Mutational signatures. Supervised mutational signature analysis was performed
using YAPSA development version 3.13171 using R 4.0.0. Briefly, the linear com-
bination decomposition (LCD) of the mutational catalog with known and pre-
defined PCAWG COSMIC signatures126 was computed by non-negative least
squares (NNLS). The mutational signature analysis was applied to the mutational
catalogs for SNVs (or single base substitutions, SBS) and indels of all tumor
samples. Signature-specific cutoffs were applied and cohort level analysis was used
for detecting signatures as recommended by Huebschmann et al.34. The cutoff used
corresponds to “cost factors” of 10 for SNVs and 3 for indels in the modified ROC
analysis.

Integration of different variant types. SNVs, indels, SVs, and CNAs were integrated
in order to account for all variant types in the recurrence analysis. All genes with
SNVs or indels in coding regions (nonsynonymous, stop gain, stop loss, splicing,
frameshift, and non-frameshift events) and ncRNA (exonic) were included. Any
SV with breakpoints directly lying on a gene (SV direct) were considered for
oncoprints, however, SVs were also annotated to a gene when they were either
within 100 kb of a gene (SV near), or to the closest gene (SV close) for SV
recurrence analysis to account for regulatory mutations such as enhancer
hijacking events. Genes were annotated with CNAs if they were completely or
partially affected. Chromosome level CNVs events were determined once >30% of
a chromosome arm was altered. Only focal CNA events were taken into account
for variant integration, as these are more likely to target specific genes within the
affected region than large events such as whole chromosome arm events. To
capture the precise target of CNVs, we employed results from GISTIC. Finally,
genes affected by SNVs, indels, directly hit by SVs, or genes with focal CNAs were
considered for the recurrence analysis and added to the oncoprints. The mutations
were integrated and plotted as oncoprint plots using using R v3.4.0 (library yapsa
v3.13), perl v5.26.2 (libraries perl-getopt-long v2.50) and bedtools v2.16.2. SV
cohort plots were generated using perl v5.20.0, bedtools v2.24.0, R v3.3.1 (libraries
circlize v0.4.5 and dplyr v0.7.8), using the gencode v19 gene models for
annotation.

Mutual exclusivity and inclusivity analysis. Mutual exclusivity analysis was per-
formed to investigate the relationship between MYD88 mutations with other
implicated drivers from the IntOGen analysis including SNVs, indels, SVs, CNAs.
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The minimal recurrence threshold was set to 5. We applied the commonly used
Fisher’s exact test and the CoMET test172 (v0.1.5) for both co-occurrence and
mutual exclusivity using R (v3.4.0). Fisher’s right tailed test was used to support co-
occurrence when the number of samples with alterations in both genes is sig-
nificantly higher than expected by chance. Additionally, Fisher’s left tailed test was
used to suggest mutual exclusivity when the number of samples with alterations in
both genes is significantly lower than expected. Resultant p-values were corrected
for multiple testing by FDR.

Mutational significance analysis. The IntOGen pipeline173 algorithm was applied to
identify significant cancer drivers in the core set of PCNSL samples (n= 30) based
on the hg19 genome assembly. IntOGen v 3.0.8 was installed via conda from the
bbglab anaconda channel. The relevant conda environment setup included explicit
definitions of python v3.5.0 (with libraries scipy v0.16.0, pycurl v7.43.0.3, numpy
v1.10.0, pandas 0.17.0). In addition, a local installation of perl v5.20.3.1 (with
libraries perl-digest-perl-md5 v1.9, perl-threaded v5.26.0) was used, with installa-
tion of perl libraries Digest-MD5 v2.52 via cpan and perl-DBI v1.626 via yum
package managers. The background intogen database (bgdata) was automatically
downloaded using the command ‘intogen -setup‘ which downloaded the 20150729
background databases. The IntOGen run specific parameters included running on
4 cores, Matlab Compiler Runtime v8.1 (2013a) and MutSigCV v1.4. Significance
thresholds of 10% FDR were used for oncodrivefm, oncodriveclust and mutsig.
Sample thresholds of 2 and 5 were used for oncodrivefm and oncodriveclust
respectively. IntOGen reported 50 genes to be significant drivers.

Significant CNV were identified using GISTIC v2.0.23 using MCR v83, using
the following parameters: “-broad 1 –genegistic 1 -savegene=1 -brlen=0.8
-conf=0.2 -maxseg=2500”.

