
RESEARCH ARTICLE

TextFormats: Simplifying the definition and

parsing of text formats in bioinformatics

Giorgio GonnellaID*

Department of Bioinformatics, Institute of Microbiology and Genetics (IMG), University of Göttingen,

Göttingen, Germany

* giorgio.gonnella@uni-goettingen.de

Abstract

Text formats are common in bioinformatics, as they allow for editing and filtering using stan-

dard tools, as well as, since text formats are often human readable, manual inspection and

evaluation of the data. Bioinformatics is a rapidly evolving field, hence, new techniques, new

software tools, new kinds of data often require the definition of new formats. Often new for-

mats are not formally described in a standard or specification document. Although software

libraries are available for accessing the most common formats, writing parsers for text for-

mats, for which no library is currently available, is a very common though tedious task, uti-

lized by many researchers in the field. This manuscript presents the open source software

library and toolset TextFormats (available at https://github.com/ggonnella/textformats),

which aims at simplifying the definition and parsing of text formats. Formats specifications

are written in a simple data description format using an interactive wizard. Automatic gener-

ation of data examples and automatic testing of specifications allow for checking for correct-

ness. Given the specification for a text format, TextFormats allows parsing and writing data

in that format, using several programming languages (Nim, Python, C/C++) or the provided

command line and graphical user interface tools. Although designed as a general purpose

software, the main target application field, for the above mentioned reasons, is expected to

be in bioinformatics: Thus, the specifications of several common existing bioinformatics for-

mats are included.

Introduction

Bioinformatics employs a multiplicity of data and file formats [1–3]. In many cases, these are

text formats, or binary formats which can be easily converted to text representations for visual-

ization and editing.

In a text format, information is represented by letters, numbers and symbols, each coded by

a single byte or a small number of bytes using a general-purpose convention. Text representa-

tion codes are defined in standards, such as ASCII [4] and Unicode [5]. Conversely, binary

representations use data sizes, order of the information and coding conventions, which are all

specific to the type of data, to the application and often to technical details, such as the operat-

ing system and processor architecture [6].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Gonnella G (2022) TextFormats:

Simplifying the definition and parsing of text

formats in bioinformatics. PLoS ONE 17(5):

e0268910. https://doi.org/10.1371/journal.

pone.0268910

Editor: M. Sohel Rahman, Bangladesh University of

Engineering and Technology, BANGLADESH

Received: October 25, 2021

Accepted: May 10, 2022

Published: May 26, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0268910

Copyright: © 2022 Giorgio Gonnella. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The TextFormats

source code is available at the GitHub repository

https://github.com/ggonnella/textformats.

Funding: Giorgio Gonnella has been supported by

the DFG Grant GO 3192/1-1 ‘‘Automated

https://orcid.org/0000-0003-3900-5397
https://github.com/ggonnella/textformats
https://doi.org/10.1371/journal.pone.0268910
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268910&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268910&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268910&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268910&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268910&domain=pdf&date_stamp=2022-05-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268910&domain=pdf&date_stamp=2022-05-26
https://doi.org/10.1371/journal.pone.0268910
https://doi.org/10.1371/journal.pone.0268910
https://doi.org/10.1371/journal.pone.0268910
http://creativecommons.org/licenses/by/4.0/
https://github.com/ggonnella/textformats

Binary formats have some advantages: Since they are often similar to, or even directly

reflect, the content of the working memory of the program, they are more efficient in terms of

data access speed. Furthermore, binary formats require often less space than uncompressed

text formats, since the information can be efficiently packed using representations tailored to

the type of data.

Nevertheless, text formats remain very common and new formats are often defined in this

form. Some features explain their popularity. First, the information in text formats can be

accessed and often manually read or edited, without the need for the original software which

produced the file. Text formats are accessible on different computer systems regardless of reg-

ister size (e.g. 32 bit vs 64 bit) and byte order convention (little or big endianness); sometimes

minor differences do exist, such as different newline conventions in different operating sys-

tems, but these are easily resolved, since they are often automatically handled by standard tools

and functions. Finally, the data in text formats can often be examined, filtered and modified

using a large number of standard command line tools (such as the Posix tools sort, uniq,

head, tail, cut) or short scripts.

General purpose standards exist for representing information as text, such as XML, YAML

and JSON. However, their adoption in bioinformatics is limited, likely because formats based

on these standards are rather verbose and less human readable, due to their complex format-

ting and nested structure. Since they are not line-oriented, command line tools such as the one

mentioned above, cannot be generally applied to these formats.

In recent years, community efforts have been made to define standard text formats for com-

mon types of data, such as GFA [7]. A goal of these is to avoid a further proliferation of formats.

However, this is not easy to achieve in an open community of researchers. In the case of GFA,

four variants currently exist (GFA1 [8], GFA1.1 [8], GFA2 [9], rGFA [10]) as a result of dis-

agreements among researchers and the need to make the format particularly suitable to different

applications. This case exemplifies the mechanisms by which new formats are often defined.

When a new software tool defines a new output format, the developer does not always pro-

vide a parser for the format, but often only a written documentation text. Formal grammars

could be a solution to this problem by allowing the automatic generation of a parser with tools

such as yacc or bison. However, they are challenging to write and rarely used in bioinfor-

matics. Software libraries eventually become available for accessing new formats once they

become popular. However, this process can take time, and parsers for less common formats

are never or only partially implemented. Thus, whenever a researcher desires to programmati-

cally access the data, he must write a parser based on the available specification or free text

description. This often involves writing complex regular expressions, an error-prone and

tedious task. The development of parsers is often repeated multiple times when switching lan-

guages, e.g., if a software project moves from rapid prototyping phase in Python to a more effi-

cient implementation in C or C++.

Hereby, we present an open source free software project, named TextFormats, consisting of

a software library and a collection of software tools. Its goal is to simplify the formal definition

of new text formats, as well as provide easy and convenient access to the data represented in

text formats, for which a parsing library does not yet exist. Given a format specification, Text-
Formats can be used for reading, validating and writing data in the format, from code in multi-

ple programming and scripting languages (Nim, C, C++, Python, shell) as well as from the

command line or using a graphical user interface. The library is versatile, allowing for sharing

common sub-definitions among different formats, and provides a set of tools including an

interactive format definition wizard, a specification format validator and an automatic exam-

ple generator. Furthermore, examples applications (written in different programming lan-

guages) and specifications for common bioinformatics formats are included.

PLOS ONE TextFormats: Simple definition and parsing of text formats

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 2 / 17

characterization of microbial genomes and

metagenomes by collection and verification of

association rules’’. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0268910

TextFormats: Implementation and features

The core of TextFormats 1.0 is a software library implemented in the programming language

Nim (v.1.6). It is accompanied by a suite of command line and graphical user interface tools,

as well as modules for importing and using TextFormats in Python and in C or C++ programs.

