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Abstract
Parameter identification problems for partial differential equations are an
important subclass of inverse problems. The parameter-to-state map, which
maps the parameter of interest to the respective solution of the PDE or state
of the system, plays the central role in the (usually nonlinear) forward operator.
Consequently, one is interested in well-definedness and further analytic proper-
ties such as continuity and differentiability of this operator w.r.t. the parameter
in order to make sure that techniques from inverse problems theory may be suc-
cessfully applied to solve the inverse problem. In this work, we present a general
functional analytic framework suited for the study of a huge class of parameter
identification problems including a variety of elliptic boundary value problems
with Dirichlet, Neumann, Robin or mixed boundary conditions in Hilbert and
Banach spaces and possibly complex-valued parameters. In particular, we show
that the corresponding parameter-to-state operators fulfill, under suitable con-
ditions, the tangential cone condition, which is often postulated for numerical
solution techniques. This framework particularly covers the inverse medium
problem and an inverse problem that arises in terahertz tomography.
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1. Introduction and motivation

Many inverse problems that arise in the natural sciences are based on a physical model that
is formulated as a partial differential equation, or rather a boundary or initial value problem.
Applications are, for example, photoacoustic tomography [9, 56], electrical impedance tomog-
raphy [15, 52], ultrasound imaging [17], magnetic particle imaging [35, 39], helioseismology
[2, 27], and various examples in nondestructive testing [3, 49].

Inverse problems are commonly formulated using operator equations

F(θ) = g, F :D(F) ⊆ X → Y,

where F is called the forward operator and X and Y are suitable function spaces. In parameter
identification the forward operator is expressed as the composition F = Q ◦ S of a parameter-
to-state map S and an observation operator Q. The operator S maps the parameter θ of interest
to the (weak) solution uθ = S(θ) of the respective boundary value problem, whereas the obser-
vation operator Q describes the measuring process, i.e., the generation of the data y = Q(uθ)
from the state uθ. In many situations, only noisy observation data yδ with noise level

δ > ‖y− yδ‖Y

is available. For the solution of an inverse problem, this is a crucial point: the direct inversion of
the forward operator yields in most cases an unbounded inverse operator, which may amplify
the noise, causing a severely corrupted reconstruction. This phenomenon is called ill-posedness
[26, 30]. Regularisation methods guarantee a stable solution, i.e., they yield a solution that
depends continuously on the data. The choice of the regularisation method depends strongly
on the properties of the inverse problem. For example, most parameter identification problems
are nonlinear inverse problems, even in the case that the underlying partial differential equation
is linear.

Related Work. In this article, we focus on parameter-to-state operators. In general, the first
step of a mathematical analysis of parameter identification problems is to show their well-
definedness. To this end, we consider the variational formulation of the underlying boundary
value problem, i.e., we are interested in weak solutions. Similar frameworks, e.g., for classes
of elliptic problems in real Hilbert spaces [23, 24], but also particularly suited for a wide class
of time-dependent parameter identification problems [32, 38], have been published in recent
years.

In the next step, we study continuity and differentiability properties of the forward operator,
particularly of the parameter-to-state map. This includes the validity of the tangential cone con-
dition [28], which estimates the difference between a nonlinear operator and its linearisation
(see, e.g., [34] for some examples). The latter properties are crucially required for many reg-
ularisation techniques that are used to find a stable solution of the usually ill-posed parameter
identification problems. Examples are the classical Landweber method [28], Tikhonov regular-
isation [19], Gauss–Newton methods [31, 43], or sequential subspace optimisation techniques
[53, 54]. An overview of suitable techniques can be found in [14, 18, 33]. For the regularisation
of inverse problems in Banach spaces, these techniques need to be generalized. An extensive
overview is given by [48].
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Concerning the applications to parameter identification problems in sections 7–9, we shall
make use of the form methods introduced by Kato [37], Lions [40], and McIntosh [42], which
have been employed and hugely extended in various recent works by Arendt, ter Elst and
others, see, e.g., [7, 8, 50] and which have been applied in other relevant applications such as
in [6]. An overview of the functional analytic background, in particular in the complex-valued
setting, can be found in [47].

THz tomography as motivation. The framework that is derived in this work is inspired by
the analysis of the so-called scattering operator as it occurs in inverse scattering problems such
as the inverse medium problem, see, e.g., [11–13], and an inverse problem from terahertz (THz)
tomography [55]. In these examples, an object is illuminated by electromagnetic radiation ui

at fixed frequencies k0 > 0. The properties of the object, encoded in a material parameter m,
lead to refraction, reflection and, in the case of THz tomography, absorption of the radiation u,
which is the superposition u = ui + usc of a given incident wave ui and the scattered wave usc.
The latter is the solution of the boundary value problem

Δusc + k2
0(1− m)usc = k2

0mui in Ω, (1.1)

∂νusc − ik0usc = 0 on ∂ Ω (1.2)

with Robin boundary conditions. The scattering operator is the map S : m �→ u := ui + usc,
i.e., it maps the material parameter m to the resulting wave field u. More precisely, usc is the
weak solution of this Helmholtz equation. Finally, the radiation is typically measured on a
suitable curve around the object, determined by the domain Ω. The inverse problem now con-
sists in reconstructing m from these measurements. Note that m is real-valued in the inverse
medium problem and complex-valued in THz tomography. The respective variational problem
is expressed, using a sesquilinear form a and a functional b, via

a(usc, v) = b(v)

for all suitable test functions v, and we are interested in a unique weak solution usc. The
Lax–Milgram lemma, however, is not applicable here.

Our contribution. In this work, we have derived a general framework that allows for the
complete treatment of crucial properties—well-definedness, differentiability, tangential cone
condition—for a class of inverse problems that are linked to elliptic boundary value prob-
lems, in both Hilbert and Banach space settings. We additionally provide various applications,
ranging from abstract to real life examples.

For the analysis, we cover a wide range of boundary value problems and the corresponding
variational problems arising in abstract elliptic partial differential equations. Using functional
analytic tools derived in sections 3 and 4, we prove the existence of their unique weak solution.
In addition, our framework enables a conceptually simpler proof of the central properties of
the respective forward operators, and a more detailed insight into the occurring dependencies,
e.g., differentiability and tangential cone condition, as demonstrated in section 5.

Concerning application, we allow complex-valued parameters in the models (see particu-
larly section 8); this is a new result in comparison to [12, 55]. Furthermore, in the benchmark
applications in section 9, we offer a range of choices of settings in which the important prop-
erties can be confirmed, as opposed to existing works, which typically make fixed choices for
their settings.

Outline. The paper is organised into two main parts.
The first part studies analytic properties of the parameter-to-state operator. After some pre-

liminaries we find, in section 3, an operator theoretic reformulation of the problems we are
interested in and prove, based on this, existence and uniqueness of a weak solution in section 4.
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Afterwards, we study differentiability and the validity of a tangential cone condition for certain
parameter-to-state operators in section 5. Following this, we formulate our abstract framework
and illuminate the relation between our approach and the form methods mentioned above in
section 6, which also contains a short introduction to form methods.

The second part of the paper is dedicated to applications in inverse problems. All the
analysis from the first part is then applied to a range of examples: section 7 presents vari-
ous abstract examples of parameter identification, section 8 discusses THz tomography, and
section 9 investigates some benchmark parameter identification problems in Banach spaces.

2. Preliminaries

In this short section we fix the notation, collect some well-known facts, and introduce the
abstract framework we shall work within.

2.1. Notation

In what follows we consider vector spaces over K ∈ {R,C}. Let (V, ‖ · ‖V), (H, ‖ · ‖H)
be Banach spaces. We assume that V ⊆ H with a continuous inclusion mapping and with
embedding constant γ > 0, i.e., the function j : V → H, v �→ v is continuous with

‖ j‖op = γ.

For a nontrivial reflexive Banach space (W, ‖ · ‖W), W∗ denotes the space of antilinear
functionals on W.

For normed spaces (X1, ‖ · ‖X1 ), (X2, ‖ · ‖X2 ), (X3, ‖ · ‖X3 ) we denote by S(X1 × X2, X3) the
vector space of all continuous sesquilinear (antilinear in the second argument) mappings
X1 × X2 → X3. Recall that

‖ · ‖ : S(X1 × X2, X3)→ [0,∞),

a �→ sup
{
‖a(x1, x2)‖X3 : x1 ∈ X1, x2 ∈ X2 with ‖x1‖X1 , ‖x2‖X2 � 1

}
and (S(X1 × X2, X3), ‖ · ‖S(X1×X2,X3)) is a Banach space, provided that X3 is a Banach space.
For a ∈ S(X1 × X2, X3) we write a(x1) := a(x1, x1). Similarly, L(X1, X2) denotes the space
of all bounded, linear mappings X1 → X2 and we endow this space with the usual operator
norm denoted by ‖ · ‖L(X1,X2) or simply ‖ · ‖op. Instead of L(X1, X1) we write L(X1) and we let
IX1 denote the identity on X1. Furthermore, X′

1 denotes the topological dual space of X1. For the
corresponding dual pairings we write 〈x1, x′1〉 = x′1(x1), where x1 ∈ X1, x′1 ∈ X′

1 or x′1 ∈ X∗
1. In

addition, Lis(X1, X2) denotes the set of all (topological) isomorphisms between X1 and X2. In
the case that X1 = X2 we write Lis(X1). If H is a Hilbert space, we denote the corresponding
inner product by (·|·)H.

For a subspace D ⊆ X1 and a linear mapping A :D→ X2, if D̃ ⊆ X1 is another subspace
and Ã : D̃ → X2 another linear operator, we write A ⊆ Ã provided thatD ⊆ D̃ and Ax = Ãx for
all x ∈ D. In fact, we identify an operator A :D→ X2 with its graph {(x1, Ax1)| x1 ∈ D(A)}.
For an injective, linear mapping A :D→ X2, we put A−1 := {(Ax, x)| x ∈ D(A)} and A−1 is a
univalent, linear operator. We denote by DF f (x) the Fréchet-derivative of f at the point x ∈ Ω.