Telomere content estimation. The telomere content was determined from WGS data
using the software tool TelomereHunter59 (v1.1.0) which uses python v3.5.6 (using
libraries pyyaml v3.13, pysam v0.9.1, pynacl v1.2.1), samtools v1.3.1, bcftools v1.3.1
and htslib v1.3.2. Telomere hunter was run using default settings (filtering of
telomere reads: at least 6 telomere repeats per 100 bp read length)133. Briefly,
unmapped reads or reads with a very low alignment confidence (mapping quality
lower than 8) containing six non-consecutive instances of the four most common
telomeric repeat types (TTAGGG, TCAGGG, TGAGGG, and TTGGGG) were
extracted. The telomere content was determined by normalizing the telomere read
count to all reads in the sample with a GC-content of 48–52%. In the case of tumor
samples, the telomere content was further corrected for the tumor cell content
(TCC, as estimated by ACEseq) using the following formula as previously
described59, which corrects for inter-patient differences in telomere content
assuming that the non-malignant cells in the tumor sample have a similar telomere
content as in the control sample, as shown in Eq. 1:

TTCCcorrected ¼ ðT� Cð1� TCCÞÞ=TCC ð1Þ
Here, T and C are the telomere contents of the tumor and control sample, and

TTCCcorrected is the TCC-corrected telomere content of the tumor sample.

LymphGen classification. All WGS samples were classified according to the
LymphGen v2.0 algorithm described by Wright et al.31 which categorizes DLBCL
samples into the different genetic subtypes MCD, N1, A53, BN2 ST2, EZB (MYC
+ and MYC−), based on genetic aberrations in subtype predictor genes. The
algorithm requires information on mutations, copy-number alterations, and
fusions. The results of the DKFZ SNV and indels calling workflows were used to
define the small mutations. BCL2 and BCL6 translocations were determined by
Sophia calls, and copy number changes were derived from the DKFZ CNV
workflow (ACEseq) results. The outputs from all workflows were filtered for
somatic regions with all different variations occurring in exons and 5′UTR region
of the gene. The files were created using Python and Perl scripts based on the
description provided on the LymphGen website [https://llmpp.nih.gov/lymphgen/
LymphGenInstructions.pdf?v=1600863825]. The individual sample inputs are
further merged together to form the input dataset for the LymphGen algorithm and
uploaded to the website [https://llmpp.nih.gov/lymphgen/lymphgendataportal.
php] for classification the samples.

According to Wright et al.31, the results are displayed in Supplementary Data 1.
Samples, where only RNA was available, were listed as “NA” in Supplementary
Data 1.

RNA sequencing and data processing
RNA library preparation and sequencing. RNA libraries of the tumor samples and
normal brain samples were prepared using the TruSeq RNA library preparation Kit
Set A and B, following the manufacturer’s instructions at an insert size of ~300 bp.
Two barcoded libraries were pooled per lane and sequenced on Illumina
HiSeq2000 or HiSeq4000 platforms.

RNAseq alignment and expression quantification. RNAseq reads were aligned
and gene expression quantified using the DKFZ RNAseq workflow (v1.2.22-6,
https://github.com/DKFZ-ODCF/RNAseqWorkflow) as previously described174.
Briefly, the RNAseq read pairs were aligned to the STAR index generated reference
genome (build 37, version hs37d5) using STAR in 2 pass mode (version

2.5.2b)174,175. Duplicate reads were marked using sambamba (version 0.6.5) and
BAM files were coordinate sorted using SAMtools (version 0.1.19). featureCounts
(version 1.5.1)176 was used to perform non-strand-specific read counting for genes
over exon features based on the Gencode V19 gene model (without excluding read
duplicates). When both read pairs aligned uniquely (indicated by a STAR align-
ment quality score of 255) they were used towards gene reads counts. For total
library abundance calculations, during TPM and FPKM expression values esti-
mation, genes on chromosomes X, Y, MT, and rRNA and tRNA were omitted as
they can introduce library size estimation biases.

Hierarchical consensus clustering was applied using the cola package (version
1.5.6) with “MAD” as top-value method and “kmeans” as partitioning method.
Classification on CNS samples was applied using cola with “ATC” as top-value
method and “skmeans” as partitioning method. All other parameters took default
values129.

RNA dilution experiment. To further investigate the impact of brain tissue con-
tamination in unsupervised clustering analysis of gene expression data on PCNSL,
we performed a serial dilution experiment with total RNA from a PCNSL sample
considered “pure” (LS-027, estimated tumor cell content >80%) and a normal brain
tissue control (CTRL). Total RNA from LS-027 was mixed with CTRL RNA with
increasing concentrations (0, 20, 40, 60, and 80%) and sequenced. The z-score
transformed TPM expression levels for PCNSL subcluster 1 and subcluster 2 sig-
nature genes for the serially diluted H050-0027 sample was compared against the
cohort and individually using clustering analysis.

