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Abstract

Spike timing-dependent plasticity, related to differential Hebb-rules, has become a leading

paradigm in neuronal learning, because weights can grow or shrink depending on the timing

of pre- and post-synaptic signals. Here we use this paradigm to reduce unwanted (acoustic)

noise. Our system relies on heterosynaptic differential Hebbian learning and we show that it

can efficiently eliminate noise by up to -140 dB in multi-microphone setups under various

conditions. The system quickly learns, most often within a few seconds, and it is robust with

respect to different geometrical microphone configurations, too. Hence, this theoretical

study demonstrates that it is possible to successfully transfer differential Hebbian learning,

derived from the neurosciences, into a technical domain.

Introduction

Hebb rules [1] have been employed in a wide variety of (unsupervised) learning tasks and exist

in many versions. The literature about this topic is vast and extends from its origins in the neu-

rosciences into many theoretical, but also application-driven, contributions in artificial neural

networks (see [2] for a short review). In this study, we focus on the use of Hebbian learning to

address the problem of learning to suppress (acoustic) noise in time continuous signals. We

will show that the methods introduced here, while derived from neuronal models of plasticity,

can be successfully transferred into this technical domain, too.

The background for this is the fact that Hebbian plasticity can rely on the temporal signal

sequence. This had first been discovered in 1997 (spike timing dependent plasticity [3, 4]),

where the sequence of pre- and post-synaptic signals determines whether a synaptic weight

will grow (Long Term Potentiation, LTP) or shrink (Long Term Depression, LTD). Theoreti-

cians had been intrigued by this finding, because learning rules that allow for both, weight

growth and shrinkage, may lead to better stability in a neural network. Accordingly also here

many models had been designed and tested mainly until about 2010 (see [5] for a review).
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Spike timing dependent plasticity can be linked to differential Hebbian learning given by
do
dt ¼ mu

dv
dt, with ω a synaptic weight, 0< μ� 1 a learning rate, u the input, and v the output of

a neuron [6] with the advantage that differential Hebbian learning allows treating these sys-

tems in a closed form.

These types of learning rules have been especially useful, however, when focusing on the

problem of temporal sequence learning [7]. In this case at least two (but often more) input sig-

nals x0, x1, . . ., xn exist, which are usually some events that are correlated to each other, but

with certain delays between them. For two signals x0, x1, this system is related to classical and/

or instrumental conditioning and had been modeled around 1980 by using correlation-based

stimulus-substitution models [8]. In real life this can happen, for example, when we first feel a

heat pulse that precedes a stabbing pain event on touching a hot surface. In order to avoid

such painful events, it is advantageous to learn reacting to the earlier event, not having to wait

for the later one. The same is true for many sensor events where—for example—a visual signal

may be predictive for a collision (touch), or an auditory signal for an approaching predator. In

all these cases, it is better to learn reacting to the earlier event and not to the later (potentially

dangerous) one.

With differential Hebbian learning rules introduced by us (isotropic sequence order learn-

ing, ISO [7]; and input correlation learning, ICO [9]), the agent can learn an anticipatory

action to react early and avoid the late event. The late event x0 acts as the reference and pro-

vides the error signal for the learning. Importantly, it can be shown that learning is converging

with the vanishing of this error signal, hence as soon as x0 = 0 [7, 9]. Thus, as soon as the later

signal is successfully avoided learning stops.

Here we make use of this property to eliminate (to “avoid”) noise at a local microphone x0

learning to correctly compensate for it using a set of (predictive) distant microphones x1, . . .,

xn, where learning will stop as soon as the local microphone x0 does not hear noise any longer

(x0 = 0).

State of the art

The most popular noise cancellation algorithm by far is the least mean square (LMS) algorithm

[10–13], which outperforms conventional filters [14], optimal stationary linear filters [15], or

adaptive smoothing filters [16]. The general idea here is to adaptively cancel out noise with the

help of an opposing signal so that the result is noise free. This requires a noise reference,

which, if appropriately filtered, generates the opposing signal. Fig 1 shows the general princi-

ple, where noise x1, x2, x3 is sent through an adaptive filter and then its output y(n) eliminates

the noise contained in d(n) at the summation point S. The signal x0 is both, an error signal

and the output of the noise canceller. If the elimination has not been perfect, the resulting

error can be used to tune the coefficients of the filter, for example, by using the delta rule [17,