2.2. Standing assumptions

We consider continuous bounded mappings on subsets E, U of a Banach space X
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a1 : E →S(V ×W,K), t �→ a(t)
1 := a1(t),

a2 : U →S(H ×W,K), m �→ a(m)
2 := a2(m),

c : E × U →S(H ×W,K), (t, m) �→ c(t,m) := c(t, m).

with bounds

C(t) � ‖a1(t)‖S(V×W,K), (2.1)

M(m) � ‖a2(m)‖S(H×W,K), (2.2)

M(t, m) � ‖c(t, m)‖S(H×W,K). (2.3)

Moreover, we assume that for each t ∈ E,

sup
w∈W

‖w‖W=1

|a(t)
1 (v,w)| � c(t)‖v‖V ∀ v ∈ V , ∀ t ∈ E, and some c(t) > 0 (2.4)

and a1(t) is nondegenerate with respect to the second component, i.e.,(
a(t)

1 (v,w) = 0 ∀ v ∈ V
)
⇒ w = 0. (2.5)

Remark 2.1. In particular, (2.4) and (2.5) are satisfied in if V = W and a(t)
1 is coercive.

2.3. Framework

Our first aim is to study, under various conditions, the existence and properties of solutions
u ∈ V to the problem

∀ w ∈ W : a(t)
1 (u,w) + c(t,m)(u,w) = ϕ(w), (2.6)

where ϕ ∈ W∗ is given and t ∈ E and m ∈ U are parameters. In that case, the lower order terms
of the corresponding differential operator are encoded in the form c(t,m) and they depend on the
parameters m and t, while a(t)

1 essentially describes the highest order terms. The solution space
V contains information on the boundary values. An operator theoretic reformulation of our
problem in the next section is the starting point of our studies.

In the inverse medium problem [12] or the inverse problem from THz tomography [55]
which we mentioned in the introduction, c(t,m) = λ(t)a(m)

2 whereas m corresponds to a spatial
material parameter, and t represents the (fixed) frequency of the radiation. This case is discussed
in detail in section 8.

Analysis of parameter-to-state operator:
In the forthcoming sections, we present the results on

• Well-posedness (sections 3 and 4),
• Differentiability and tangential cone condition (section 5).
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3. Well-posedness of (2.6)

In this section, we associate linear operators to the problem (2.6) in order to explore this
problem using operator theoretic methods. For that purpose, we need the following two lem-
mas. The first auxiliary result can be regarded as a Banach space version of the classical
Lax–Milgram lemma and it can be easily established applying the strategy used in the proof
of theorem 12 in [29]. Note, however, that none of these two results completely implies the
respective other one.

Lemma 3.1. For each t ∈ E there exists an isomorphism Tt : V →W∗ such that

(Ttv)[w] = a(t)
1 (v,w)

for all v ∈ V and w ∈ W, and

(a) ‖Tt‖L(V,W∗) � C(t).
(b) ‖T −1

t ‖L(W∗,V) � 1
c(t) .

The following lemma constitutes an important step towards using operator theory in treating
problem (2.6).

Lemma 3.2. For each pair (t, m) ∈ E× U there exists a unique bounded operator Ct,m :
H →H with Ct,m(H) ⊆ V and with

a(t)
1 (Ct,mx,w) = c(t,m)(x,w) (3.1)

for every x ∈ H and each w ∈ W. In addition, the following assertions are valid.

(a) The mapping C : E × U →L(H), (t, m) �→ Ct,m is continuous.
(b) The part of Ct,m in V, i.e., the linear operator

CV
t,m : V → V , v �→ Ct,mv

is bounded and the mapping CV : E × U →L(V), (t, m) �→ CV
t,m is continuous.

(c) We have ‖Ct,mx‖V � M(t,m)
c(t) · ‖x‖H for each x ∈ H.

(d) The operators Ct,m and CV
t,m are both compact if the embedding j : V→ H is compact.

Proof. See appendix A.1. �

Definition 3.3 (Strong well-posedness). For (t, m) ∈ E× U, we call problem (2.6)
strongly well-posed if and only if for each ϕ ∈ W∗ there exists precisely one u ∈ V such that
(2.6) is satisfied.

Proposition 3.4 (Strong well-posedness). Let (t, m) ∈ E× U.

(a) For fixed ϕ ∈ W∗, u ∈ V solves (2.6) if and only if Tt(IV + CV
t,m)u = ϕ.

(b) The subsequent statements are equivalent.

1. Problem (2.6) is strongly well-posed.
2. The operator IV + CV

t,m is bijective.

In that case, the operator IV + CV
t,m possesses a bounded inverse and the unique

solution to problem (2.6) depends continuously on the data ϕ.
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(c) If the embedding j is compact and the nondegenerate condition(
∀ w ∈ W : a(t)

1 (u,w) + c(t,m)(u,w) = 0
)
⇒ u = 0 (3.2)

is satisfied, then problem (2.6) is strongly well-posed.

Proof. on (a): for all w ∈ W, we compute, using (A.1),〈
w, Tt(IV + CV

t,m)u
〉
= a(t)

1 ((IV + CV
t,m)u,w)

= a(t)
1 (u,w) + a(t)

1 (Ct,mu,w)

= a(t)
1 (u,w) + c(t,m)(u,w),

which implies the assertion.
on (b): since Tt is an isomorphism, the stated equivalence follows immediately from part

(a). So, in the case that IV + CV
t,m is bijective, it possesses a bounded inverse due to the open

mapping theorem. Moreover, in this situation the unique solution u to problem (2.6) is given
by u = (IV + CV

t,m)−1T −1
t ϕ and, consequently, depends continuously on the given ϕ.

on (c): assume that j is compact and condition (3.2) is met. By part (a), condition (3.2)
is equivalent to N (Tt(IV + CV

t,m)) = {0}. So, IV + CV
t,m is injective. By lemma 3.2, we derive

that CV
t,m is compact. Hence, IV + CV

t,m is an isomorphism by the Fredholm alternative (see, e.g.,
theorem 15.9 in [21]). The assertion follows from part (b). �

An important special case, in particular within a Hilbert space setting, occurs if V coin-
cides with W and V is densely embedded into H. We assume these for the remainder of this
subsection.

Definition 3.5 (H-well-posedness). Given that V = W and j has dense range. We call
problem (2.6) H-well-posed if for each ϕ ∈ H∗ there exists precisely one u ∈ V such that (2.6)
is satisfied.

Since the embedding j is continuous, if (2.6) is strongly well-posed or, equivalently, IV +
CV

t,m is bijective, then problem (2.6) is apparently H-well-posed, too. However, the converse
may fail in general. The next theorem will show there are less conditional equations to be
satisfied in order to guarantee H-well-posedness. To this end we introduce

At,m :=
{

(u,ϕ) ∈ V × H∗| ∀ v ∈ V : a(t)
1 (u,ϕ) + c(t,m)(u,ϕ) = ϕ(v)

}
,

A(t)
1 :=

{
(u,ϕ) ∈ V × H∗| ∀ v ∈ V : a(t)

1 (u, v) = ϕ(v)
}

and formulate problem (2.6) as follows:

given ϕ ∈ H∗, find u ∈ V : At,mu = ϕ.

Theorem 3.6 (H-well-posedness). We consider j	 : H∗ → V∗,ψ �→ ψ ◦ j. For (t, m) ∈
E× U the following assertions are valid.

(a) At,m is a closed operator from H to H∗.
(b) j	 is injective with dense range and ‖ j	‖op = γ.
(c) A(t)

1 = ( j 	)−1Tt; in particular, A(t)
1 is a densely defined, continuously invertible, closed

operator from H to H∗.
(d) N (At,m) = N (IV + CV

t,m) and R(At,m) = ( j 	)−1
(
R(Tt(IV + CV

t,m)) ∩R( j 	)
)
.
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(e) At,m = A(t)
1 (IV + CV

t,m).
( f ) The subsequent statements are equivalent.

1. Problem (2.6) is H-well-posed.
2. The operator At,m is bijective.
3. The operator IV + CV

t,m is injective with R( j 	) ⊆ R(Tt(IV + CV
t,m)).

In that case, At,m has a bounded inverse.
(g) Assume that (2.6) is H-well-posed. Then the mapping

J :D(At,m)→D(A(t)
1 ), u �→ (IV + CV

t,m)u

is well-defined and bijective. Furthermore, J is continuous if both spaces D(A) and
D(A(t)

1 ) are endowed with the respective graph norms where we consider At,m and A(t)
1

as operators from H to H∗. In particular, J is an isomorphism.
(h) The operator j 	A(t)

1 is closable as an operator from V to V∗ with j 	A(t)
1 = Tt . Suppose

additionally that problem (2.6) is strongly well-posed. Then the operator j	At,m is also
closable as an operator from V to V∗ with

j 	At,m = Tt(IV + CV
t,m).

Proof. See appendix A.2. �
The inverse problem w.r.t m arising from problem (2.6) consists in reconstructing m from

ut,m,ϕ for fixed ϕ ∈ H	 and t ∈ E. Thanks to theorem 3.6 we obtain the commutative diagram

In other words, the operator At,m factorises into an operator that does not depend at all on
the parameter m and the isomorphism IV + CV

t,m on the solution space V that encompasses the
dependence on m. This explains why the properties of the operator IV + CV

t,m are crucial for the
analytic features of the parameter-to-state operator as explored in section 5 below.

As a direct consequence of theorem 3.6 we finally see that in an important situation the
terms of strong well-posedness and H-well-posedness coincide.

Corollary 3.7 (strong and H-well-posedness). Besides the premises of theorem 3.6,
suppose that j is compact. Then problem (2.6) is strongly well-posed if and only if it is H-well-
posed.

Proof. If problem (2.6) is H-well-posed, then IV + CV
t,m is injective. Hence, problem (2.6) is

strongly well-posed since we can apply part (c) of proposition 3.4, thanks to the compactness
of j. �

4. Well-posedness and continuity of (2.6)

We are now able to formulate and prove our two main well-posedness results for the variational
problem (2.6). We have a local and a global well-posedness result in the sense that in the global
version we can establish, under appropriate conditions, well-posedness of (2.6) w.r.t. the entire
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parameter range E× U (see remark 4.2 below), whereas in the local version we may guarantee
well-posedness only on a suitable open subset of E× U. We start with the global version.

Theorem 4.1 (Global well-posedness and continuity). Given Ct,m : H → H and
CV

t,m : V → V its part in V as in lemma 3.2. Assume that the inclusion V ⊆ H is compact and

that for all (t, m) ∈ E × Ũ and all u ∈ V the nondegenerate condition(
∀ w ∈ W : a(t)

1 (u,w) + c(t,m)(u,w) = 0
)
⇒ u = 0 (4.1)

is valid, where Ũ is a non-empty subset of U. Then the following claims hold.