Differential expression (DE) analysis to identify signature genes. DE of genes was
analyzed using DESeq2 (version 1.14.1) with default settings using raw read counts
from featureCounts. Genes without any count in all samples were excluded from
the analysis.

Validation of whole-genome and RNA sequencing results
Sanger sequencing. Bidirectional Sanger sequencing (bSS) was performed (i) to
validate WGS results in the PCNSL/SCNSL study cohort if sufficient DNA
quantity was available (total: n= 35; PCNSL: n= 26; PCNSL-M: n= 1; SCNSL:
n= 2; SCNSL: n= 3; EBV+ : n= 2), and (ii) to identify mutations of recurrently
mutated candidates in a larger set of additional PCNSL/SCNSL FFPE samples
(FFPE extension cohort). The following genes were analyzed: MYD88, KMT2D
(MLL2), HLA-B, SETD1B, HIST1H1E, CD79B, BTG1, MYC, TP53, TERT,
GRHPR, TBL1XR1, DST, PRDM15, OBSCN, FAT4, GRP98, and OSBPL10.
Briefly, the PCR conditions were: 94 °C for 4 min (1 cycle), followed by 3 cycles
of 94 °C for 30 s, 61 °C for 45 s, 72 °C for 60 s, 3 cycles of 94 °C for 30 s, 59 °C for
45 s, 72 °C for 60 s, 3 cycles of 94 °C for 30 s, 57 °C for 45 s, 72 °C for 60 s, 31
cycles of 94 °C for 30 s, 55 °C for 45 s, 72 °C for 60 s, and finally extension at
72 °C for 10 min with AmpliTaq™ 360 DNA Polymerase (Applied Biosystems,
Waltham, USA). The PCR primers for the genomic regions of interest are dis-
played in Supplementary Data 14. Sequencing was performed at Eurofins
Genomics, Ebersberg, Germany. 180/189 (95%) of the selected variants (allele
frequency above 10%) identified by WGS were confirmed. The results are dis-
played in Supplementary Data 4 and 5.

Formaldehyde-fixed paraffin-embedded (FFPE) CNSL extension cohort. Candidate
genes were validated in 31 additional FFPE specimens of PCNSL (n= 19), SCNSL
(n= 9), and n= 3 EBV positive cases. The DNA was extracted using the QIAamp
DNA FFPE Tissue Kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. The following, recurrently mutated genes (exons) were investigated:
PIM1 (exons 1–4), MYD88 (exon 5), GPHPR (exons 2, 4, and 5), TBL1XR1 (exons
7, 8, 10, 12, and 14), KMT2D (exons 32, 34, 38, 48, and 50), KLHL14 (exon 2),
HLA-B (exons 2, 3), PRDM15 (exons 9–12), GPR98 (exons 65, 70, and 81), DST
(exons 13, 14, 23, 24, and 36), OBSCN (exons 32, 63, 64, and 85), FAT4 (exons 1, 9,
and 17), HIST1H3D (exon 2), HIST1H1E (exon 1), TERT (promoter region). The
results are displayed in Supplementary Data 5.

Fluorescence in situ hybridization (FISH). FISH analysis was performed as pre-
viously described177. Briefly, 4 μm FFPE sections were deparaffinized, dehy-
drated, and incubated in pre-treatment solution (Dako, Denmark) for 10 min at
95–99 °C. Samples were treated with pepsin solution for 3–6 min at 37 °C,
washed, dehydrated, air dried, and incubated with the respective DNA probe:
CDKN2A (9p21.3): Orange, Biocare Medical, USA; Vysis CEP 9 SpectrumGreen
Probe (Abbott), The Netherlands). The sections were sealed, denatured in
humidified atmosphere at 82 °C for 5 min, and then incubated overnight at 45 °C
to achieve hybridization. After post-hybridization washing, slides were coun-
terstained with 4′6-diamidino-2-phenylindole (DAPI) and analyzed using an
automated scanning system (Duet, BioView Ltd. Rehovot, Israel; Supplementary
Fig. 1d).

Real-time quantitative PCR (RT-qPCR). We performed SYBR Green quantitative
real-time PCR (qPCR) measuring six amplicons covering the CDKN2A/B gene
(Supplementary Fig. 1e) as well as five amplicons covering the FHIT, NOTCH4,
SPIB, and MIR650 gene. The primer sequences are annotated in Supplementary
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Data 14. qPCR analysis was performed on ABI Prism 7900HT Sequence Detection
System (Applied Biosystems, Foster City, CA, USA).