TextFormats can be used for accessing information stored in a text format, provided that

the format has been described in a specification written in TFSL (Text Formats Specification

Language). A specification describes the representations of each single piece of information in

the format, and expresses validation and transformation rules, if necessary. TFSL is a simple

language for data description, described below.

Once a specification for a text format is available, TextFormats allows parsing of data in that

format. Each piece of information in the text representation is thereby extracted, validated and

transformed (if necessary) as described in the specification, and finally represented using an

appropriate binary data type (e.g., numeric, string, array or dictionary). The opposite opera-

tion is also available, i.e., suitable data can be written in the format, using the representation

described in the specification.

The Text Formats Specification Language

The Text Formats Specification Language, briefly TFSL, is a declarative data format description

language, developed as mean of describing a text format, in a concise and human readable

manner. Typically a specification involves defining the format of each single piece of informa-

tion in the representation, and combining simple data type descriptions into increasingly com-

plex compound data types, until the entire data of a file or object has been described.

The valid syntax of a TFSL specification is described in the provided documentation,

including the TFSL syntax manual, a how tomanual with several examples, and a quick refer-

ence sheet. From here on, some of the main features of the language are summarized.

Although the language is relatively simple, it is worth noting that the user does not necessarily

have to learn the TFSL language, since a command line wizard tool tf_genspec can be used

to generate interactively a TFSL file.

The information in a TFSL specification can be represented as a tree, where internal nodes

have a string label (from a set of keys applicable in a given context) and the leaves of the tree

contain scalar or compound data (strings, numeric values, boolean values, undefined values,

lists or dictionaries). An example of a specification tree and the corresponding specification is

given in Fig 1. The tree can be constructed programmatically, using a hierarchy of appropriate

data structures, such as Python dict or Nim table objects, or can be written as a file in YAML

1.2 or JSON format.

The outermost level, under the tree root, defines a number of sections of the specification.

Specifications usually define a number of datatypes, describing any piece of the information in

the format and combined hierarchically in compound datatypes: These definitions are located

in the section datatypes of the specification. The optional testdata section may contain

examples of valid and invalid data in each of the defined datatypes, allowing for automatic test-

ing of the specification (see next section).

Sometimes a definition requires one or multiple subordinate definitions, such as the format

of elements of a list. In such cases, those definitions can be given inline or as a reference, to the

name of another datatype, defined elsewhere. Thereby circular references are not allowed.

Since a format often re-uses parts of other formats, it is possible to import definitions from a

specification into another. Thereby, the include section allows to import single datatypes or

entire specifications from one or multiple external files. Some components of imported defini-

tions can be rewritten. In order to avoid naming conflicts, it is possible to use the namespace

PLOS ONE TextFormats: Simple definition and parsing of text formats

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 3 / 17

https://doi.org/10.1371/journal.pone.0268910

section, to specify a namespace prefix used when datatypes are exported to another

specification.

Multiple types of datatype definitions have been implemented, including scalar and com-

pound values. A brief description of each kind of definition is provided in Table 1. Further-

more, definitions can contain different kinds of rules. Validation rules determine conditions

which must be met by the represented data. Formatting rules define details of the text

Fig 1. View of a TFSL specification as a tree. An example of TextFormats specification in YAML format (left) and the the information contained in the

specification viewed as a tree (right).

https://doi.org/10.1371/journal.pone.0268910.g001

Table 1. Kinds of datatype definitions in the Text Formats Specification Language.

Structure Group Definition key Description

Scalar Discrete values constant only one value is valid

values value must be the element of a set

Regular

expressions

regex string matching a regular expression

regexes string matching one of a set of regular expressions (optionally associated to different data

transformation rules)

Numeric intervals integer Signed base-10 integer, in a specified interval.

unsigned_integer Unsigned base-2, -8, -10 or -16 integer, in a specified interval.

float Floating point number in a specified open or closed interval.

Compound Unordered

sequences

list_of list of elements, each with the same datatype or one of a set of datatypes, not depending on the

element position in the list

labeled_list list of elements, each associated to a string label (in a given set), defining the semantics and datatype

of the element

tagged_list list of elements, each associated to two string labels, defining, respectively, semantics and a datatype

of the element

Ordered sequences composed_of ordered sets of elements, each with a possibly different datatype

Scalar/

compound

Alternatives one_of multiple alternative valid representations

https://doi.org/10.1371/journal.pone.0268910.t001

PLOS ONE TextFormats: Simple definition and parsing of text formats

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 4 / 17

https://doi.org/10.1371/journal.pone.0268910.g001
https://doi.org/10.1371/journal.pone.0268910.t001
https://doi.org/10.1371/journal.pone.0268910

representation, such as constant prefixes/suffixes or field delimiters. Transformation rules

allow to map text representations to the value they represent: e.g., the symbol D to the string

deletion, the roman value III to the integer 3, or strings such as T and F to boolean values.

Tools for the validation and testing of specifications

Once a format has been defined using TFSL, it is possible to check if the definitions are correct

and indeed define the format as intended. Two tools are available for this task: tf_spec
info and tf_cerberus.py. The command line tool tf_spec info checks that a spec-

ification is correct (and outputs a list of datatypes in that case). In case a specification has a

mistake, an extensive help message is displayed, with a summary of the valid syntax in the con-

text of the error. In some cases, however (for example when the structure of the YAML/JSON

file is invalid), the tool tf_cerberus.py (based on the Python validation library Cerberus)
is more useful for localizing the error.

Even if the syntax of a specification is correct, it is still possible that it does not accurately

describe the target format. Two tools can be combined to avoid this. First, examples of valid

and invalid data for each of the datatypes defined in a specification can be added to the specifi-

cation file (or to a separate test file). By using the command line tool tf_spec test (or the

corresponding API functions), these validity expectations can be automatically tested. Further-

more, examples of valid and invalid data (formatted as test data) for each of the datatypes can

be automatically generated using the command line tool tf_spec gentest. The user can

inspect the generated examples, to check if they reflect the intended format representation.

Those examples can also be modified to generate more expected valid and invalid data to

include in the specification tests.

Compilation of TFSL specifications

When a specification is provided to the TextFormats library, first the YAML or JSON structure

is parsed, then the TFSL syntax is validated. Any included specification is then parsed; This

operation is done recursively, as included specification may include other files themselves.

Next, all datatype definitions are parsed from the specification being processed, as well as

included specification. Datatype definitions can refer to other definitions, on which they

depend: e.g., a list depends on the definitions of its elements, which can be given as a reference

in the specification. Thus, a directed acyclic graph of the dependencies of the datatype defini-

tions is created. The graph is employed to check for the absence of circular dependencies,

using a depth-first cycle detection algorithm, and to solve all references. A hash table of data-

type names to datatype definitions is then created.

For each of the datatype definitions, a regular expression is computed and compiled using

the Nim regex library. Among the available Nim libraries for regular expressions, this library

was chosen since it offered better performance, pre-compilation of the regular expressions and

better handling of capturing groups (S2 Appendix). The regular expressions are employed for

validation and parsing of compound data in the text representation, except in some cases

where other strategies are used, such as splitting by a fixed exclusive text delimiter.