(a) There exists a set U ⊆ E × U open in E× X and containing E × Ũ such that IV + CV
t,m is

invertible for all (t, m) ∈ U and the inverse depends continuously on (t, m) ∈ U . Further-
more, for each t ∈ E there exists a set Ut ⊆ U open in X containing Ũ such that IV + CV

t,m
is invertible for all m ∈ Ut.

(b) For each ϕ ∈ W∗ and each pair (t, m) ∈ U there exists a unique u ∈ V such that

∀ w ∈ W : a(t)
1 (u,w) + c(t,m)(u,w) = ϕ(w),

and this unique u depends continuously on t, m, and ϕ. In addition, we have

‖u‖V � 1
c(t)

‖(IV + CV
t,m)−1‖L(V)‖ϕ‖W∗ . (4.2)

The analogous conclusions are valid for fixed t ∈ E and m ∈ Ut.

Proof. Let (t, m) ∈ E × Ũ be arbitrary and u ∈ V. By (4.1) and by part (b) and (c) of
proposition 3.4, we obtain that IV + CV

t,m is an isomorphism. As CV
t,m depends continuously on

(t, m) ∈ E× U, the function

F : E × U →L(V), (t, m) �→ IV + CV
t,m

is continuous. Summarizing, U :=F−1(Lis(V)) is a subset of E × U open w.r.t. the relative
topology on E× U containing E × Ũ. But as U is open in X, we deduce that U is open in
E× X. Clearly, IV + CV

t,m as well as its inverse depend continuously on (t, m) ∈ U .
Let ϕ ∈ W∗ and (t, m) ∈ U be arbitrary. Thanks to proposition 3.4, problem (2.6) has now

precisely one solution u ∈ V given by u =
(
IV + CV

t,m

)−1T −1
t (ϕ) ∈ V . Consequently, such a

solution necessarily satisfies

‖u‖V = ‖
(
IV + CV

t,m

)−1T −1
t (ϕ)‖V

� ‖
(
IV + CV

t,m

)−1‖L(V) · ‖T −1
t ‖L(W∗,V)‖ϕ‖W∗

� 1
c(t)

‖
(
IV + CV

t,m

)−1‖L(V)‖ϕ‖W∗ ,

which shows inequality (4.2). In addition, it is easy to show that u depends continuously on t,
m and ϕ by using this representation for u (cf the arguments used to establish lemma 3.2).

Finally, for fixed t ∈ E we may apply the results shown so far for Et := {t} instead of E in
order to establish the remaining assertions. �

Remark 4.2. Observe that in theorem 4.1 the choice Ũ = U is possible. Therefore we obtain
global well-posedness, i.e., for all parameter values (t, m) ∈ E× U, provided that (4.1) is sat-
isfied for Ũ = U. The conceptual advantage that justifies the introduction of the set Ũ in the
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formulation of theorem 8.2 is that it suffices to check condition (4.1) on the set Ũ for a fixed
t ∈ E, where Ũ needs not to be open, to directly obtain well-posedness on a larger set Ut open
in X. Hence, Ut is best suited for differential calculus. This plays a role in the treatment of some
examples, such as the inverse problem of THz tomography.

We now come to the local version.

Theorem 4.3 (Local well-posedness and continuity). Let Ct,m : H → H and CV
t,m :

V → V be as before. Assume that there exists a net (tα)α∈A (A a directed set) in E with

lim
α∈A

M(tα, m)
c(tα)

= 0 (4.3)

for all m ∈ U. Then there exists a non-empty set O ⊆ E × U open in E× X with the following
properties:

(a) For all m ∈ U there exists a non-empty, open subset Om ⊆ E such that Om × {m} ⊆ O.
(b) The operator IH + Ct,m is invertible for all (t, m) ∈ O.
(c) The operator IV + CV

t,m is invertible as an element of L(V) for all (t, m) ∈ O and both this
operator and its inverse depend continuously on (t, m) ∈ O.

(d) For all (t, m) ∈ O and each antilinear functionalϕ ∈ W∗ there exists a unique u ∈ V such
that

∀ w ∈ W : a(t)
1 (u,w) + c(t,m)

2 (u,w) = ϕ(w)

and this unique u depends continuously on t, m and ϕ. In addition, we have

‖u‖V � 1
c(t)

‖(IV + CV
t,m)−1‖L(V)‖ϕ‖W∗ .

Proof. Using Ct,m(H) ⊆ V and part (c) of lemma 3.2, we derive

‖Ct,mx‖H � γ‖Ct,mx‖V � γM(t, m)
c(t)

‖x‖H,

which implies

‖Ct,m‖L(H) �
γM(t, m)

c(t)
.

Employing hypothesis (4.3), we derive

‖Ctα,m‖L(H) �
γM(tα, m)

c(tα)
−−−→
α∈A

0

for all m ∈ U, which yields

IH + Ctα ,m −−−→
α∈A

IH ∈ Lis(H).

Since Lis(H) is an open subset of L(H) and C : E × U →L(H), (t, m) �→ Ct,m is continuous,
we deduce that for fixed m ∈ U the set

Om := {t ∈ E : IH + Ct,m ∈ Lis(H)}

10
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is a non-empty open subset of E as well as that the set

O := {(t, m) ∈ E × U : IH + Ct,m ∈ Lis(H)}

is non-empty and open w.r.t. the relative topology on E× U. As U is open in X, we infer that
O is an open subset of E× X. Clearly, Om × {m} ⊆ O for all m ∈ U. This shows part (a)
and (b).

The remaining assertions can now be deduced essentially as in the proof of theorem 4.1
as soon as we will have shown that IV + CV

t,m is invertible for all (t, m) ∈ O. By part (b), the
operator IV + CV

t,m is injective for (t, m) ∈ O. Let ṽ ∈ V be arbitrary. Thanks to part (b), there
exists a v ∈ H such that (IH + Ct,m)(v) = ṽ. This last equality is equivalent to v = ṽ − Ct,mv
and we infer that v ∈ V because of Ct,m(H) ⊆ V . As a result, IV + λ(t)CV

t,m is also surjective,
thus continuously invertible by the open mapping theorem. �

Remark 4.4. Assumption (4.3) in the local well-posedness result is a kind of smallness con-
dition w.r.t. the highest order terms a(t)

1 imposed on the lower order terms c(t,m) of the involved
differential operator.

5. Differentiability and tangential cone condition

Assuming the well-posedness of problem (2.6), we will now explore the analytic properties of
various parameter-to-state operators.

5.1. Dependence on the parameter m

Theorem 5.1 (Differentiabilty). Let ν ∈ N ∪ {∞}, t ∈ E be fixed, and Gt a non-empty,
open subset of U. Assume that (2.6) is strongly well-posed for all m ∈ Gt . We further consider
the forward mapping of (2.6),

Φ : Gt →W∗, m �→ a(t)
1 (u, ·) + c(t,m)(u, ·) = ϕm,

as well as the parameter-to-state operator

S : Gt → V , m �→ um,

where um = ut,m,ϕm is the unique solution u ∈ V of the problem (2.6). Then:

(a) If the forward mapping Φ and ct := c(t, ·) are both ν-times (continuously) Fréchet-
differentiable on Gt , then the parameter-to-state map S is also ν-times (continuously)
Fréchet-differentiable on Gt.

(b) If the forward mapping Φ and c(t, ·) are both analytic on Gt (in the sense that they are
locally given by their respective Taylor series expansion, see [58]), then the parameter-
to-state map S is also analytic on Gt.

Proof. See appendix B.1. �

It is not difficult to see that DFS(m)[m̃] is the unique element u ∈ V such that

a(t)
1 (u,w) + c(t,m)(u,w) =

〈
w, DFΦ(m)[m̃]−

(
(DFBt)(m)[m̃]

)
S(m)

〉
(5.1)

11
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for all w ∈ W, where Bt : m �→ c(t,m)(·, ·). This leads to the result on the tangential cone
condition.

Theorem 5.2 (Tangential cone condition). Suppose that the conditions in theorem 5.1
hold and ν = 1. Moreover, assume that ct : m �→ c(t,m) is the restriction of a continuous affine
linear mapping defined on X. Then, for each m0 ∈ Gt and every κ ∈ (0, 1) there exists a con-
stant  = (m0,κ) > 0 such that B(m0) ⊆ Gt, the Fréchet-derivative DFS of S is bounded on
B(m0) and S satisfies a κ-tangential cone condition on B(m0) w.r.t. both ‖ · ‖H and ‖ · ‖V,
i.e., we have

‖S(m1)− S(m2)− (DFS(m2))[m1 − m2]‖H � κ‖S(m1)− S(m2)‖H , (5.2)

‖S(m1)− S(m2)− (DFS(m2))[m1 − m2]‖V � κ‖S(m1)− S(m2)‖V (5.3)

for all m1, m2 ∈ B(m0).

Proof. First, S is continuously Fréchet-differentiable on Gt thanks to theorem 5.1. Let m ∈
Gt, h ∈ X\{0} such that m + h ∈ Gt, let w ∈ W, and put u := S(m + h)− S(m)− (DFS(m))[h].
Using (5.1) and (B.3), we deduce

a(t)
1 (u,w) + c(t,m)(u,w)

= a(t)
1 (S(m + h),w) + c(t,m+h)(S(m + h),w)− c(t,m+h)(S(m + h),w) + c(t,m)(S(m + h),w)

−
(

a(t)
1 (S(m),w) + c(t,m)(S(m),w)

)
−
(

a(t)
1 ((DFS(m))[h],w)+ c(t,m) ((DFS(m))[h],w))

)
= 〈w,Φ(m + h)〉 − 〈w,Φ(m)〉 − c(t,m+h)(S(m + h),w) + c(t,m)(S(m + h),w)

− 〈w, DFΦ(m)[h] − ((DFBt)(m)[h]) S(m)〉

= 〈w,Φ(m + h)− Φ(m)−DFΦ(m)[h]〉 − 〈w, (Bt(m + h)− Bt(m)− (DFBt)(m)[h]) (S(m + h))〉

+ 〈w, ((DFBt)(m)[h]) S(m)− ((DFBt)(m)[h]) S(m + h)〉 .