Fig 1. Standard circuit for LMS-based noise cancellation.

https://doi.org/10.1371/journal.pone.0266679.g001
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18]. While Widrow et al. [10] only addressed noise cancellation by digital subtraction, Elliot

and Nelson [19] discuss the elimination of noise by mixing acoustically opposing sound waves

[20]. This is nowadays widely used in noise cancelling headsets [21]. Traditional noise cancel-

ling headsets employ a real error microphone, but also a simulated error microphones can be

used, which, in turn, tunes the LMS filter [18]. Recently, the concept of an acoustical error has

been translated to a setup with multiple error microphones and speakers to eliminate noise in

a seminar room, which is still based on the LMS algorithm but combined with Eigen analysis

to tackle the multiple cross correlations between different error microphone signals and speak-

ers outputs [22].

However, at the heart of both digital or acoustic cancellation is the delta rule [17], which

changes the filter coefficients by correlating the error signal with the reference noise. The delta

rule, as is the case with the Hebbian learning rule, is symmetric in time. In contrast ICO learn-

ing uses the derivative of the error signal, which is a predictor of the error signal because of its

phase lead.

We will show that our system, based on the ICO rule, will achieve noise reduction in a sim-

ulation to a high degree, competitive with existing standard noise reduction methods. In addi-

tion to the experimental results, we provide at then end the analytical solution for the weight

growths under the assumption of a stationary power spectrum of the incoming signals.

Materials and methods

Active noise reduction: General setup

We consider the active noise reduction problem outlined in Fig 2A. The goal here is to elimi-

nate background noise by applying a suitable anti noise signal that silences the acoustic envi-

ronment. To do so an array of control microphones x1, x2 and x3, is used to record ambient

noise sources. We consider here a simple simulation of the noise reduction problem, where

non-linear effects are ignored. A reference microphone x0 is used at the recording site to drive

the learning of the parameters for the anti noise signal. We tested different geometrical config-

urations for the relation between control- and reference microphones as shown in the Results

section.

Learning rule

The conventional ICO learning rule is given by (see Fig 2B):

d
dt
wiðtÞ ¼ mxiðtÞx

0

0
ðtÞ ð1Þ

where xi are the control inputs, wi their synaptic weights, x0 the reference input and μ� 1 a

learning rate. Note that, ICO uses the derivative, annotated as x0
0
, for learning, where we

assume that x1 represents an early signal which is correlated to the later occurring signal x0.

The use of a derivative in the differential Hebbian rule lends itself to some intuition behind

the mechanism of ICO learning. The derivative is a predictor of the signal’s next moment’s

development. Hence, as soon as there is a correlation between an earlier and a later event the

derivative will lead to an upregulation of the synapse that belongs to the earlier event until the

neuron will respond to it reliably.

We employ here a slightly modified ICO learning rule, which uses the momentum (or mov-

ing exponential average) of the derivative of the reference signal x0(t) given by:

XðtÞ ¼ bXðt � 1Þ þ ð1 � bÞx0
0
ðtÞ ð2Þ

PLOS ONE Differential Hebbian learning for active noise reduction

PLOS ONE | https://doi.org/10.1371/journal.pone.0266679 May 26, 2022 3 / 17

https://doi.org/10.1371/journal.pone.0266679


where β = 0.9. The momentum is used to achieve smoother weight estimation and leads to bet-

ter results than using the derivative of the late error signal x0 directly.

Weights are updated using this learning rule

w0iðtÞ ¼ mxiðtÞXðtÞ ð3Þ

At simulation start weights wi, i> 0 were set to 0, x0 enters the summation node (Fig 2B)

with a factor of one.

Noise reduction mechanism

Based on the setup in Fig 2A and to solve the noise cancellation problem by generating an anti

noise signal, an error signal of form

x0ðtÞ ¼ x�
0
ðtÞ � zðtÞ ð4Þ

is defined. Here x�
0
ðtÞ is the resulting noise signal at x0, hence, the sum of all noise sources at

the reference microphone. The function z(t) is the generated anti noise signal given by:

zðtÞ ¼
P
wixiðt � DtÞ; ð5Þ

Fig 2. ICO learning for active noise reduction. A) Illustration of the active noise cancelling architecture. A set of control microphones, x1, x2 and x3,

records ambient noise. ICO learning is used to learn parameters for mixing the recorded noise to produce a suitable anti-noise to cancel at the reference

recording site (x0) that receives signals with a propagation delay Δt relative to the earlier-arriving signals at the control microphones. B) Schematic of

the conventional ICO rule. The triangle represents a synapse with changing weight. C) Power spectrum of the noise used for all tests.

https://doi.org/10.1371/journal.pone.0266679.g002
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where Δt is the sound travel time delay between early and late inputs. The goal of the system is

to achieve x0(t) = 0 8t> t0, by learning appropriate values for wi, i> 0. The intuition behind

this is that ICO learning is supposed to adjust the weights of the compensatory signal z(t) such

that indeed there is no noise audible at the reference microphone x0 any longer.