The compilation steps summarized above are done, by default, just-in-time when the

YAML or JSON file is loaded. Examples of running time of the compilation phase are given in

Table 2. Although compilation is very fast for all provided example specifications, the overhead

introduced by the compilation steps may be reduced, by saving the compiled specification to

file. This operation is performed using the command line tool tf_spec compile or equiv-

alent API functions. Pre-compiled specifications can be used instead of a YAML or JSON spec-

ification in all TextFormats tools and functions. However, since parsing the compiled

PLOS ONE TextFormats: Simple definition and parsing of text formats

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 5 / 17

https://doi.org/10.1371/journal.pone.0268910

specification from file and reconstructing the objects in memory also requires time, pre-com-

piling is only meaningful for particularly complex specifications, when these are loaded multi-

ple times (e.g., when decoding multiple strings with the TextFormats command line tools).

Table 2 shows the time necessary for parsing and compiling the YAML specification and

output a list of datatypes, save the compiled specification to file and listing the datatypes from

the pre-compiled specification.

Operations on text formats

Provided a TFSL specification of a text format, TextFormats implements a number of opera-

tions for handling data in that format. Table 3 summarizes the available operations.

The core operations are decoding, i.e., converting the text representation into the data it rep-

resents, and encoding, i.e., writing a text representation, given some suitable data. A validation
operation is also available, which can be applied to the text representation to check if it follows

the specification, or to the decoded data to check if they can be represented in the specified for-

mat. In some cases this operation can be done without requiring full decoding or encoding,

e.g., simply applying the regular expression for the given datatype.

The input for the decoding operation can be a string in the text format or a file. When a file

is given as input, the decoder must know the definition scope, i.e., to which part of the file the

datatype definition shall be applied. In particular, this can be: a single line (line scope); a fixed

number of lines of the file (unit scope); all following lines which were not yet processed lines to

which it applies (section scope); the entire file (file scope). Definition with section and file

scope are useful for validating the structure of the entire data: e.g., in a SAM format file [11],

there must be a header section followed by an alignment section. This validation is not possible

if single lines are parsed independently. However, processing the parsing results all at once

would require a large amount of memory e.g., if a large file is parsed. In such cases, it is possi-

ble to instruct the decoding function to process only one line at a time (or one element of a

compound definition at a time), but still validate the entire data. For example, for a SAM file,

Table 2. Time for compilation of TFSL specifications from YAML files and loading of pre-compiled

specifications.

Format Compile only Compile and save pre-compiled Load pre-compiled

Accessions 0.02 s 0.02 s 0.02 s

NCBI ID 0.03 s 0.03 s 0.02 s

Fasta < 0.01 s 0.01 s 0.01 s

FastQ 0.01 s 0.01 s < 0.01 s

SAM 0.25 s 0.21 s 0.27 s

EGC 0.23 s 0.24 s 0.08 s

GFA1 0.26 s 0.31 s 0.45 s

GFA2 1.28 s 1.40 s 1.19 s

GFF3 1.79 s 1.79 s 1.25 s

bold font indicates the fastest time for obtaining the specification: loading a pre-compiled specification or compiling

the YAML specification.;

The operations were performed using the TextFormats command line tool tf_spec, with the sub-commands

compile (compile and save to file) and info (compile YAML or load pre-compiled).

The reported times are the average over 3 runs of the real time measured by GNU time, on a Linux OpenSuse 15.3

workstation (CPU i5–4570 3.2 Ghz, RAM 16 Gb), using TextFormats 1.2.2.

https://doi.org/10.1371/journal.pone.0268910.t002

PLOS ONE TextFormats: Simple definition and parsing of text formats

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 6 / 17

https://doi.org/10.1371/journal.pone.0268910.t002
https://doi.org/10.1371/journal.pone.0268910

the decoder would still validate the correctness of the global structure of the file, but it would

process only one header line or alignment at a time.

Supported programming languages

The TextFormats library has been implemented in the Nim programming language (version

1.4.8). This language offers a number of advantages over alternatives (it is compiled, but faster

to code than C/C++) and has recently aroused interest [12] and some limited adoption [13,

14] in the bioinformatics community. A reason why this language was chosen for this project

is the ease of interfacing Nim code to other programming languages. Thus, besides using the

library in Nim, also C/C++, Python and command line scripts are supported (see S1 Appendix

for code examples in Nim, Python, C and Bash). The following sections briefly describe the

implementation challenges, design choices and peculiarities of these interfaces.

Table 3. Operations implemented by TextFormats and corresponding API functions and CLI commands.

Input Operation Interface Function/Command

Specification Compile TFSL specification Nim filename.compile_specification()

C tf_compile_specification()

Python Specification.compile()

CLI tf_spec compile

Load TFSL/compiled specification Nim filename.specification_from_file()

C tf_specification_from_file()

Python Specification()

CLI -s/--spec option of all commands

Run tests Nim run_specification_testfile()

C tf_run_specification_testfile()

Python Specification.test()

CLI tf_spec test

Text representation Validate Nim string.is_valid()

C tf_is_valid_encoded()

Python DatatypeDefinition.is_valid_encoded()

CLI tf_validate encoded

Decode (input: string) Nim string.decode()

C tf_decode()

Python DatatypeDefinition.decode()

CLI tf_decode string

Decode (input: file) Nim filename.decode_file()

C tf_decode_file()

Python DatatypeDefinition.decode_file()

CLI tf_decode file

Data Check if suitable for representation Nim jsonnode.is_valid()

C tf_is_valid_decoded()

Python DatatypeDefinition.is_valid_decoded()

CLI tf_validate decoded

Encode into text representation Nim jsonnode.encode()

C tf_encode()

Python DatatypeDefinition.encode()

CLI tf_encode json

https://doi.org/10.1371/journal.pone.0268910.t003

PLOS ONE TextFormats: Simple definition and parsing of text formats

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 7 / 17

https://doi.org/10.1371/journal.pone.0268910.t003
https://doi.org/10.1371/journal.pone.0268910

The C API to TextFormats. For using TextFormats in C and C++ the library and the C

API modules are compiled and linked to the Nim runtime library, and the resulting header file

is included into the C or C++ program. The C/C++ API modules functionality is documented

in a manual, as well as in a quick reference sheet. The core module is a wrapper to the Nim

API functions for use in C (implemented using the exportcNim pragma). However, additional

module had to be implemented, to cope with the differences between C and Nim.

Nim is a statically typed language, like C. However, the datatype of data obtained by decod-

ing a text representation is not know at compile time. In Nim this problem has been solved by

employing a variant type from the standard library (JsonNode), which can represent differ-

ent kinds of data and provides multiple functions for accessing and modifying the data. In

order to use the same strategy in C and to provide a consistent interface, a wrapper to the Nim

json library was developed and included in the TextFormats C API.