Since Φ and Bt are, by assumption, restrictions of continuous, affine linear mappings, the first
two terms in the last expression vanish and we conclude

a(t)
1 (u,w) + c(t,m)(u,w) = 〈w, ((DFBt)(m)[h]) S(m)

− ((DFBt)(m)[h]) S(m + h)〉

for all w ∈ W, i.e.,

Tt(IV + CV
t,m)u = ((DFBt)(m)[h]) S(m)− ((DFBt)(m)[h]) S(m + h)

= ((DFBt)(m)[h]) (S(m)− S(m + h))

thanks to part (a) of proposition 3.4. This yields

‖S(m + h)− S(m)− (DFS(m))[h]‖V

� ‖(IV + CV
t,m)−1‖op · ‖T −1

t ‖op · ‖(DFBt)(m)‖op · ‖h‖X · ‖S(m)− S(m + h)‖H

� γ

c(t)
‖(IV + CV

t,m)−1‖op · ‖(DFBt)(m)‖L(X,L(H,W∗)) · ‖h‖X · ‖S(m)− S(m + h)‖V .

(5.4)

12
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In order to complete the proof, consider an arbitrary m0 ∈ G and any κ ∈ (0, 1). By a simple
continuity argument, we can find ′ > 0 such that B′(m0) ⊆ Gt, DFS is bounded on B′ (m0),
and

Λ := sup
m∈B′ (m0)

γ

c(t)
‖(IV + CV

t,m)−1‖op · ‖(DFBt)(m)‖L(X,L(H,W∗)) <∞.

Now we choose  ∈ (0, ′) such that 2Λ < κ. For all m1, m2 ∈ B(m0) ⊆ B′ (m0) we then
derive, employing inequality (5.4) and the triangle inequality,

‖S(m1)− S(m2)− DFS(m2)[m1 − m2]‖V

� Λ
(
‖m1 − m0‖X + ‖m0 − m2‖X

)
‖S(m1)− S(m2)‖V

� κ‖S(m1)− S(m2)‖V .

Using the first estimate in (5.4), we also have

‖S(m + h)− S(m)− (DFS(m))[h]‖H

� γ‖S(m + h)− S(m)− (DFS(m))[h]‖V

� Λ · ‖h‖X · ‖S(m)− S(m + h)‖H

for m ∈ Gt and h ∈ X\{0} such that m + h ∈ Gt. The same line of argument as before finishes
the proof. �

Remark 5.3. Observe that the function S in theorem 5.2 fulfills a very strong variant of the
classical tangential cone condition as the tangential cone constant κ may be chosen arbitrarily
small (of course, at the cost of choosing the radius  very small).

5.2. Dependence on the parameter t

We assume in this subsection that E is an open set of a Banach space Y. A similar line of
argument as in the proof of theorem 5.1 leads to the subsequent result.

Theorem 5.4 (Differentiability). Let ν ∈ N ∪ {∞}, m ∈ U be fixed, and Om a non-
empty, open subset of E. Assume that problem (2.6) is strongly well-posed for all t ∈ Om. We
further consider the forward mapping of equation (2.6)

pmbΦ :Om →W∗, t �→ a(t)
1 (u, ·) + c(t,m)(u, ·) = φt

and

T : E →L(H, W∗), t �→ Tt

with Tt in lemma 3.1, as well as the parameter-to-state operator

τ :Om → V , t �→ ut,

where ut = ut,m,φt is the unique solution u ∈ V of the problem (2.6). Then

(a) If Φ, T and c(·, m) are ν-times (continuously) Fréchet-differentiable onOm, then τ is also
ν-times (continuously) Fréchet-differentiable on Om.

(b) If Φ, T and c(·, m) are analytic on Om, then τ is also analytic on Om.

13
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Similarly as in the preceding subsection, DFτ(t)[y] is the unique element u ∈ V such that

a(t)
1 (u,w) + c(t,m)(u,w) = 〈w, DFΦ(t)[x]− (DFT (t)[y]

+ DFBm(t)[y] j)τ(t)〉 (5.5)

for all w ∈ W, where Bm : t �→ c(t,m)(·, ·). We thus obtain the result for the tangential cone con-
dition. As the proof can be carried out in the similar way to theorem 5.2, we do not present it
here.

Theorem 5.5 (Tangential cone condition). Suppose that the conditions in theorem 5.4
hold. Let m ∈ U be fixed and problem (2.6) is strongly well-posed for all t ∈ Om. Moreover,
we assume that, for fixed m, c(·, m) and T are restrictions of continuous affine linear functions
Y, and c(t) depends continuously on t.

Then, for each t0 ∈ Om and every κ ∈ (0, 1) there exists a constant  = (t0,κ) > 0 such
that B(t0) ⊆ Om, the Fréchet-derivative DFτ of τ is bounded on B(t0) and τ satisfies on
B(t0) a κ-tangential cone condition w.r.t. both ‖ · ‖H and ‖ · ‖V, i.e., we have

‖τ(t1)− τ(t2)− (DFτ(t2))[t1 − t2]‖H � κ‖τ(t1)− τ(t2)‖H, (5.6)

‖τ(t1)− τ(t2)− (DFτ(t2))[t1 − t2]‖V � κ‖τ(t1)− τ(t2)‖V (5.7)

for all t1, t2 ∈ B(t0).

5.3. Dependence on the parameter (t, m)

In this section, we are dealing with a parameter-to-state map Θ :O ⊆ E × U → V , (t, m) �→
Θ(t, m) that depends on the two variables m and t. Here, we only state a differentiability result
for the parameter-to-state map, which can be easily proved using our previous findings.

Theorem 5.6 (Differentiability). Let ν ∈ N ∪ {∞} and letO be a non-empty, open sub-
set of E × U. Assume that problem (2.6) is strongly well-posed for all (t, m) ∈ O. We further
consider the forward mapping of (2.6),

Ψ :O→W∗, (t, m) �→ a(t)
1 (u, ·) + c(t,m)(u, ·) = ψt,m,

as well as the parameter-to-state operator

Θ :O→ V , (t, m) �→ ut,m,

where ut = ut,m,ψt,m is the unique solution u ∈ V of the problem

∀ w ∈ W : a(t)
1 (u,w) + c(t,m)(u,w) = ψt,m(w) = 〈w,Ψ(t, m)〉.

(a) If Ψ and c are both ν-times (continuously) Fréchet-differentiable on O, then Θ is also
ν-times (continuously) Fréchet-differentiable on O.

(b) If Ψ and c are both analytic on O, then Θ is also analytic on O.

14
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6. Functional analytic framework and form methods

The idea to consider the associated operators A(t)
1 and At,m above is inspired by form methods

(for literature, see section 1). We also recommend [5] for more details. Later on, we explore
some examples where the abstract theory developed in the preceding sections is applied. For
that purpose it will turn out to be advantageous to discuss some basics of this theory and to
expound in which way these form methods are linked to our approach.

Now, we temporarily work outside our general framework and we suppose that H and V
are Hilbert spaces where (unlike our premises from the first section) V is not assumed to be
a subspace of H. Furthermore, let a : V × V →K be a bounded sesquilinear form and let j ∈
L(V , H) be an operator with dense range. We consider the following condition:

For each u ∈ V with j(u) = 0 and a(u, u) = 0 one has u = 0. (6.1)

If a satisfies condition (6.1), then the relation

A :=
{

(x, y) ∈ H × H | ∃ u ∈ V :
(

j(u) = x ∧ ∀ v ∈ V : a(u, v) = (y| j(v))H

)}
defines a linear operator A : H ⊇ D(A)→ H, which is also accretive if a is positive, i.e., if
Re a(u, u) � 0 for all u ∈ V. The operator A is called the operator associated with (a, j) and
one writes A ∼ (a, j). Note that condition (6.1) is automatically met if j is an embedding.

The form a is called j-elliptic if there are constants ω ∈ R and α > 0 such that

∀ v ∈ V : Re(a(v, v)) + ω‖ j(v)‖2
H � α‖v‖2

V . (6.2)

In that case −ω − A generates a contractive, strongly continuous semigroup, the operator A is
self-adjoint provided that a is symmetric, and A possesses a compact resolvent if j is compact.
If V ⊆ H (as in the situation we are interested in) and j is just the canonical embedding, then
j-elliptic forms are also called H-elliptic. We recall a useful perturbation result, which can be
found, e.g., in [5] (lemma 11.1). Note, however, that we state the lemma in a more detailed
version as it is essential for the upcoming examples to trace back a sufficiently precise form of
the involved constants, which can be easily verified by using Young’s inequality:

Lemma 6.1. Let V and H be Hilbert spaces such that V ⊆ H, where the embedding is dense.
Let a : V × V →K be a continuous H-elliptic form with

Re a(u) + ω‖u‖2
H � α‖u‖2

V (u ∈ V),

where ω ∈ R and α > 0. Furthermore, let b : V × V →K be a continuous form such that

|b(u)| � M‖u‖V · ‖u‖H (u ∈ V)

with a constant M > 0. Then a + b is H-elliptic satisfying

Re(a(u) + b(u)) +

(
ω +

M2

2α

)
‖u‖2

H � α

2
‖u‖2

V (u ∈ V).

Now we want to clarify the relation between these form methods and our approach. To this
end, we adopt all assumptions presented in section 2; note that j is therefore now the natural
embedding. In addition, we assume that V = W, j has dense range, V and H are Hilbert spaces,
and a1 satisfies condition (2.4). Finally, we fix t ∈ E and m ∈ U, and put a := at,m := a(t)

1 + c(t,m).
Let A :=At,m ∼ at,m = a and A(t)

1 ∼ a(t)
1 , i.e.,
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A =
{

(x, y) ∈ H × H | ∃ u ∈ V :
(

j(u) = x ∧ ∀ v ∈ V : a(u, v) = (y| j(v))H

)}
=
{

(u, y) ∈ V × H | ∀ v ∈ V : a(t)
1 (u, v) + c(t,m)(u, v) = (y|v)H

)}
and

A(t)
1 =

{
(x, y) ∈ H × H | ∃ u ∈ V :

(
j(u) = x ∧ ∀ v ∈ V : a(t)

1 (u, v) = (y| j(v))H

)}
=
{

(u, y) ∈ V × H | ∀ v ∈ V : a(t)
1 (u, v) = (y|v)H

)}
.