Technical simulation details

The general setup had been described above. Here we add some technical details, which should

allow reproducing all results. The speed of sound is assumed to be 343 m/s. All noise sources

are more than one meter away from microphones and in general we assume for all experi-

ments a short distance from the sound source(s) to the different microphones on the order of

a few meters (see Results). Thus, in general, the amplitude of the audio signals is multiplied by

1/d, where d is the distance from the source traveled in meters. This relation is also used to

address effects of distance-dependent signal attenuation when considering larger distances

between sound source and recording microphones (see Fig 3F).

For the ambient noise sources we used freely available recordings from https://freesound.

org/ (creative commons license). If the audio file has two channels (stereo), we have down-

mixed it to mono by taking the average of both channels. The audio files for the noise source

were sampled at 22 kHz. The simulation, however, runs with 24000 samples per second, lead-

ing to a frequency cut-off at 12 kHz, which is above the cut-off frequency of the noise shown

by the power spectrum in Fig 2C. We had tested the system with several noise sound files from

the above repository but results did not change in any substantial way and, therefore, we show

results only from one file.

Different microphone configurations are tested as shown in the results figures below.

Sound file inputs from the microphones were combined with mixing weights θi, i> 0 taken

randomly from the interval [0, 1) and then kept constant for a given simulation. In some cases

a virtual “shielding” is employed to test interference between microphones. This is imple-

mented by reducing the signal strength by 95% in all shielded microphones. See below for

details. It is assumed, that all microphones are located between the sources and the reference

microphone. The value of Δt (sound travel time) in the update rule is determined by taking

min(0, idx), where idx is the time delay between the closest source and the reference (that

source most likely also accounts for the largest part in the sum of signals of that microphone).

If no source is closer than the reference microphone we set Δt = 0, to avoid acausal signals.

Experiments and setups

Table 1 summarizes all experiments and their motivation for better navigation through the

Results section below.

Results and discussion

Experiment 1 (Table 1)

Simulation results for the linear microphone arrangement from Fig 2A are shown in Fig 3.

The geometrical arrangement is shown in the inset in panel B. Fig 3 shows that ICO learning is

able to recover the parameters wi, i> 0 after around 2 s learning time and weights stabilize as

expected. Noise reduction settles at around -140 dB. This represents quite a high level, which

can be appreciated from the following comparison: a jet plane noise at close distance is at

about 140 dB, whispering speech or gentle wind in a forest results in approximately 20 dB.

Panel G addresses the important aspect how noise reduction changes when using larger dis-

tances for the microphone configuration. This is done by introducing a distance scaling factor
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and the results show that noise reduction remains the same. Note, however, that the learning

rate needs to be increased for larger distances without which convergence will take much lon-

ger because the signal amplitude reduces with distance.

Experiment 2 (Table 1)

So far we assumed perfect linear and stationary environment, that can be perfectly compen-

sated using the ICO network. Here we turn to less ideal situations. In Fig 4 we investigate the

Fig 3. Results for a linear microphone setup. A Original mixed noise signal. B Microphone and noise-source geometry, α = 90˚, d = 1.25m. (C-E in

arbitrary units and truncated after 12 s as there are no more changes visible afterwards). Learning rate: μ = 1.0 × 10−7. C effective noise at the reference

site, D weight dynamics, green and orange curves are identical due to the symmetry of the microphone configuration and are here shifted a bit to make

both visible, E development of the momentum, and F achieved noise reduction. G Noise reduction when scaling d in the configuration with different

factors.

https://doi.org/10.1371/journal.pone.0266679.g003
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impact of drifts in the parameters. After 10 seconds training time we changed the transfer

function of the environment to different sound-mixing weights θ1, θ2 and θ3, which follow for

every time step a drift given by θi − k � (−1i). As i> 0 is the weight-index, we get this way that