A further challenge is represented by exceptions, since in C there is no exception handling,

equivalent to that in Nim. Thus a mechanism similar to the errno of the C standard library has

been adopted. In particular, if a TextFormats function results in an exception, a variable

describing the error is set. The user can decide to handle the exception or print an error mes-

sage and quit the program. Alternatively, to avoid code redundancy, it is also possible to spec-

ify, with a single line of code, that all errors must result in printing the error message and

quitting.

The Python API to TextFormats. Python is a very popular choice for developing bioin-

formatics pipelines. It is easy to import Nim code into Python using the Nim library NimPy
v.0.1 (available at https://github.com/yglukhov/nimpy), and the Python library nimporter
(available at https://github.com/Pebaz/nimporter) v.1.0.4.

However, a simple wrapper to the Nim functions results in a functional but inelegant inter-

face. Therefore a Python API module has been developed on top of it, which defines classes

representing TextFormats specifications and datatypes. The module allows adoption of a more

idiomatic coding style, with greater reflection of the dynamic typing and object orientation of

Python. A manual and a quick reference sheet describe the use of this API.

The command line interface to TextFormats. Bioinformatics analyses often involve exe-

cuting multiple programs, which can be combined using command line scripts. To enable the

use of TextFormats in this context, a suite of command line interface (CLI) tools has been

developed. Their usage is documented in a manual, in man pages for each of the tools, and in a

quick reference sheet. The tools support the use of standard input and output, in order to facil-

itate their inclusion in pipes.

The decode, encode and validate operations of TextFormats are provided, respectively, by

the tf_decode, tf_encode and tf_validate tools. The tf_spec provides opera-

tions on specifications, such as analysis of their content, testing, automatic generation of exam-

ple data, and pre-compilation of TFSL.

Results

Case study 1: Parsing a complex format

In order to test the TextFormats library on real world data, we implemented a SAM format [11]

TFSL specification, based on the format specification document [15]. We implemented several

versions of a program for counting the alignments by target sequence, by read group, by flag

value, and the occurrences of each optional tag found in the file.

First, we compared the performance of TextFormats when using it from Nim, or from

other languages. Thus we implemented the parser, based on TextFormats, in Nim, Python and

C. Furthermore, we implemented the same functionality without TextFormats and used

PLOS ONE TextFormats: Simple definition and parsing of text formats

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 8 / 17

https://github.com/yglukhov/nimpy
https://github.com/Pebaz/nimporter
https://doi.org/10.1371/journal.pone.0268910

instead the state-of-the art library htslib [16] v.1.13. Also in this case, we compared the native

implementation in C, with the use of the Python wrapper Pysam [17] v.0.17.0 and of the Nim

wrapper hts-nim v.0.3.18 [13].

As test data, we used a SAM file from the 1000 Genomes Project [18], the Mosaik alignment

of the 454 sequencing of sample NA06984 (file NA06984.454.MOSAIK.SRP000033.2009_11.

bam obtained from http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/data/NA06984/

alignment/ and converted to SAM using samtools [11]).

We measured the running time of each of the implementations as real time measured by

GNU time [19] v.1.9 (average of 3 runs, run on a Linux workstation with CPU Intel i5–4570

3.20GHz, 16 Gb RAM, Linux OpenSuse 15.3). The results are summarized in Table 4. The

same counts were output by each version of the program, based on TextFormats or htslib, in

Nim, Python and C.

Case study 2: Parsing sequence identifiers

The sequences contained in sequence databases are identified by accessions, which remain sta-

ble when corrections or new versions of the same sequence or sequence annotation are pub-

lished. Accessions are strings consisting of sequences of letters and numbers. The valid

formats of accessions are described in the documentation of the databases. Besides a number

identifying the entry, accessions often include more information, such as the section of the

database, or the type of molecule or annotation.

In contrast to file formats such as SAM (discussed in Case study 1), there is no available

parser or validator for accession strings. Thus we implemented the TFSL specifications spec/

Table 4. Running times of equivalent programs based on TextFormats or other libraries, implemented in Nim, Python, and C.

N. input lines Library Nim Python (vs Nim) C (vs Nim)

(SAM) Case study 1 100 000 TextFormats 5.45 s 5.70 s (+ 4.6%) 5.61 s (+ 2.9%)

500 000 TextFormats 26.89 s 28.14 s (+ 4.6%) 27.76 s (+ 3.2%)

1 000 000 TextFormats 53.70 s 55.91 s (+ 4.1%) 55.46 s (+ 3.3%)

100 000 htslib 0.35 s 2.44 s 0.09 s

500 000 htslib 1.66 s 12.16 s 0.42 s

1 000 000 htslib 3.37 s 24.33 s 0.83 s

(EGC) Case study 3 100 000 TextFormats 5.38 s 5.87 s (+ 9.1%) 5.31 s (- 1.3%)

500 000 TextFormats 25.78 s 28.33 s (+ 9.9%) 25.40 s (- 1.4%)

1 000 000 TextFormats 52.74 s 55.70 s (+ 5.6%) 51.62 s (- 2.3%)

100 000 ad hoc n.a. 2.19 s n.a.

500 000 ad hoc n.a. 11.37 s n.a.

1 000 000 ad hoc n.a. 22.69 s n.a.

(GFA2) (Case study 4) 363 613 TextFormats 93.55 s 96.83 s (+ 3.5%) n.a.

363 613 GfaPy n.a. 191.83 s n.a.

(SAM) Case study 1: program for collecting information from a SAM file, based on the TextFormats or the htslib library;

(EGC) Case study 3: program for parsing the EGC format (defined in the text) writing the information to JSON and then back to EGC, based on the TextFormats
library, or as a ad hoc Python parser;

(GFA2) Case study 4: Python program for validating a GFA2 file and collecting basic statistics on the file, based on TextFormats library or on the GfaPy library;

(vs Nim) Running time difference of the Python or C version (when implemented) of the TextFormats-based programs to the Nim version;

The reported times are the average over 3 runs of the real time measured by GNU time, on a Linux OpenSuse 15.3 workstation (CPU i5–4570 3.2 Ghz, RAM 16 Gb),

using TextFormats 1.2.2.

https://doi.org/10.1371/journal.pone.0268910.t004

PLOS ONE TextFormats: Simple definition and parsing of text formats

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 9 / 17

http://NA06984.454.MOSAIK.SRP000033.2009_11.bam
http://NA06984.454.MOSAIK.SRP000033.2009_11.bam
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/data/NA06984/alignment/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/pilot_data/data/NA06984/alignment/
https://doi.org/10.1371/journal.pone.0268910.t004
https://doi.org/10.1371/journal.pone.0268910

accessions.yaml, describing the format of the accessions of multiple sequence databases

(Table 5), and spec/ncbi_id.yaml, describing the sequence identifiers used by NCBI for

sequences in Fasta format (Table 6). They allow for effortless validation of the identifiers and

access to the information contained therein, from the command line or any of the supported

programming languages (Nim, Python, C, C++).