We notice that for y ∈ H the antilinear functional

ϕy : V →K, v �→ (y|v)H

is continuous as one easily verifies. As a consequence, the equation Au = y is satisfied if and
only if u solves (2.6) for ϕ = ϕy. Now, if we identify H and H∗ via the Riesz isomorphism
of H, then we see that these operators are precisely the operators considered in the preceding
subsection. For that reason we tolerate the ambiguity of the symbols At,m and A(t)

1 .
We now come to the application of our theoretical results in inverse problems:

Inverse problems of identifying parameters in partial differential equations:
In the forthcoming sections, we illustrate our general framework for

• Parameter identification problems with a rather theoretical background (section 7),
• Problems arising in applications, particularly in inverse scattering (section 8),
• Important benchmark problems from inverse problems research (section 9).

7. Abstract parameter identification examples

For some of the upcoming examples it will turn out to be advantageous to fix some notation.
For a topological space X we write C(X,K) for the space of K-valued, continuous functions

defined on X. Let N ∈ N. For x, y ∈ KN we denote the vector product by x · y. Let Ω ⊆ RN

be an open, non-empty set. We use the standard notation for Sobolev spaces. Beside the usual
Sobolev norm we also use the seminorm

|v|H1(Ω) = (∇v|∇v)L2(Ω) =

∫
Ω

∇v · ∇v dx

for v ∈ H1(Ω), which is a norm on H1
0(Ω) equivalent to the usual Sobolev norm, provided thatΩ

is bounded in at least one direction. If Ω possesses a compact Lipschitz boundary, we denote by
ν = (ν1, . . . , νN) the outward-pointingnormal field. If in addition,Ω is bounded or has compact
C1-boundary, then there exists precisely one bounded trace operator tr : H1(Ω) → L2(∂Ω) with
tru = u|∂Ω for all u ∈ H1(Ω) ∩ C(Ω). We just write u instead of u|∂Ω if no confusion is to be
expected. Observe that in the case of a boundedΩ there exists a constant C > 0 (only depending
on Ω and thus on N) such that the trace interpolation estimate

‖u|∂Ω‖2
L2(∂Ω) = ‖tr(u)‖2

L2(∂Ω) � C‖u‖L2(Ω)‖u‖H1(Ω) (7.1)

is valid for all u ∈ H1(Ω) (see, e.g., theorem 1.6.6 in [16]).
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7.1. Examples with uniformly elliptic differential operators in divergence form subject to
Dirichlet, Neumann and mixed boundary conditions

Let Ω ⊆ RN be open, bounded with continuous boundary.
Let H = L2(Ω) and V = W a closed subspace of H1(Ω) containing H1

0(Ω), endowed with
‖ · ‖H1(Ω). We set E = (0,∞), X = L∞(Ω)N × L∞(Ω) and postulate that the mapping

A j,k : E → L∞(Ω), t �→ a(t)
j,k

is continuous for all j, k ∈ {1, . . . , N} with a(t)
j,k ∈ L∞(Ω) for j, k ∈ {1, . . . , N}.

Letβ > 0 be independent of t, such that for all ξ = (ξ1, . . . , ξN)� ∈ KN ,μL-almost all x ∈ Ω
and all t ∈ E the matrix (a(t)

i, j) j,k∈{1,...,N} satisfies the uniform ellipticity condition

Re

⎛⎝ N∑
j,k=1

a(t)
j,k(x)ξk · ξ j

⎞⎠ � β · |ξ|22, (7.2)

where | · |2 is the Euclidean norm on KN . The mentioned μL-nullset may depend on the
parameter t.

We fix  > 0 and set

U :=

{
((c1, . . . , cN), d) ∈ X : max

{
max

j=1,...,N
‖c j‖∞, ‖d‖∞

}
< 

}
.

Now let b1, . . . , bN ∈ L∞(Ω) and

Γ1 := max
j=1,...,N

‖b j‖∞, Γ2 := 2ϑmax{,Γ1}+ , (7.3)

where ϑ = ϑN > 0 with | · |1 � ϑN| · |2 on KN with the �1-norm | · |1 on KN , and set

ã0(t)[u, v] :=
∫
Ω

N∑
j,k=1

a(t)
j,k(x)∂ku(x)∂ jv(x) dx (7.4)

for t ∈ E, u, v ∈ V. We thus have

Re ã0(t)[u, u] + β‖u‖2
L2(Ω) � β‖u‖2

H1(Ω) (7.5)

for u ∈ V. We define

ã1 : V × V →K, (u, v) �→
∫
Ω

N∑
j=1

b j(∂ ju)v dμL (7.6)

and we get

|ã1[u, u]| � Γ1‖u‖V · ‖u‖H = Γ1‖u‖H1(Ω) · ‖u‖L2(Ω).
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We consider the form ã(t) : V × V →K, (u, v) �→ ã0(t)[u, v] + ã1[u, v], where

ã(t)[u, v] = ã0(t)[u, v] + ã1[u, v]

=

∫
Ω

⎡⎣ N∑
j,k=1

(
a(t)

j,k(x)(∂ku(x))(∂ jv(x))
)
+

N∑
j=1

b j(x)(∂ ju(x))v(x)

⎤⎦ dx.

Employing lemma 6.1 with ω = α = β, we deduce

Re
(
ã(t)[u, u]

)
+

(
β +

Γ2
1

2β

)
‖u‖2

H � β

2
‖u‖2

V (7.7)

for all u ∈ V, t ∈ E.
For m = (c, d) = ((c1, . . . , cN), d) ∈ L∞(Ω)N × L∞(Ω) = X we set

b(m) : H × V →K,

( f , v) �→ −
∫
Ω

⎛⎝ N∑
j=1

(
c j(x) f (x)∂ jv(x)

)
+ d(x) f (x)v(x)

⎞⎠ dx.

The respective mapping b : X →S(H × V ,K), m �→ b(m) is well-defined, linear, and contin-
uous, as one easily verifies. We now define the form

a3 : H × V →K, ( f , v) �→
((

β +
Γ2

1

2β

)
−
(
β +

Γ2
2

2β

))
( f |v)H

and set

a(t)[u, v] : =
∫
Ω

⎡⎣ N∑
j,k=1

(
a(t)

j,k(∂ku)(∂ jv)
)
+

N∑
j=1

(
b j(∂ ju)v + c ju∂ jv

)
+ duv

⎤⎦ dμL

(7.8)

= ã(t)[u, v]− b(m)[u, v]

= ã0(t)[u, v] + ã1[u, v]− b(m)[u, v]

for t ∈ E and u, v ∈ V = H1(Ω). Furthermore, we define

a1(t) : V × V →K, (u, v) �→ ã(t)[u, v] +

(
β +

Γ2
1

2β

)
(u|v)H,

a2(m) : H × V →K, ( f , v) �→ −b(m)[ f , v]− a3( f , v),

and λ : E →K, t �→ 1, and we obtain by a simple calculation

a1(t)[u, v] + λ(t) · a2(m)[u, v] = a(t)[u, v] +

(
β +

Γ2
2

2β

)
(u|v)H.

Due to (7.7) we obtain coercivity of a1(t), i.e., for all u ∈ V holds

Re (a1(t)[u, u]) � β

2
‖u‖2

V .
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A straightforward estimation yields for u ∈ V

|ã1[u]− b(m)[u]| � 2 max

{
Γ1, max

j=1,...,N
‖c j‖∞

}

×
N∑

j=1

∫
Ω

|∂ ju| · |u| dμL + ‖d‖∞ · ‖u‖2
H.

Using the Cauchy–Schwarz inequality and the definition of ϑ, we thus infer

|ã1[u]− b(m)[u]| � 2 max

{
Γ1, max

j=1,...,N
‖c j‖∞

}
‖u‖H

N∑
j=1

‖∂ ju‖H + ‖d‖∞ · ‖u‖2
H

� 2ϑmax

{
Γ1, max

j=1,...,N
‖c j‖∞

}
‖u‖H · ‖ |∇u|2 ‖H + ‖d‖∞ · ‖u‖2

H.

Hence,

|ã1[u]− b(m)[u]| �
(

2ϑmax

{
Γ1, max

j=1,...,N
‖c j‖∞

}
+ ‖d‖∞

)
‖u‖H · ‖u‖V .

(7.9)

Let (t, m) ∈ E× U and u ∈ V, such that

a1(t)[u,w] + λ(t) · a2(m)[u,w] = 0

for all w ∈ W = V, which particularly holds for u = w. With (6.1), (7.5) and (7.9), we thus
arrive at

0 = Re (a1(t)[u, u] + λ(t) · a2(m)[u, u])

= Re (a(t)[u, u])+

(
β +

1
2β

·
(
2ϑmax{,Γ1}+ 

)2
)
‖u‖2

H

� Re (a(t)[u, u])

+

(
β +

1
2β

·
(

2ϑ max
j=1,...,N

max {‖c j‖∞,Γ1}+ ‖d‖∞
)2
)
‖u‖2

H

� β

2
‖u‖2

V ,

which yields u = 0 and (8.9) is fulfilled.
Since H1(Ω) ↪→ L2(Ω) is compact, the embedding j : V ↪→ L2(Ω) is compact. As a conse-

quence, we are in the framework of our global well-posedness result theorem 4.1. We now
formally set

Dmu := − div
(
(a j,k) j,k∇u

)
+ b · ∇u− div(c · u) +

(
d + β +

Γ2
2

2β

)
u

19



Inverse Problems 38 (2022) 075005 H Hoffmann et al

for u ∈ V and fix some v0 ∈ H1
0(Ω). For w ∈ W = V, m ∈ U, and ϕm := b(m)[v0, ·] we have

ϕm(w) = b(m)[v0,w] = −
∫
Ω

⎛⎝ N∑
j=1

(
c jv0∂ jw

)
+ dv0w

⎞⎠ dx.

With ϕ = ϕm, (8.13) can be regarded as the variational formulation of{
Dmu = div(v0 · c)− dv0 in Ω,

u ∈ V (boundary values).

As b is linear and continuous (see above), theorems 5.1 and 5.2 are applicable.
We want to emphasise three scenarios. (Recall that we have v0 ∈ H1

0(Ω).)

(a) In the case V = H1
0(Ω) we have Dirichlet boundary conditions, i.e.,{

Dmu = div(v0 · c)− dv0 in Ω,

u|∂Ω = 0.