Immunohistochemical (IHC) procedures. Immunohistochemical stainings were
performed on a Benchmark XT autostainer (Ventana Medical Systems, Tuscon,
AZ, USA) with standard antigen retrieval methods (CC1 buffer, pH8.0, Ventana
Medical Systems, Tuscon, AZ, USA) using 7 μm-thick frozen or 4 μm-thick
FFPE tissue sections. The following primary antibodies were used: monoclonal
mouse anti-BCL6 (DAKO, M7211, 1:10), monoclonal mouse anti-CD10
(Novocastra, NCL-CD10-270, 1:10), monoclonal mouse anti-CD20 (DAKO,
M0755, 1:400), polyclonal rabbit anti-CD3 (DAKO, A0452, 1:100), monoclonal
mouse anti-CD45 (DAKO, M0701, 1:400), monoclonal mouse anti-CD79a
(DAKO, M7051, 1:100), monoclonal mouse anti-EBV-LMP1 (DAKO, M0897,
1:1000), monoclonal mouse anti-Ki-67 (DAKO, M7240, 1:100), monoclonal
mouse anti-MUM1 (DAKO, M7259, 1:50), monoclonal mouse anti-PD-L1 (Cell
Signaling, 13684, 1:200). The iVIEW DAB Detection Kit (Ventana Medical
Systems, Tuscon, AZ, USA) was used according to the manufacturer’s instruc-
tions. Sections were counterstained with hematoxylin, dehydrated in graded
alcohol and xylene, mounted, and coverslipped. IHC stained sections were
evaluated by two skilled neuropathologists with concurrence. The DLBCL sub-
types of GCB and non-GCB were categorized using CD10, BCL6, and MUM1
according to the Hans classification12.

Epstein-Barr virus PCR. EBV-specific PCR was performed as previously
described156. Briefly, a highly conserved region of the EBNA-1 (BKRF1) gene
specific for EBV was amplified by endpoint PCR using the following primers: 5′-
GAG GGT GGT TTG GAA AGC-3′ and 5′-AAC AGA CAA TGG ACT CCC TTA
G-3′, 0.1 µM each. The PCR conditions were: 95 °C for 5 min (1 cycle), followed by
40 cycles of 94 °C for 1 min, 55 °C for 2 min, 72 °C for 3 min, and finally extension
at 72 °C for 7 min with ThermoPrime™ Taq DNA Polymerase (Thermo Fisher
Scientific, Waltham, USA). Subsequently, amplification products were analyzed by
ELISA (Roche, Basel, Switzerland).

Statistics and reproducibility. No statistical methods were used to predetermine
sample sizes. We included all individuals with DLBCL of the CNS where sufficient
material was available as specified in the description of study design. No data were
excluded from the analyses. Statistical details for each analysis are mentioned in
each figure legend or in the respective part of the text. WGS, RNA-sequencing,
Sanger sequencing, quantitative real-time PCR, immunohistochemical stainings,
and FISH were performed in a blinded fashion. Evaluation of histological and
immunohistochemical stainings, as well as FISH images, was performed separately
by at least two independent (neuro-)pathologists in Berlin and Heidelberg. His-
tological staining, immunohistochemistry, and FISH analyses were replicated at
least once. CDKN2A/B FISH was performed exemplarily for n= 4 CNSL patients.
The representative images shown were adjusted in brightness and contrast to
different degrees (depending on the need resulting from the range of brightness
and contrast of the raw images) in Adobe Photoshop, and for these cases, raw
image files are publicly available [https://doi.org/10.5281/zenodo.6054242]92. The
experiments were not randomized.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The whole genome sequencing (WGS) and RNA sequencing data of the 51 CNSL
samples generated in this study as well as the raw data of Sanger sequencing and
quantitative real-time PCR data have been deposited in the European Genome-Phenome
Archive under the accession number EGAS00001005339. The data are available under
controlled access due to the sensitive nature of genome sequencing data, and access can
be obtained by contacting the appropriate Data Access Committee listed for each dataset
in the study. Access will be granted to commercial and non-commercial parties according
to patient consent forms and data transfer agreements. We have an institutional process
in place to deal with requests for data transfer. A response to requests for data access can
be expected within 14 days. After access has been granted, the data is available for two
years. Access to the ICGC MMML-Seq raw sequencing data is available via the EGA
under the accession number EGAS00001002199 and EGAS00001001692. Access to the
ICGC MMML-Seq data is available via the data access committee of the ICGC (www.
ICGC.org). Raw image files of histological stainings, immunohistochemistry, and FISH
images generated in this study, as well as all somatic mutation calls, integrated mutations
tables, and RNAseq counts on which the analysis was performed have been deposited
publicly at Zenodo [https://doi.org/10.5281/zenodo.6054242]92. The uncropped PCR gel
images as well as the processed real-time PCR data and Kaplan-Meier survival data
shown in Supplementary Fig. 1 are provided in the Source Data file with this paper. The
remaining data are available within the article, Supplementary Information or Source
Data file.
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