Case study 3: Defining a new format

New text formats are often defined to represent kinds of data for which no existing suitable

format yet exists. One of the goals of the TextFormats library is to simplify the definition of

new formats in those circumstances. To simulate this kind of application, we defined a new file

format and implemented its specification in TFSL (egc.yaml). The format, called EGC
(expected genomic content) has the goal of representing a set of rules, describing the expected

content of a microbial genome, under a given condition, such as phenotype, lifestyle, or mem-

bership in a taxonomic group.

The general structure of the format was organized on the example of the GFA format [9].

Each line not starting with a comment symbol (#) is a record, containing multiple fields, sepa-

rated by tabulator characters. Tabulators or newline characters never occur in these fields. The

first field is a single letter determining the record type. The number and semantics of the fol-

lowing positional fields are determined by the record type. The positional fields cannot be

empty and a point (.) is used to represent missing information in a field (whenever allowed).

Four types of record lines have been have defined in EGC: records of type A define attributes

which can be measured in a genome sequence or annotation, such as sequence statistics or fea-

ture counts; records of type T (taxon) and P (phenotype group) define measurement subjects,

i.e., groups of organisms for which an expected value of the attributes can be defined; finally

records of type E define the expectation, i.e. the association of a subject to expected values of

an attribute.

Table 5. Accession identifiers of NCBI, DDBJ, ENA/EBI and UniProt sequence databases defined in the spec/
accessions.yaml TextFormats specification.

Database Data coded in accession

INSD read archives (SRA, DRA, ERA) Institution (NCBI, DDBJ, ENA/EBI), Type of data (study, run, sample,

experiment, analysis), Entry

UniProtKB Database name, Entry

Trace Archive Database name, Entry

INSD assembled sequence (Nucleotide,

Protein, Bulk, MGA)

Database name, Entry

INSD metadata (BioProject, BioSample) Institution (NCBI, DDBJ, ENA/EBI), Type of Record (BioProject,

BioSample), Entry

RefSeq Type of molecule (Genomic, RNA, protein), Type of assembly

(reference, alternate), Type of annotation (curated, predicted model),

Entry

Ensembl Species, Feature type (exon, protein, gene, transcript etc), Entry

The definitions on which the specification is based were obtained from the following documentation pages: https://

www.ncbi.nlm.nih.gov/Sequin/acc.html, https://www.ddbj.nig.ac.jp/acc_def-e.html, https://www.ddbj.nig.ac.jp/

prefix-e.html#dra, https://www.ncbi.nlm.nih.gov/books/NBK21091/table/ch18.T.refseq_accession_numbers_and_

mole/, https://www.uniprot.org/help/accession_numbers and https://www.ensembl.org/info/genome/stable_ids/

prefixes.html.

https://doi.org/10.1371/journal.pone.0268910.t005

PLOS ONE TextFormats: Simple definition and parsing of text formats

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 10 / 17

https://www.ncbi.nlm.nih.gov/Sequin/acc.html
https://www.ncbi.nlm.nih.gov/Sequin/acc.html
https://www.ddbj.nig.ac.jp/acc_def-e.html
https://www.ddbj.nig.ac.jp/prefix-e.html#dra
https://www.ddbj.nig.ac.jp/prefix-e.html#dra
https://www.ncbi.nlm.nih.gov/books/NBK21091/table/ch18.T.refseq_accession_numbers_and_mole/
https://www.ncbi.nlm.nih.gov/books/NBK21091/table/ch18.T.refseq_accession_numbers_and_mole/
https://www.uniprot.org/help/accession_numbers
https://www.ensembl.org/info/genome/stable_ids/prefixes.html
https://www.ensembl.org/info/genome/stable_ids/prefixes.html
https://doi.org/10.1371/journal.pone.0268910.t005
https://doi.org/10.1371/journal.pone.0268910

We developed a parser for the EGC format using TextFormats. In order to quantify the pos-

sible overhead when implementing TextFormats-based programs in different programming

languages, we implemented the program in Nim, C and Python.

Furthermore, to compare the use of TextFormats with existing solution, we developed a

Python parser for the format, which does not rely on TextFormats. We could not find any suit-

able Python library for easily creating such a parser. For example, GfaPy [20], which allows to

read GFA2 files, can be extended to new datatypes and custom line types. However, this func-

tionality is meant for adding further structured information to the graph, and does not fit the

need to implement a format not aimed at representing a graph (e.g., the standar GFA2 record

types cannot be overwritten). Thus, we created an ad hoc EGC parser in Python from scratch

(egc_ad_hoc.py).

The results obtained with the ad hoc parser were identical to those obtained using the pro-

grams based on TextFormats. We compared the performance of the different implementations

on example files, containing a variable number of lines. The results are reported in Table 4.

Case study 4: Development of a Python software tool

Using the Python API of TextFormats, it is possible to rapidly develop software tools address-

ing complex formats, such as GFA2. To demonstrate this, we created a Python script

gfa2_info.py based on the library, which collects basic statistics and summarizes the

Table 6. Fasta sequence identifiers used by NCBI, defined in the spec/ncbi_id.yaml TextFormats specification.

Type of sequence Accession prefix Example

NCBI RefSeq database ref ref|NM_010450.1

NCBI GenBank database gb gb|M73307|AGMA13GT

NCBI GenBank (third-party annotation) tpg tpg|BK003456|

EMBL sequence database emb emb|CAM43271.1|

EMBL sequence (third-party annotation) tpe tpe|BN000123|

DDBJ sequence database dbj dbj|BAC85684.1

DDBJ sequence (third-party annotation) tpd tpd|FAA00017|

SWISS-Prot database sp sp|P01013|OVAX_CHICK

TrEMBL database tr tr|Q90RT2|Q90RT2_9HIV1

PIR database pir pir||G36364

PDB database pdb pdb|1I4L|D

PRF database prf prf||0806162C

patent sequence pat pat|US|RE33188|1

pre-grant patent sequence pgp pgp|EP|0238993|7

general database reference gnl gnl|taxon|9606

local sequence lcl lcl|hnm271

GenInfo backbone sequence ID bbs bbs|316342

GenInfo backbone molecule type bbm bbm|464147

GenInfo import ID gim gim|442187

GenInfo integrated database gi gi|21434723

NCBI internal, genome pipeline gpp gpp|GPC_123456789

NCBI internal, named annotation track nat nat|AT_123456789.1|

The format of each type of identifier is described in the documentation of the NCBI Toolkit, at https://ncbi.github.io/cxx-toolkit/pages/ch_demo#ch_demo.id1_fetch.

html_ref_fasta.

https://doi.org/10.1371/journal.pone.0268910.t006

PLOS ONE TextFormats: Simple definition and parsing of text formats

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 11 / 17

https://ncbi.github.io/cxx-toolkit/pages/ch_demo#ch_demo.id1_fetch.html_ref_fasta
https://ncbi.github.io/cxx-toolkit/pages/ch_demo#ch_demo.id1_fetch.html_ref_fasta
https://doi.org/10.1371/journal.pone.0268910.t006
https://doi.org/10.1371/journal.pone.0268910

contents of a GFA2 file. To compare this solution with the state-of-the-art and verify the

results, we developed a tool with the same functionality using another software library. Among

the existing GFA libraries, only GfaPy [20] allows parsing of a GFA2 file using Python. Thus

we developed a script (named gfa2_info_gfapy_based.py) based on it.