(b) Let ∂Ω have a Lipschitz boundary. In the case V = H1(Ω) we obtain Neumann boundary
conditions involving the conormal derivative, i.e.,⎧⎪⎪⎨⎪⎪⎩

Dmu = div(v0 · c)− dv0 in Ω,

0 =
(
(a j,k)∇u + cu

)
· ν =

N∑
j,k=1

(a j,k∂ku)ν j +

N∑
j=1

c ju · ν j.

(c) Let Ω have a Lipschitz boundary, Γ ⊆ ∂Ω a Borel set. The choice
V :=

{
u ∈ H1(Ω) : tr(u)|Γ = 0

}
yields mixed boundary conditions, i.e., Dirichlet

boundary conditions on Γ and Neumann boundary conditions (with the conormal
derivative) on ∂Ω\Γ.

Now let Ω be open and bounded with arbitrary boundary ∂Ω. We set V :=W :=H1
0(Ω)

and H = L2(Ω), such that V ↪→ H is compact. With the definitions from the beginning of this
section, we can apply the global well-posedness result theorem 4.1 of our abstract framework
as well as theorems 5.1 and 5.2.

Finally, let K = R and ∅ �= Ω ⊆ RN be open and bounded with continuous boundary.
We fix λ ≡ 1, β > 0, and choose V = W = H1

0(Ω), H = L2(Ω). Furthermore, we choose the
parameter space

U :=

{
m = ((b1, . . . , bN), c) ∈ X : c − 1

2
div(b) � 0 μL − a.e. in Ω

}
as a subset of X =

(
H1(Ω) ∩ L∞(Ω)

)N × L∞(Ω), where b := (b1, . . . , bN)�. We let

a1(t)[u, v] :=
∫
Ω

N∑
j,k=1

(
a(t)

j,k∂ ju∂kv
)

dx,

and with the definitions

b(m)[ f , v] := −
∫
Ω

⎡⎣ N∑
j=1

b j(∂ jv) f + c f v

⎤⎦ dx, a3[ f , v] := 0
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we obtain

a2(m)[ f , v] = − 1
λ(t)

b(m)[ f , v]− a3[ f , v] =
∫
Ω

⎡⎣ N∑
j=1

b j(∂ jv) f + c f v

⎤⎦ dx.

We have Re (a1(t)[u, u]) � β̃‖u‖2
H1(Ω) for some β̃ > 0. One can show that a2(m)[u, u] � 0.

Altogether, we have

a1(t)[u, v] + λ(t)a2(m)[u, v] =
∫
Ω

×

⎡⎣ N∑
j,k=1

(
a j,k∂ ju∂kv

)
+

N∑
j=1

b j(∂ jv)u + cuv

⎤⎦ dx

with

Re (a1(t)[u, u] + λ(t)a2(m)[u, u]) � β̃‖u‖2
V .

It follows that (8.9) is fulfilled. Hence, theorems 4.1, 5.1, and 5.2 are applicable. For a fixed
v0 ∈ V = H1

0(Ω), we can consider (8.13) as the weak formulation of the problem{−div
(
(a j,k) j,k∇u

)
− b · ∇u + cu = b · ∇v0 + cv0 in Ω,

u|∂Ω = 0 on ∂Ω.

7.2. Examples with uniformly elliptic differential operators in divergence form on general
open sets

Let Ω �= ∅ be open, H :=L2(Ω) and H1
0(Ω) ⊆ V = W ⊆ H1(Ω). The definition of A j,k and

(7.2) are transferred from section 7.1, but with β = β(t). We fix t∗ ∈ E, ε∗ > 0, and let
limt→t∗β(t) =:β∗ > 0.

It is then possible to apply the local well-posedness result, theorem 8.3, as well as theorems
5.1, 5.2 and 8.4 to analyze the variational problem{

Dm,tu = λ(t) (div(v0 · c)− dv0) in Ω,

u ∈ V (boundary conditions),

where

Dt,mu := − div
(
(a j,k) j,k∇u

)
+ b · ∇u− λ(t)div(c · u)

+

(
λ(t)d + β∗ +

Γ2
1

2β∗
+ ε∗

)
u

for a suitable V as well as Dirichlet, Neumann, or mixed boundary conditions, but only in
a very abstract sense, since the only assumption on Ω is the openness. This class of exam-
ples includes exterior domains such as

{
x ∈ RN : |x|2 > 1

}
or the full space Ω = RN , where

H1
0(Ω) = H1(Ω), such that V = W = H1(Ω).
In a second setting, we set V :=W :=H1

0(Ω), E := (0,∞), and let λ : E → R be continuous
with λ(t) �= 0 for all t ∈ E as well as t∗ ∈ {0,∞}. We assume that limt→t∗

λ(t)
β(t) = 0 (β∗ from the

previous example need not exist). We choose the parameter space to be the full space X:

U :=X := L∞(Ω)N × L∞(Ω)N × L∞(Ω).
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Due to limt→t∗
λ(t)
β(t) = 0, a similar approach as in the previous example shows that the local

well-posedness result theorem 8.3 is applicable, and so are theorems 5.1 and 5.2 resp. 8.4: for
a fixed suitable t ∈ E, (8.13) yields the variational formulation of⎧⎪⎪⎨⎪⎪⎩

−div
(
(a j,k) j,k∇u

)
+ λ(t) (b · ∇u− div(u · c)) + (λ(t)d + β(t)) u

= λ(t) (div(v0 · c)− b · ∇v0 − dv0) in Ω,

u|∂Ω = 0.

Here, we are dealing with a larger parameter space U in comparison to the previous examples.
However, we have to restrict ourselves to Dirichlet boundary conditions.

7.3. Examples with uniformly elliptic differential operators in divergence form subject to
Robin boundary conditions

Here we basically assume the same hypotheses as in section 7.1.
We pick γ ∈

(
0, β

2

)
and put α := β − γ

2 > 0. We further fix ω ∈ L∞(∂Ω, ). We set η :=β +
(C‖ω‖∞)2

2γ , where C is the constant from (7.1). Again, it is possible to define suitable forms and
mappings to which we may apply the global version of our well-posedness result (theorem 8.2)
as well as theorems 5.1 and 5.2 resp. 8.4 in order to analyze variational Robin problems such
as

(a) In the case V = H1(Ω) we may interpret (8.13) as a weak formulation of the boundary
problem with Robin boundary conditions⎧⎪⎪⎨⎪⎪⎩

Dmu = div(v0 · c)− dv0 on Ω,

N∑
j,k=1

(a j,k∂ku)ν j +

N∑
j=1

c juν j + ωu = 0 on ∂Ω.

(b) If V = {u ∈ H1(Ω) : u|Γ = 0}, where Γ ⊆ ∂Ω is a Borel subset, (8.13) can be considered
a weak formulation of the boundary problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Dmu = div(v0 · c)− dv0 on Ω,

N∑
j,k=1

(a j,k∂ku)ν j +

N∑
j=1

c juν j + ωu = 0 on ∂Ω\Γ,

u = 0 on Γ,

where we have Robin boundary conditions on ∂Ω\Γ and Dirichlet boundary conditions
on Γ.

In the above problems, we formally put

Dmu := − div((a j,k) j,k∇u) + b · ∇u− div(c · u) +

(
d + η +

Γ2
2

2α

)
u (u ∈ V).
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8. Terahertz tomography and the inverse medium problem

The examples we address in this section arise in practical applications in the area of non-
destructive testing. Terahertz (THz) radiation is electromagnetic radiation in the frequency
range between the microwave and infrared band. In THz tomography, similarly as in x-ray
tomography, the specimen is illuminated from different angles and in various positions, mak-
ing it well-suited for non-destructive testing of various dielectric materials like, e.g., plastics
or ceramics, in order to determine material properties or to detect and localise defects (e.g.,
cracks, holes, impurities). One important advantage of THz tomographic imaging consists in
the feature that both transmission and absorption as well as refraction and reflection at surfaces
are respected. The corresponding physical quantity that contains information about defects is
the complex refractive index, which allows conclusions about the dielectric permittivity (and
therefore about the refractive index) as well as the absorption coefficient. The inverse problem
of THz tomography is thus the reconstruction of the complex refractive index from measure-
ments of the electric field of the THz beam interacting with the tested object. For information
on these aspects of THz tomography, see, e.g., [25, 57] and the references therein. We refer to
[22] for an overview of relevant materials.

In the setup for the inverse medium problem as in [11–13] is analogous, but the quan-
tity of interest is purely the real-valued refractive index, i.e., absorption does not play a role,
while here we study complex-valued parameters. The model is derived analogous to the one for
THz tomography, which we discuss in the following. We will therefore refrain from a detailed
discussion of the inverse medium problem.

We first give a very brief and concise introduction to the underlying physics as described
in [55] before introducing the mathematical setting and applying our abstract framework for a
rigorous analysis.

8.1. An overview of the physical model

The general idea is to illuminate an object with electromagnetic radiation and use the influence
of the object on the radiation to gain insights into the inner structure of the object. In particular,
the illuminating beam is reflected, refracted, and—in the case of THz tomography—partially
absorbed by the object. We are primarily interested in two-dimensional imaging, i.e., we aim
at images of cross-sections of the object. We give a brief overview of the modelling.

Since only the z-component of the electric field, denoted by ut, is measured, and if the object
is static and the wave number k0 > 0 of the radiation fixed, the underlying physical model is
reduced to the Helmholtz equation [12, 17, 55]

Δu + k2
0(1− m)u = k2

0mui in Ω, (8.1)

where m := 1− ñ2 : Ω→ C is a function of the object’s (complex) refractive index ñ and ui is
the incident beam. The function m is the material parameter that is to be reconstructed from
measurements of the resulting field

ut = u + ui, (8.2)

which is the superposition of the incident field ui and the scattered field u. If the object is
absorbing, m has values in C, which is the case in THz tomography (see [55] for details).
Otherwise, m is real-valued, and the problem of recovering m from measurements of ut is
called the inverse medium problem (see [12]). In both cases, we work in a bounded domain
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Ω ⊆ R2 with a sufficiently smooth boundary and use Robin boundary conditions

∂νu− ik0u = 0 on ∂Ω (8.3)

as an approximation to the frequently used Sommerfeld radiation condition (see, e.g., [17]).