θ1 increases per step by k, whereas θ2 decreases by k, etc., where different values for k have

been used. Fig 4 shows the results for a total duration of the parameter drift of 1 s. During the

drift period performance deteriorates to some degree, but remains better than at the very

beginning of the experiment. Then one can see that the system at the end of the drift period

quickly relearns until a new stable set of parameters is reached. If the drift is small (small k)

deterioration is less. Thus, in general ICO tracks parameter changes during the drift with a

delay of a few hundred milliseconds. This delay causes some degradation of the noise reduc-

tion performance (Fig 4A) but performance stabilizes at a high level again after the drift.

Experiment 3 (Table 1)

Fig 5 shows the achieved noise reduction for different microphone configurations at a distance

of 2.5m between source and x0. Even with a random distribution of 10 control microphones

(panel D) one gets a substantial reduction, albeit—in this case—only after a long time. The

other configurations (panel A-C) achieve this in only a few seconds. In C we have used either

an initialization with zero weights (solid line) or with random weights, taken from the interval

[0,1), (dashed line) for the control microphones. Random initialization performs slightly

slower. Note that, in general, configurations with control microphones behind the reference

microphone (in the direction of sound travel) perform less good than the others (e.g. panel c),

which one would expect (see also Fig 6, next).

Experiment 4 (Table 1)

If the roles of control- and reference microphones is purposefully confused for example by a

symmetrical setup (inset in Fig 6), no noise reduction can be achieved (Fig 6A). However,

when introducing a shielding of 95% (panel B) noise reduction is strong again. Note, shielding

is placed against those noise sources, which are non-predictive, hence which are—viewed in

the direction from a given S to x0—behind x0. This works for different configurations in the

same way. For example when using two opposing noise sources with shield the same fast noise

reduction effect is observed as in Fig 3. See, e.g., Fig 7 for a more complex example.

Table 1. Experiments and goals. Abbreviation ‘mic.’ stands for microphone.

Experiment no. Setup Goal

1) Linear setup (Fig 3) Linear mic. setup with 90 deg. angle and different distances Noise reduction for the most generic case at different distances

2) Parameter drift (Fig 4) Altering the control mics.’ mixing parameters Show speed of re-adjustment of the system to new parameters

3) Different mic. configurations

(Fig 5)

Various different mic. geometries Show robustness against different configuration structures

4) Shielding (Fig 6) Mic. configurations with confused signal flow but shielding

against this

Show effect of shielding against wrong sound signal flow

5) Momentum (Fig 7) Compare setup when using the momentum vs original ICO

rule

Demonstrate improved efficiency when using the momentum

6) Low pass (Fig 8) Learning the correct filter characteristics of an unknown low

pass

Show that the system can learn the transfer function of the

environment

7) Signal preservation (Fig 9) Mixing a signal with noise Show that signal is retained and noise eliminated

https://doi.org/10.1371/journal.pone.0266679.t001
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Experiment 5 (Table 1)

We use another configuration with multiple noise sources and shielding to demonstrate the

efficiency of using the momentum instead of the original ICO rule (Fig 7). Panel A, without

momentum, does not reach the final noise reduction level after 40 s seen in panel B (with

momentum) already after about 25 s.

Experiment 6 (Table 1)

An interesting case concerns the aspect that signals at the reference microphone might have

different frequency contents as those at the control microphones. For example, one could

assume that signals further away are more strongly low-pass filtered as compared to signals

from the same source closer by. In the example of car noise in Fig 2A, this might come from

Fig 4. Results for parameter drifts. We used the linear microphone setup from Fig 3B. After 10 s a parameter drift for 1 s has been introduced (dashed

lines). (A-C in arbitrary units). Learning rate: μ = 1.0 × 10−7. A effective noise at the reference site. Before the parameter drift this curve is identical to

Fig 3B, but here truncated in y-direction to make the effect of parameter drift visible. B weight dynamics, green and orange curves are identical due to

the symmetry of the microphone configuration and are here shifted a bit to make both visible, C development of the momentum, and D achieved noise

reduction for different drift rates k (only parts of the red and green curves are shown).

https://doi.org/10.1371/journal.pone.0266679.g004
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some obstacles, like bushes, trees, etc. along the sound path. If this happens, as expected, noise

reduction is completely lost and the result is almost identical to the untreated noise. Naively,

one could try to employ some “world-knowledge” and try to explicitly model the signal path-

way with some low-pass filter and insert this into the noise acquisition at the control micro-

phones. However, if the filter cut-off frequency is wrong, noise reduction is severely impaired

(Fig 8B), where we have used the same microphone configuration as in Fig 3. Here the cut-off

frequency is 10 kHz at the reference microphone and 11 kHz at the three control microphones.