In the current implementation of TextFormats, constraints which involve non-consecutive

elements cannot be directly specified in the specification, but must be implemented in the call-

ing code. In GFA2, all record identifiers must be unique, references to segments in other lines

must be identifiers of segments defined elsewhere in the same file, and the coordinates in

edges must be in the range of the length of the sequences to which they refer and correctly use

the final coordinate marker. To exemplify the implementation of such constraint validations

when using TextFormats and ensure a fair comparison with GfaPy, we developed a module

gfa2_cross_validator.py. The module verified the constraints when running the

TextFormats version of gfa2_info.py: it was able to correctly identify and report multiple

issues in an example GFA2 file.

Furthermore, in order to quantify the possible overhead when implementing the programs

based on TextFormats in Python, we implemented an equivalent TextFormats-based program

also in Nim, including a Nim implementation of the cross validator module.

We tested the Gfapy- and TextFormats-based programs on large real data, using the the

Minigraph [10] pre-built human genome pangenome graph GRCh38–0.1-14.gfa.gz
(downloaded from ftp.dfci.harvard.edu/pub/hli) converted to GFA2 by GfaPy. The file consists

of about 363 thousand lines. All programs produced the same results. The running times are

reported in Table 4.

Case study 5: Data format standardization

Sometimes data is available in a custom format and requires conversion into a standard for-

mat, in order to be processed with existing software tools. To test the suitability of TextFormats
for this kind of task, we created a file containing the annotation of a gene in a custom tabular

format.

A TextFormats specification was then written to read the custom file (ftab.yaml). We

then created a Python script (ftab_to_gff3.py), which parses the custom tabular format

using TextFormats and re-organizes the information, so that it can be written in GFF3 format,

using the provided GFF3 TextFormats specification. The resulting file was correctly validated

by the online GFF3 validation tool http://genometools.org/cgi-bin/gff3validator.cgi of the

GenomeTools suite [21].

Case study 6: Repairing an invalid file

Sometimes, due to some issues, a software tool outputs a file, which is invalid according to its

format specification. When it is not possible to fix the software tool, the output file must be

edited and corrected, so that it can be further processed with other tools, which assume a cor-

rect format. In the case of a complex format the correction can be very cumbersome, since it is

necessary to edit the invalid formatted pieces of information but existing library often inter-

rupt parsing due to the format error, and thus they can not be employed to edit the file content

and fix the issue.

For example, when extracting a sub-graph from a large GFA1 file, Bandage v.0.8.1 [22] out-

puts an invalid GFA1 file, which could not be loaded in standard-compliant GFA tools, such

as GfaPy [20]. Using a TextFormats-based Python script, the invalid file was further investi-

gated (gfa1_show_invalid_lines.py). This showed that the invalid tag type code ‘z’

was included in some tags (instead of the correct type code ‘Z’ for string types), and segment

PLOS ONE TextFormats: Simple definition and parsing of text formats

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 12 / 17

http://ftp.dfci.harvard.edu/pub/hli
http://genometools.org/cgi-bin/gff3validator.cgi
https://doi.org/10.1371/journal.pone.0268910

lines without sequences did not include the necessary � symbol instead of the sequence. An

example of GFA1 file which causes such an issue when a subgraph is extracted is included in

the TextFormats package (complete_graph.gfa).

Here we show, how it is possible to use TextFormats for solving this problem. In particular,

TextFormats allows import of an existing specification and changes to some parts of it. Thus,

we created a new specification which describes the format of the corrupted file (inva-
lid_gfa.yaml). In it, the original GFA1 specification was imported, the definition of tags

was modified to include the incorrect tag code, and the definition of sequences was modified,

so to accept empty strings instead of the � symbol.

We then created a short Python script based on TextFormats (gfa1_fix.py) which

parsed the output of Bandage using the invalid_gfa.yaml specification and output the

graph using the GFA1 specification. The resulting file was valid GFA1, which could be cor-

rectly parsed by GfaPy.

Discussion and conclusion

TextFormats is a software library and toolset which aims at providing an easy system for the

definition and access to text formats, which are very common in Bioinformatics. In particular,

it provides a rapid prototyping solution to the tedious task of parsing formats for which a pars-

ing library is not yet available. We tested the software by providing definitions of complex for-

mats such as SAM (Case study 1). We compared the resulting SAM parser to the state-of-the

art parsers based on the HTSlib library [16]. HTSlib resulted in much more efficient parsing

and provides additional functionality, compared to the TextFormats-based application. How-

ever, the difference in the efforts required for implementing such a library is apparent when

comparing the number of codes: HTSlib (as of version 1.13) consists of 84000 lines of code

(and, of course, offers additional functionality). The SAM specification in the Text Formats
Specification Language consists of a mere 132 lines. In another example, Case study 4, we

implemented Python scripts for collecting statistics from GFA2 files. The script based on Text-
Formats and a TFSL specification for GFA2 (224 lines) and a Python cross-validation module

(127 lines) had a better performance than a script based on the Python library GfaPy which (as

of version 1.2.3) consists of over 10000 lines of code. Thus, we think that TextFormats repre-

sents a useful tool, a tradeoff between computational performance and development effort,

when implementing bioinformatics scripts and pipelines, in which file formats must be

accessed for which no software is yet available.

In many cases, bioinformatics formats are only defined in text documents. This is for exam-

ple the case for accession numbers of sequence databases (Case study 2). TextFormats does not

require the user to write the formal grammar for describing a format, a task which can be chal-

lenging and is rarely used in bioinformatics. It relies on a simpler, human readable, definition

language TFSL. This hopefully will encourage authors of tools and databases to provide a speci-

fication to their data formats, instead of a mere description text. Such a specification could

directly be used for working with the data in the format.

In Case study 3, we made an example of design and definition of a format from scratch,

using TextFormats and compared this to the development of an ad hoc Python parser. While

the ad hoc parser was faster in handling an example input file, the development effort was also

much higher. TextFormats specification consisted of a 150 lines YAML file. The ad hoc parser

code is much more complex and difficult to maintain: it consists of about 700 lines of Python

code, for a total of 73 methods, aimed at parsing and writing all elements of the defined format.