8.2. Mathematical description

The described physical (forward) model boils down to the question of how to solve the fol-
lowing inhomogeneous, Helmholtz-type boundary problem with Robin boundary conditions{

Δu + k2
0(1− m)u = k2

0mui on Ω,

∂νu = ik0u on ∂Ω,
(8.4)

with Ω ⊆ R
N , N ∈ N, a non-empty, open, bounded subset with Lipschitz boundary, m ∈

L∞(Ω), k0 > 0, and ui ∈ H1(Ω) (notice that we choose N = 2 in practice).
In this section, we briefly explain how to give a perfectly rigorous meaning to this problem

under the described mild regularity assumptions. In one of the most favoured approaches one
chooses a weak formulation for (8.4). Indeed, we essentially follow this way, but, in addition,
we want to point out how this approach is linked to the form method presented in section 6 and
this link will reveal that the usual weak formulation may be rewritten using a proper differential
operator. In the subsequent section we reformulate our methods developed in sections 4 and 5
to analyse the boundary problem (8.4) in its weak formulation.

We consider the form

a : H1(Ω)× H1(Ω)→ C, (u, v) �→
∫
Ω

∇u · ∇v dx − k2
0

∫
Ω

(1− m)uv dx − ik0

∫
∂Ω

uv dσΩ.

For u ∈ H1(Ω) we estimate

Re a(u) =
∫
Ω

|∇u|22 dx − k2
0

∫
Ω

(1− Re m)|u|2 dx �
∫
Ω

|∇u|22 dx − k2
0

∫
Ω

(1 + ‖m‖∞)|u|2 dx,

which yields

Re a(u) + (k2
0(1 + ‖m‖∞) + 1)‖u‖2

L2(Ω) � ‖u‖2
H1 .

As a consequence, the form a is H-elliptic. We claim that the operator A associated with the
form a (see section 6) coincides with the operator

B : L2(Ω) ⊇ D(B) := {u ∈ H1(Ω)|Δu ∈ L2(Ω) ∧ ∂νu = ik0u}→ L2(Ω),

u �→ −Δu− k2
0(1− m)u.

In our situation we have

(u, f ) ∈ A ⇐⇒ u ∈ H1(Ω) ∧ ∀ v ∈ H1(Ω) : a(u, v) = ( f |v)L2(Ω). (8.5)
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Consequently, (u, f ) ∈ A if and only if u ∈ H1(Ω) and∫
Ω

∇u · ∇v dx − k2
0

∫
Ω

(1− m)uv dx − ik0

∫
∂Ω

uv dσΩ =

∫
Ω

f v dx (v ∈ H1(Ω)).

(8.6)

In particular, ∫
Ω

∇u · ∇v dx − k2
0

∫
Ω

(1− m)uv dx =

∫
Ω

f v dx (v ∈ C∞
c (Ω)),

which leads to ∫
Ω

uΔv dx = −
∫
Ω

( f + k2
0(1− m)u)v dx (v ∈ C∞

c (Ω)).

This means that Δu = − f − k2
0(1− m)u ∈ L2(Ω) in the distributional sense. Thus, f =

−Δu− k2
0(1− m)u. Inserting this into (8.6), we arrive at∫

Ω

∇u · ∇v dx − ik0

∫
∂Ω

uv dσΩ =

∫
Ω

−Δuv dx (v ∈ H1(Ω)).

According to the definition of the weak normal derivative, this is equivalent to ∂νu = ik0u. So
far, we have shown that u ∈ D(B) with Au = f = −Δu− k2

0(1− m)u = Bu, i.e., A ⊆ B.
Now take u ∈ D(B) and put f :=Bu. Hence, Δu = −k2

0(1− m)u− f . As ∂νu = ik0u, we
obtain ∫

Ω

Δuv dx +

∫
Ω

∇u · ∇v dx =

∫
∂Ω

ik0uv dσΩ (v ∈ H1(Ω))

or, equivalently,∫
Ω

∇u · ∇v dx − k2
0

∫
Ω

(1− m)uv dx − ik0

∫
∂Ω

uv dσΩ =

∫
Ω

f v dx (v ∈ H1(Ω)),

(8.7)

which means that (u, f ) ∈ A (see (8.6) above) and, hence, B ⊆ A. Altogether, we derive A = B.
So putting f := − k2

0mui, the operator A allows us to rewrite the weak or variational
formulation of (8.4), typically given by (8.6), as a linear, inhomogeneous equation{

u ∈ D(A),

−Au = k2
0mui.

We emphasise that the operator A is indeed a genuine differential operator, which encompasses
the minimal requirements needed to interpret (8.4) precisely in the form given there (with
solution space H1(Ω)). In particular, we may freely switch between the weak formulation and
the formulation using the differential operator A. Hence, the upcoming calculations do not
have a solely formal character and can be seen as a comfortable notation for the variational
formulation, but, thanks to the preceding considerations, these calculations are justified. We
adopt this interpretation and read (8.4) in its variational formulation (8.6).
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8.3. Specification of the abstract framework

We take a closer look at the variational formulation (8.7). The parameter t represents the wave
number k0, i.e., we set λ(t) := t2. The second term of (8.7) depends on k0 and m and is encoded
in the form c in our general setting. For our application, the most relevant case will be

c(t, m) = λ(t)a2(m)

for all t ∈ E and m ∈ U. For this specific c, we obtain, following the same line of argument
as in the other statements from section 4, the subsequent slightly more precise versions of the
previous results.

Lemma 8.1. For each pair (t, m) ∈ E× U there exists a unique bounded operator At,m :
H →H with At,m(H) ⊆ V and with

a(t)
1 (At,mx,w) = a(m)

2 (x,w) (8.8)

for every x ∈ H and each w ∈ W. In addition, the following assertions are valid.

(a) The mappingA : E × U →L(H), (t, m) �→ At,m is continuous.
(b) The part of At,m in V, i.e., the linear operator

AV
t,m : V → V , v �→ At,mv

is bounded and the mapping AV : E × U →L(V), (t, m) �→ CV
t,m is continuous.

(c) We have ‖At,mx‖V � M(m)
c(t) · ‖x‖H for each x ∈ H.

(d) The operatorsAt,m and AV
t,m are both compact if the embedding j : V→ H is compact.

Theorem 8.2. Let At,m : H → H be the operator considered in lemma 8.1. We further
consider the part of it in V. Assume that the inclusion V ⊆ H is compact and that for all
(t, m) ∈ E × Ũ and all u ∈ V the implication(

∀ w ∈ W : a(t)
1 (u,w) + λ(t)a(m)

2 (u,w) = 0
)

=⇒ u = 0 (8.9)

is valid, where Ũ is a non-empty subset of U. Then the following claims hold.

(a) There exists a setU ⊆ E × U open in E × X and containing E × Ũ such that IV + λ(t)AV
t,m

is invertible for all (t, m) ∈ U and its inverse depends continuously on (t, m) ∈ U . Fur-
thermore, for each t ∈ E there exists a set Ut ⊆ U open in X and containing Ũ such that
IV + λ(t)AV

t,m is invertible for all m ∈ Ut.
(b) For each antilinearϕ ∈ W∗ and each pair (t, m) ∈ U there exists a unique u ∈ V such that

∀ w ∈ W : a(t)
1 (u,w) + λ(t)a(m)

2 (u,w) = ϕ(w)

and this unique u depends continuously on t, m, and ϕ. In addition, we have

‖u‖V � 1
c(t)

‖(IV + λ(t)AV
t,m)−1‖L(V)‖ϕ‖W∗ . (8.10)

The analogous conclusions are valid for fixed t ∈ E and m ∈ Ut.

Theorem 8.3. Let At,m : H → H and AV
t,m : V → V be as before. Assume that there exists a

net (tα)α∈A (A a directed set) in E with

lim
α∈A

λ(tα)
c(tα)

= 0. (8.11)
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Then there exists a non-empty set O ⊆ E × U open in E× X with the following properties.

(a) For all m ∈ U there exists a non-empty, open set Om ⊆ E such that Om × {m} ⊆ O.
(b) The operator IH + λ(t)At,m is invertible for all (t, m) ∈ O.
(c) The operator IV + λ(t)AV

t,m is invertible as an element of L(V) for all (t, m) ∈ O and both
this operator and its inverse depend continuously on (t, m) ∈ O.

(d) For all (t, m) ∈ O and each antilinear functionalϕ ∈ W∗ there exists a unique u ∈ V such
that

∀ w ∈ W : a(t)
1 (u,w) + λ(t)a(m)

2 (u,w) = ϕ(w)

and this unique u depends continuously on t, m and ϕ. In addition, we have

‖u‖V � 1
c(t)

‖(IV + λ(t)AV
t,m)−1‖L(V)‖ϕ‖W∗ .

In this subsection we consider a special case, which encompasses in particular the inverse
problem from THz tomography as considered in [55] and the inverse medium problem treated
in [12]. Throughout this subsection we make the general assumption that we are in the situation
of theorems 8.2 or 8.3. However, we specify even more the situation considered there.

We now fix t ∈ E and we assume that λ :=λ(t) �= 0. Second, we assume that there is a non-
empty, open set Gt = G ⊆ U such that {t} × G ⊆ U resp. {t} × G ⊆ O, depending whether we
are in the situation of theorems 8.2 or 8.3. Third, we consider a continuous and linear function

b : X →S(H ×W,K), m �→ b(m).

Finally, let a3 ∈ S(H ×W,K). Note that in specific situations both b and a3 may (and indeed
will in general) also depend on t (see below), but since t is fixed, such a dependence plays no
role in the following considerations. In what follows we suppose that a2 is given by

a(m)
2 (x,w) = − 1

λ
b(m)(x,w) + a3(x,w) (8.12)

for m ∈ G, x ∈ H and w ∈ W. While b and a3 may depend on t, this is not allowed for a2, i.e.,
the dependencies of λ, b and a3 on t must interact in such a way that a2 does not depend on t.
Note that this is fulfilled for the variational problems considered here in section 8.

It is obvious that in this case a(m)
2 ∈ S(H ×W,K). Moreover, for m, m̃ ∈ G we calculate

‖a2(m)− a2(m̃)‖S(H×W,K) =
1
|λ| sup

x∈H
‖x‖H�1

sup
w∈W

‖w‖W�1

∣∣b(m)(x,w)− b(m̃)(x,w)
∣∣

=
1
|λ| · ‖b(m)− b(m̃)‖S(H×W,K) −−−→

m→m̃
0.