A fifth order Butterworth filter has been used for the filtering. Both filters would have to have

the same cut off to regain good performance. This could be achieved in principle by measuring

the correct frequency cut-off, which—however—might be onerous. Instead, ICO learning can

address this problem in an adaptive manner without much effort. In panel A we show the con-

figuration, which can achieve this. The pathway to x0 is filtered by the environment with a so-

called “unknown” low-pass (here set to a cut-off of 10 kHz). Control microphone signals are

split into three paths each with different low pass filters LP1, LP2, and LP3 with cut-offs of 9,

10 and 11 kHz. Panels C and D show that, after about 30 s, ICO learning has adjusted the

weights of that reference microphone path with the correct filter (path 2) and we obtain a very

high degree of noise reduction. Panel C shows that the weights will still change a bit until

Fig 5. Different microphone configurations. Learning rate μ = 5 × 10−7. A quarter circle, B half circle, A-B with 3 control microphones. C full circle

with 4 control microphones, D random configuration with 10 control microphones.

https://doi.org/10.1371/journal.pone.0266679.g005
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about 60 s, but noise reduction remained essentially the same after already 28 s. Note that only

6 of all 9 weights are visible as—due to the symmetry in the control microphone setup—some

curves overlap. Clearly visible, however, is that, after an initial jump, only one microphone

path increases in weights, while the others drop to zero. Furthermore note that in any technical

application such a filter-finding process would have to be performed only once (or whenever

the environment changes). Also note that in principle, many more paths with different filter

characteristics could be used in case of greater insecurity about the “true” cut-off frequency of

the unknown low pass from the environment.

Experiment 7 (Table 1)

Fig 9 shows result for the situation when there is a relevant signal present at x0, which should

remain after filtering the noise. We have tested sine wave signals of different frequency up to

10kKz where—for visualization purposes—we show only some low frequency examples in the

figure. The experiment was done in the following way. We use sine waves with different ampli-

tudes A0 and provided at the reference microphone the signal mix of A0 + noise, whereas at the

control microphones only the noise was present. The figure shows that the system removes the

noise but leaves the signal intact. During the first 1-2 seconds, the system has not yet con-

verged and one can see that the noise amplitude is as strong or even much stronger than the

signal amplitude. After this time, ICO has eliminated the noise. In general, we obtained a noise

reduction of>45 dB for the complete sine-wave frequency range between DC and 10 kHz.
The inset in A shows signal stability by the ratio of AICO

0
=A0, where AICO

0
is the amplitude of the

Fig 6. Effect of shielding when using different noise sources. Learning rate: μ = 7.5 × 10−8. Configuration is shown as inset in panel B, small red arcs

show the shields against the non-predictive noise sources. Distance from S to x0 was 2.5m. A Noise reduction without shielding, B with shielding.

https://doi.org/10.1371/journal.pone.0266679.g006
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Fig 7. Effect of using the momentum. Learning rate: μ = 7.5 × 10−8. Configuration is shown as inset in panel B. It contains a similar shielding as in Fig

6, which for clarity, is not drawn. Distance from S to x0 was 3.5m. A Using the original ICO rule, B Using the rule with momentum.

https://doi.org/10.1371/journal.pone.0266679.g007

Fig 8. Noise reduction when using low-pass filtered signals. A Same geometrical configuration as in Fig 3 but now with split-up paths for the control

microphones using different filters, where the cut-off for the reference microphone (so-called “unknown LP”) was 10 kHz. Learning rate: μ = 1.0 × 10−7.

B Noise reduction for 3 conventional control microphones without path splitting, where only one low pass has been used with cut-off of 11 kHz. Note

that the here-reached level was only about 16 dB. C Noise reduction for 3 paths from the control microphones. Path 1 with cut-off of 9 kHz, path 2 with

10 kHz and path 3 with 11 kHz. D Development of the synaptic weights of all paths. Path 2 shows weight growth and, thus, has been responsible for the

resulting reduction of about 140 dB see in panel C.

https://doi.org/10.1371/journal.pone.0266679.g008
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sine wave after noise reduction. This ratio remains almost 1.0 across a large frequency range

showing that the signal does not get destroyed by the ICO process.