It necessarily mixes the format definition with code for parsing and writing data based on

those definition. In contrast, using TextFormats the structure of the format is immediately

PLOS ONE TextFormats: Simple definition and parsing of text formats

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 13 / 17

https://doi.org/10.1371/journal.pone.0268910

apparent from the format specification file. Thus it is very easy to change any element of the

format, and even the whole structure of the file, which is very useful during the development

of a new format. Also, TextFormats provides further functionality, such as testing and auto-

matic examples generation from the format specification.

Also when adopted for reading or writing existing formats, TextFormats can be useful. In

Case study 5, for example, we demonstrate the use of TextFormats for converting annotation

data in a table to the standard GGF3 format. In another example (Case study 6), we demon-

strated the correction of an invalid GFA1 file output by another tool, which was rejected by

standard-compliant parsers. The TextFormats specification for GFA1 could be used for identi-

fying invalid elements of the file. Without TextFormats, correcting these elements requires to

correctly fetch them among the rest of the file content. For a complex format such as GFA1,

performing this operation correctly requires parsing at least the relevant parts of the format.

Thus, it would require to either write a parser from scratch or patch the source code of an

existing parsing library for the format. In TextFormats the file correction much easier, as it

allows overwriting definitions of imported specifications. Thus, a patched specification for

GFA1 was easily constructed just overwriting the parts of the format defining the invalid ele-

ments (15 lines of TFSL specification).

Although we think that TextFormats can be very useful in applied bioinformatics, it is also

has some limitations, which could be addressed in future versions of the software. First, its

lower performance compared to ad hoc format parsers is partly inherent in the dynamic

nature of the software, as TextFormatsmust employ flexible data structures for the representa-

tion of data, whose type is not known when compiling the library. In this context, an interest-

ing feature of Nim, not used in the current implementation, is the ability to execute a subset of

the language at compile time; A growing number of Nim libraries support this feature. It is

conceivable to exploit this functionality by giving the Nim compiler further information about

the types of data to be represented, given a TFSL specification. This would allow it to create

versions of the software addressed at single formats only, but with higher performance.

Although TextFormats is written in Nim, a programming language which is rather unusual

for bioinformatics software, the user of the library does not need to employ the same language.

Instead, API for Python and C are provided. A major goal of the library is rapid development,

and Python is a very popular rapid development language in the bioinformatics community.

Thus, it is foreseeable that most user will employ the library through the Python API. An

example of development of Python tools using TextFormats is given in Case study 4. It is

worth noting that installing the Python library is very easy: The documentation includes details

of the procedure, which in many cases do not even require a Nim compiler, but just to run the

command pip install textformats.
It could be argued that a package mainly intended to be used from Python should be imple-

mented in Python itself. To analyse the overhead represented by the use of the library in a dif-

ferent language than the implementation language Nim, we implemented equivalent

TextFormats-based programs (Case study 1 and Case study 4) in Nim, Python and C. Since

Nim is compiled to C, the overhead of using C instead of Nim itself is very limited: for the pro-

gram described in Case study 1, it was 2.9% to 3.3% (Table 4), while the program described in

Case study 3 runs slightly faster when written in C (1.3% to 2.3% faster). The overhead in

Python was measured comparing the running times to Nim implementations of the programs

described in Case study 1, Case study 3 and Case study 4. It was higher than in C, with values

ranging from 3.5% to 9.9%. The additional time is required for the initialization of the Python

interpreter (which would be required also if the library would be implemented in Python) and

for the data exchange, which requires Python object initializations handled under the hood by

the Nimpy library (for example for strings, which are in Python stored as immutable objects).

PLOS ONE TextFormats: Simple definition and parsing of text formats

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 14 / 17

https://doi.org/10.1371/journal.pone.0268910

However, when using a compiled language, such as Nim, instead of Python, for developing

Python libraries, the higher performance of compiled code compensates this additional time.

For this reason several popular Python packages in science, such as Numpy and Scipy, are

implemented as C extensions. Nim is compiled to C, and its Python interface is based on the

same Python C extension API used by those packages.

One of the central features is the generation of regular expressions for the datatypes defined

in the specification, from the description of the datatypes in TFSL. These regular expressions,

in most cases, are used to parse the input and capture its components. As a consequence, a lim-

itation of the library is that the formats that can be specified must be, in general, regular lan-

guages [23]. Another parsing strategy, not based on regular expressions, would be required to

overcome this limitation. Fortunately, most bioinformatics text formats are regular languages.

Still, some formats allow any degree of nesting of elements, e.g. the Newick format for phyloge-

netic trees [24], and thus cannot be currently described in the current version of TFSL. There

is an exception to this limitation: JSON, including any level of recursion, can be embedded in

any format supported by TextFormats. This is achieved by delegating the parsing of the

embedded JSON to the Nim JSON library; this functionality could also be extended by inter-

facing additional external libraries.

A further current limitation of TextFormats is in the validation of data, whenever the com-

parison of non-adjacent pieces of information is necessary. For example, in a format represent-

ing a graph (e.g. GFA [8]), it is not possible to model in the specification the constraints that

all edges must refer to valid nodes, since the nodes are defined elsewhere in the file. Currently,

such additional validations can be implemented as an additional layer on the data parsed by

TextFormats, as exemplified for the GFA2 format in Case study 4. In future versions of Text-
Formats, this validation layer could be generalized and integrated in the library. This will

require a system for addressing each single part of a format definition and a temporary storage

of information which must be used as comparison reference (e.g. sets valid of identifiers).

To conclude, we think that TextFormats, alongside current alternatives (such as writing

parser scripts) and despite some limitations described above, is an useful and powerful system

for rapidly supporting access to information in new bioinformatics text formats, as well as for

the definition of new formats, by providing a simple but effective format definition language.

Supporting information

S1 Appendix. Example code based on TextFormats. Examples of Python, Nim, Bash and C

code using the TextFormats library for parsing a text format.

(PDF)

S2 Appendix. Comparison of the available regular expression libraries for Nim. Compari-

sons of the performance and features of the currently available regular expression libraries for

the Nim programming language: re, nre, regex and nregex.

(PDF)

Acknowledgments

Many thanks to Burkhard Morgenstern (Department of Bioinformatics, University of Göt-

tingen), Marco Matthies and Stefan Kurtz (Center for Bioinformatics, University of Hamburg)

for helpful discussions; to Serena Lam (Department of Bioinformatics, University of Göt-

tingen) for language style suggestions and grammar corrections.

PLOS ONE TextFormats: Simple definition and parsing of text formats

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268910.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0268910.s002
https://doi.org/10.1371/journal.pone.0268910

Author Contributions

Conceptualization: Giorgio Gonnella.

Funding acquisition: Giorgio Gonnella.

Investigation: Giorgio Gonnella.

Project administration: Giorgio Gonnella.

Software: Giorgio Gonnella.

Supervision: Giorgio Gonnella.

Writing – original draft: Giorgio Gonnella.