Analytical solution of the weight growth

Here we use the original ICO rule as, for this, we can provide some analytical insights, too. We

consider time variable input functions u0(t) and u1(t) and the ICO learning rule
d
dt wðtÞ ¼ mu1ðtÞu00ðtÞ, where u0

0
ðtÞ denotes the time derivative of u0(t) and with constant learn-

ing rate μ. The dynamics of w(t) can be solved directly in the time domain

d
dt
wðtÞ ¼ mu1ðtÞu

0

0
ðtÞ , wðtÞ ¼ m

Z t

0

u0
0
ðsÞu1ðsÞdsþ wð0Þ ð6Þ

To analyze the spectral behavior of the learning rule we assume that u0(t) and u1(t) are

given by sine functions, with constant frequencies ϕ0, ϕ1 and constant phase shifts θ0, θ1.

u0ðtÞ ¼ R0 sinð�0t þ y0Þ

u1ðtÞ ¼ R1 sinð�1t þ y1Þ

Fig 9. Influence of noise cancellation on a sine-wave signal. Geometrical configuration as in Fig 3. Learning rate: μ = 1.0 × 10−7. A Control case

without signal. B Sine wave with frequency 1/30Hz and different amplitudes. C Same frequency as in B but amplitude reduced by a factor of 10. D Sine

wave with frequency 100/30Hz. The inset shows the ratio between the signal provided at x0 without noise and the signal obtained after filtering the

noise with ICO for a large range of frequencies.

https://doi.org/10.1371/journal.pone.0266679.g009
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where R0 and R1 are parameters to scale the amplitude of the sine functions. In general we can

write:

Rsinð�t þ yÞ ¼ Bsinð�tÞ þ Acosð�tÞ

with: R2 = A2 + B2 and θ = arctan(B/A).

This way:

u0
0
ðtÞ ¼ �0ðB0cosð�0Þ � A0sinð�tÞÞ

We first treat the case where ϕ0 6¼ ϕ1.

For the weight we get then:

wðtÞ ¼ m
Z

u0
0
ðtÞu1ðtÞdt ¼ m�0

Z

½B0cosð�0tÞ � A0sinð�0tÞ�½A1cosð�1tÞ þ B1sinð�1tÞ�dt ð7Þ

Hence:

wðtÞ ¼ m�0

Z

B0B1cosð�0tÞsinð�1tÞdt
�

�

Z

A0A1sinð�0tÞcosð�1tÞdtþ

Z

B0A1cosð�0tÞcosð�1tÞdt �
Z

A0B1sinð�0tÞsinð�1tÞdt
� ð8Þ

For integrating this we define: D = ϕ0 − ϕ1 and S = ϕ0 + ϕ1.

Most easily, solutions for these four integrals can—for example—be taken from some inter-

net resource. We get:

1.

Z

B0B1cosð�0tÞsinð�1tÞdt ¼
B0B1

2
�
cosðDtÞ
D

�
cosðStÞ
S

� �

ð9Þ

2.

Z

A0A1sinð�0tÞcosð�1tÞdt ¼
A0A1

2
�
cosðDtÞ
D

�
cosðStÞ
S

� �

ð10Þ

3.

Z

B0A1cosð�0tÞcosð�1tÞdt ¼
B0A1

2

sinðDtÞ
D

þ
sinðStÞ
S

� �

ð11Þ

4.

Z

A0B1sinð�0tÞsinð�1tÞdt ¼
A0B1

2

sinðDtÞ
D

�
sinðStÞ
S

� �

ð12Þ
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This combines to:

wðtÞ ¼
m�0

2
ð� B0B1 � A0A1Þ

cosðDtÞ
D

�

þ ð� B0B1 � A0A1Þ
cosðStÞ
S
þ

ðþB0A1 þ A0B1Þ
sinðDtÞ
D

þ ðþB0A1 � A0B1Þ
sinðStÞ
S

� ð13Þ

Hence:

wðtÞ ¼
m�0

2
ð� B0B1 � A0A1Þ

cosðDtÞ
D

þ
cosðStÞ
S

� �

þ

�

ðB0A1 þ A0B1Þ
sinðDtÞ
D

þ ðB0A1 � A0B1Þ
sinðStÞ
S

� ð14Þ

The second case concerns ϕ0 = ϕ1 ≔ ϕ.

This simplifies the above four integrals to:

1.

Z

B0B1cosð�tÞsinð�tÞdt ¼ B0B1

1

2�
sin2ð�tÞ ð15Þ

2. and the next one is the same, only with different coefficients:

Z

A0A1sinð�tÞcosð�tÞdt ¼ A0A1

1

2�
sin2ð�tÞ ð16Þ

3.

Z

B0A1cosð�tÞcosð�tÞdt ¼ B0A1

t
2
þ

1

4�
sinð2�tÞ

� �

ð17Þ

4. and similarly

Z

A0B1sinð�tÞsinð�tÞdt ¼ A0B1

t
2
�

1

4�
sinð2�tÞ

� �

ð18Þ

First without collecting the first two coefficients we get:

wðtÞ ¼ m� B0B1

1

2�
sin2ð�tÞ

�

� A0A1

1

2�
sin2ð�tÞþ

B0A1½
t
2
þ

1

4�
sinð2�tÞ� � A0B1½

t
2
�

1

4�
sinð2�tÞ�

� ð19Þ

and finally:

wðtÞ ¼ m�
B0B1 � A0A1

2�
sin2ð�tÞ þ

ðB0A1 � A0B1Þt
2

þ
B0A1 � A0B1

4�
sinð2�tÞ

� �

ð20Þ
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What is the rationale behind these calculations? If you have the Fourier spectra of any sig-

nals u0 and u1 then you will know all coefficients A0
0
; . . . ;An

0
as well as A0

1
; . . . ;Bn

1
because

uj ¼ A0
j þ

Xn

i¼1

Ai
jcosði�jtÞ þ B

i
jsinði�jtÞ

h i
; for j ¼ 0; 1 ð21Þ

Then you can calculate the result analytically by using the full combinatorics ðAi
0
;Bi

0
Þ ,

ðAk
1
;Bk

1
Þ with a complete index permutation over i and k. Here the derivative of u0 will here

“turn the coefficients A, B around” as cos+ sin becomes −sin+ cos. Note, however, that this

holds only as long as the signals remain stable and their spectrum does not change. If there is

only a slow drift, a windowing method might still be OK to update the weights with this

method.

Conclusion

In this study, we have demonstrated that it is possible to use differential Hebbian learning for

efficient adaptive noise reduction. In a series of older papers, we had shown that ICO-learning

reliably converges in closed-loop systems such that the agent always learns to successfully react

to the earlier event [23, 24] and a later paper [25] showed how to transfer the simple one-neu-

ron ICO-rule to a network implementation. Thus, the fact that the later signal x0 is used as the

error for learning leads to convergence. This is the case in those older studies, but also in the

here-introduced system.

The here-used ICO learning rule is, in a stricter sense, not ‘Hebbian’ anymore, because it

directly correlates inputs with each other. Hence, it is a heterosynaptic learning rule. These

types of rules exist at neuronal dendrites where it has been demonstrated that heterosynaptic

learning may play an important role [26–28].

The technical setup of this system is related to the LMS algorithm [10–13], but uses the tem-

poral derivative in the learning rule. This is an advantageous concept, because the derivative is

a predictor of the error signal due to its phase lead (see [7] for a discussion of this property). In

addition to this, the rigorous convergence condition x0 = 0 guarantees that learning stops with

unchanging synaptic weights as soon as noise reduction has been successful Note that in tech-

nical systems one could introduce a threshold Θ and force x̂0 ¼ 0 for x0 < Θ, setting x̂0 ¼ x0

otherwise. This should be done in case of small, remaining noise amplitudes where one would

then use x̂0 for learning). Learning, however, will continue if signal complexity increases, and

x0 deviates from zero again, until the next stable weight configuration is reached (see e.g.,

Fig 4). In an earlier study, we could prove that this type of learning is equivalent to the learning

of a controller that performs adaptive model-free feed-forward compensation [29], which is—

in this application—a controller that eliminates the noise proactively by using the distant

microphone signals.

This study, thus, has shown that it is possible to successfully transfer differential Hebbian

learning, derived from the neurosciences, into a technical domain where we do not any longer

rely on events (spikes) but can address time continuous signals, too.
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