References

1. Leonard SA, Littlejohn TG, Baxevanis AD. Common File Formats. Current Protocols in Bioinformatics.

2006; 16(1):A.1B.1–A.1B.9. https://doi.org/10.1002/0471250953.bia01bs16

2. Mills L. Common File Formats. Current Protocols in Bioinformatics. 2014; 45(1):A.1B.1–A.1B.18.

https://doi.org/10.1002/0471250953.bia01bs45 PMID: 26270173

3. Hung JH, Weng Z. Data formats in bioinformatics. Cold Spring Harbor Protocols. 2016; 2016(8):669–

671. https://doi.org/10.1101/pdb.top093211 PMID: 27480726

4. American Standards Association. American Standard Code for Information Interchange, ASA X3.4-

1963; 1963.

5. The Unicode Consortium. The Unicode Standard, Version 1.0, Volume 1. Reading, MA: Addison-Wes-

ley Developers Press; 1991.

6. The Linux Information Project. Binary File Definition; 2006. Available from: http://linfo.org/binary_file.

html.

7. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformat-

ics. 2016; 32(14):2103–2110. https://doi.org/10.1093/bioinformatics/btw152 PMID: 27153593

8. GFA Format Specification Working Group. The GFA Format Specification; 2020. Available from: http://

gfa-spec.github.io/GFA-spec/GFA1.html.

9. GFA Format Specification Working Group. Graphical Fragment Assembly (GFA) 2.0 Format Specifica-

tion; 2020. Available from: http://gfa-spec.github.io/GFA-spec/GFA2.html.

10. Li H, Feng X, Chu C. The design and construction of reference pangenome graphs with minigraph.

Genome Biology. 2020; 21(1):265. https://doi.org/10.1186/s13059-020-02168-z PMID: 33066802

11. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format

and SAMtools. Bioinformatics. 2009; 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

PMID: 19505943

12. Li H. Fast high-level programming languages; 2020. Available from: http://lh3.github.io/2020/05/17/fast-

high-level-programming-languages.

13. Pedersen BS, Quinlan AR. hts-nim: scripting high-performance genomic analyses. Bioinformatics.

2018; 34(19):3387–3389. https://doi.org/10.1093/bioinformatics/bty358 PMID: 29718142

14. Pedersen BS, Quinlan AR. Mosdepth: quick coverage calculation for genomes and exomes. Bioinfor-

matics. 2017; 34(5):867–868. https://doi.org/10.1093/bioinformatics/btx699

15. The SAM/BAM Format Specification Working Group. Sequence Alignment/Map Format Specification;

2021. Available from: https://samtools.github.io/hts-specs/SAMv1.pdf.

16. Bonfield JK, Marshall J, Danecek P, Li H, Ohan V, Whitwham A, et al. HTSlib: C library for reading/writ-

ing high-throughput sequencing data. GigaScience. 2021; 10(2). https://doi.org/10.1093/gigascience/

giab007

17. Heger A, Jacobs K, contributors. Pysam: htslib interface for python; 2021. Available from: https://

pysam.readthedocs.io.

18. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, et al. A global reference

for human genetic variation. Nature. 2015; 526(7571):68–74. https://doi.org/10.1038/nature15393

PMID: 26432245

19. Free Software Foundation. GNU Time; 2018. Available from: https://www.gnu.org/software/time/.

PLOS ONE TextFormats: Simple definition and parsing of text formats

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 16 / 17

https://doi.org/10.1002/0471250953.bia01bs16
https://doi.org/10.1002/0471250953.bia01bs45
http://www.ncbi.nlm.nih.gov/pubmed/26270173
https://doi.org/10.1101/pdb.top093211
http://www.ncbi.nlm.nih.gov/pubmed/27480726
http://linfo.org/binary_file.html
http://linfo.org/binary_file.html
https://doi.org/10.1093/bioinformatics/btw152
http://www.ncbi.nlm.nih.gov/pubmed/27153593
http://gfa-spec.github.io/GFA-spec/GFA1.html
http://gfa-spec.github.io/GFA-spec/GFA1.html
http://gfa-spec.github.io/GFA-spec/GFA2.html
https://doi.org/10.1186/s13059-020-02168-z
http://www.ncbi.nlm.nih.gov/pubmed/33066802
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://lh3.github.io/2020/05/17/fast-high-level-programming-languages
http://lh3.github.io/2020/05/17/fast-high-level-programming-languages
https://doi.org/10.1093/bioinformatics/bty358
http://www.ncbi.nlm.nih.gov/pubmed/29718142
https://doi.org/10.1093/bioinformatics/btx699
https://samtools.github.io/hts-specs/SAMv1.pdf
https://doi.org/10.1093/gigascience/giab007
https://doi.org/10.1093/gigascience/giab007
https://pysam.readthedocs.io
https://pysam.readthedocs.io
https://doi.org/10.1038/nature15393
http://www.ncbi.nlm.nih.gov/pubmed/26432245
https://www.gnu.org/software/time/
https://doi.org/10.1371/journal.pone.0268910

20. Gonnella G, Kurtz S. GfaPy: a flexible and extensible software library for handling sequence graphs in

Python. Bioinformatics. 2017; 33(19):3094–3095. https://doi.org/10.1093/bioinformatics/btx398 PMID:

28645150

21. Gremme G, Steinbiss S, Kurtz S. GenomeTools: a comprehensive software library for efficient process-

ing of structured genome annotations. IEEE/ACM transactions on computational biology and bioinfor-

matics. 2013; 10(3):645–656. https://doi.org/10.1109/TCBB.2013.68 PMID: 24091398

22. Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: Interactive visualization of de novo genome assem-

blies. Bioinformatics. 2015;. https://doi.org/10.1093/bioinformatics/btv383 PMID: 26099265

23. Chomsky N. Three models for the description of language. IRE Transactions on Information Theory.

1956; 2(3):113–124. https://doi.org/10.1109/TIT.1956.1056813

24. Cardona G, Rosselló F, Valiente G. Extended Newick: it is time for a standard representation of phylo-

genetic networks. BMC bioinformatics. 2008; 9:532–532. https://doi.org/10.1186/1471-2105-9-532

PMID: 19077301

PLOS ONE TextFormats: Simple definition and parsing of text formats

PLOS ONE | https://doi.org/10.1371/journal.pone.0268910 May 26, 2022 17 / 17

https://doi.org/10.1093/bioinformatics/btx398
http://www.ncbi.nlm.nih.gov/pubmed/28645150
https://doi.org/10.1109/TCBB.2013.68
http://www.ncbi.nlm.nih.gov/pubmed/24091398
https://doi.org/10.1093/bioinformatics/btv383
http://www.ncbi.nlm.nih.gov/pubmed/26099265
https://doi.org/10.1109/TIT.1956.1056813
https://doi.org/10.1186/1471-2105-9-532
http://www.ncbi.nlm.nih.gov/pubmed/19077301
https://doi.org/10.1371/journal.pone.0268910