As a consequence, we see that a2 is indeed continuous.
By the choice of G there exists for each ϕ ∈ W∗ and every m ∈ G a unique solution um,ϕ ∈ V

to problem (2.6), i.e., a unique um,ϕ ∈ V such that

∀ w ∈ W : a1(um,ϕ,w) + λa(m)
2 (um,ϕ,w) = ϕ(w). (8.13)

We now fix v0 ∈ V and we put ϕm := b(m)(v0, ·) ∈ W∗ for m ∈ G. In the following our main
objective is to examine the properties of the mapping

S : G → V , m �→ um := um,ϕm + v0. (8.14)
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As an immediate consequence of theorems 5.2 and 5.2 we arrive at the subsequent result.

Theorem 8.4. The function S is continuously Fréchet-differentiable. Moreover, for each
m0 ∈ G and every κ ∈ (0, 1) there exists a constant  = (m0,κ) > 0 such that B(m0) ⊆ G,
the Fréchet-derivative DFS of S is bounded on B(m0) and S satisfies on B(m0) a κ-tangential
cone condition w.r.t. both ‖ · ‖H and ‖ · ‖V, i.e., we have

‖S(m1)− S(m2)− (DFS(m2))[m1 − m2]‖H � κ‖S(m1)− S(m2)‖H (8.15)

and

‖S(m1)− S(m2)− (DFS(m2))[m1 − m2]‖V � κ‖S(m1)− S(m2)‖V (8.16)

for all m1, m2 ∈ B(m0).

8.4. An analysis using the abstract framework

We analyse problem (8.4) using the results obtained in sections 4, 5 and 8.3 under different
constraints. Using our notation from the abstract framework, we set

V = W = H1(Ω), H = L2(Ω), E = (0,∞), X = L∞(Ω)

and λ(t) := t2 for t ∈ E. Observe that t plays the role of the parameter k0. For that reason, we
write electively k0 or t. We specify the forms appearing in the abstract setting by

• a1(t)[v,w] = a(t)
1 (v,w) = (∇v|∇w)L2(Ω) − it(v|w)L2(∂Ω) for v,w ∈ H1(Ω),

• a2(m)[ f , v] = a(m)
2 ( f , v) = −((1− m) f |v)L2(Ω) for m ∈ X, f ∈ L2(Ω), v ∈ H1(Ω),

• v0 = ui ∈ H2(Ω),
• b(m)[ f , v] = b(m)( f , v) = −t2(m f |v)L2(Ω) for m ∈ L∞(Ω), f ∈ L2(Ω), v ∈ H1(Ω),
• a3( f , v) = ( f |v)L2(Ω) for f ∈ L2(Ω), v ∈ H1(Ω).

Observe that

ϕm(v) = b(m)(v0, v) = −t2(mv0|v)L2(Ω) =

∫
Ω

− t2muiv dx =

∫
Ω

− k2
0muiv dx

and

a(u, v) = a1(t)[v,w] + λ(t)a2(m)[u, v] = a1(k0)[v,w] + k2
0a2(m)[u, v] (8.17)

for all u ∈ V = H1(Ω), v ∈ W = H1(Ω), each t = k0 ∈ E = (0,∞) and every m ∈ X = L∞(Ω),
where a is the form introduced in the preceding section 8.2. Using (8.5) and (8.6), we thus
obtain that the boundary value problem (8.4) (in its weak formulation) is a concrete instance
of the abstract problem (2.6), or, to put it another way,

a1(k0)[u, v] + k2
0a2(m)[u, v] = ϕ(m)[v] (v ∈ V) (8.18)

is the variational formulation of the boundary value problem (8.4).
We now check whether the hypotheses imposed in the abstract setting are met here. First of

all, the form a1(k0) is obviously sesquilinear and boundedness

|a1(k0)[u, v]| = c1 · ‖u‖H1(Ω) · ‖v‖H1(Ω),
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where c1 := (1 + k0C2) and C is the constant appearing in the trace interpolation estimate (7.1),
is established using standard arguments. We further obtain

|a1(k0)[u, u]| =
(
|u|4H1(Ω) + k2

0‖u‖4
L2(∂Ω)

) 1
2 � 1√

2

(
|u|2H1(Ω) + k0‖u‖2

L2(∂Ω)

)
� 1√

2
min

{
1
k0

, 1

}
k0

(
|u|2H1(Ω) + ‖u‖2

L2(∂Ω)

)
.

Employing 1.1.16 in [41] or example 7.3.16 in [10], we obtain a constant c2 > 0 (depending
only on Ω) such that |u|H1(Ω) + ‖u‖L2(∂Ω) � c2‖u‖H1(Ω), which yields

|u|2H1(Ω) + ‖u‖2
L2(∂Ω) �

1
2

(
|u|H1(Ω) + ‖u‖L2(∂Ω)

)2 � c2
2

2
‖u‖2

H1(Ω)

and, hence,

|a1(k0)[u, u]| � c2
2

2
√

2
min

{
1
k0

, 1

}
k0‖u‖2

H1(Ω).

Summarising, we conclude that there exists an constant cΩ > 0 only depending on Ω and N
such that

|a1(t)[u, u]| � c(t)‖u‖2
H1(Ω) (8.19)

for every t > 0 and each u ∈ V, where c(t) := cΩ ·min
{

1
t , 1
}

t. This implies

sup
w∈W=V

‖w‖
H1(Ω)

=1

|a1(t)[u,w]| �
∣∣∣∣a1(t)

[
u,

1
‖u‖H1(Ω)

u

]∣∣∣∣ � c(t)‖u‖H1(Ω)

for u �= 0 and we conclude that condition (2.4) is satisfied for all u ∈ V. Moreover, (8.19) also
implies that a1(t) is non-degenerate w.r.t. the second variable for every t > 0. For t ∈ (0, 1) we
compute

λ(t)
c(t)

=
t2

cΩ ·min
{

1
t , 1
}

t
=

t
cΩ

−−−−→
t→0+

0.

Clearly, b(m), a3 ∈ S(V ×W,C) and b is linear with respect to m. According to

|b(m)( f , v)| � t2‖m‖L∞(Ω)‖ f ‖L2(Ω)‖v‖H1(Ω),

we see that b is continuous. In addition, we have

− 1
λ(t)

b(m)( f , v)− a3( f , v) = (m f |v)L2(Ω) − ( f |v)L2(Ω) = a(m)
2 ( f , v).

Consequently, a2, which does not depend on t, is continuous as seen at the beginning of
section 5. Next, we observe that
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|a(t)
1 (v,w)− a(s)

1 (v,w)| = | − i(t − s)(v|w)L2(∂Ω)| � |t − s| · C‖v‖H1(Ω)‖w‖H1(Ω)

for all t, s ∈ E and v,w ∈ V×W = V× V, where C is the constant showing up in the
interpolation estimate (7.1). This implies the (Lipschitz) continuity of a1:

‖a1(t)− a1(s)‖S(V×V,C) � C|t − s|.

Using theorems 8.2 and 8.3, we now study (under different conditions imposed on m,
extending the results from [13, 55]) the well-definedness and the analytic properties of the
forward operator

S : X := L∞(Ω) ⊇ G → H1(Ω), m �→ ut = u + ui, (8.20)

where u is the solution of the boundary value problem (8.4) and G ⊆ X is an appropriate open
set.

1st case: unconstrained m.
In this case we may apply the local result theorem 8.3 and we obtain that there exists a

non-empty, open set O ⊆ E × L∞(Ω) such that for all (t, m) ∈ O the boundary value problem
(8.4) is uniquely solvable. This leads to two conclusions.

First, for each fixed parameter value k0 ∈ E satisfying (k0, m0) ∈ O for some m0 ∈ X we
can find a non-empty, open subset G ⊆ X such that the forward operator S is well-defined on
G, where k0 is still fixed, and theorem 8.4 applies.

Second, for each m0 ∈ X we can find (see part (a) of theorem 8.3) a non-empty, open neigh-
bourhood G ⊆ X of m0 as well as a non-empty, open set V ⊆ E such that (8.4) is uniquely
solvable for every parameter k0 ∈ V and all m ∈ G. Once again theorem 8.4 may be applied.

2nd case: ∃ ε > 0 : Re m(x) � 1 + ε for almost all x ∈ Ω.
We consider the open set

G := {m ∈ L∞(Ω) : ∃ ε > 0 : Re m(x) � 1 + ε for almost all x ∈ Ω} .

For m ∈ G and all u ∈ V we estimate

Re a(u) =
∫
Ω

|∇u|22 dx + k2
0

∫
Ω

(Re m − 1)|u|2 dx � min{1, k2
0ε}‖u‖2

H1(Ω),

where a is the form considered in section 8.2. Hence, the uniqueness condition (8.9) is fulfilled
and we are allowed to employ our global result theorem 8.2 as well as theorem 8.4 with respect
to the specified set G.

Note that in contrast to the first case we are able to give a precise description of an
appropriate set G, however at the cost of imposing additional assumptions on m.

3rd case: Im m � 0.
We first note that this case is the physically most relevant one. Once again we aim to apply

the global result theorem 8.2. However, in this situation it is more delicate than in the previous
case to check condition (8.9). The verification of this condition heavily relies on a unique
continuation principle. For the reader’s convenience we formulate a version sufficient for our
needs and also give a proof for it.

Proposition 8.5. As before let ∅ �= Ω ⊆ RN be open and bounded with Lipschitz boundary,
μ ∈ L∞(Ω,R) and u ∈ H1

0(Ω,R) such that−Δu + μu = 0 onΩ in the distributional sense and
such that ∂νu = 0 in the weak sense. Then u = 0.
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Proof. Let f̃ denote the trivial or zero extension of a function f defined on Ω to the full
space RN . Thanks to lemma 3.27 in [1], we have ũ ∈ H1(RN ,R) with ∂ jũ = ∂̃ ju for every
j ∈ {1, . . . , N}. For each ψ ∈ C∞c (RN) we then compute, noting that ψ|Ω ∈ H1(Ω) and using
the definition of the weak normal derivative and that ∂νu = 0,∫

RN
ũ(−Δψ + μ̃ψ) dx =

∫
RN
∇ũ · ∇ψ dx +

∫
RN

μ̃ũψ dx

=

∫
Ω

∇u · ∇ψ|Ω dx +

∫
Ω

μuψ|Ω dx

= −
∫
Ω

(Δu)ψ|Ω dx +

∫
∂Ω

(∂νu)ψ dσΩ +

∫
Ω

μuψ|Ω dx

=

∫
Ω

(−Δu + μu)ψ|Ω dx = 0.

As a result, we infer −Δũ + μ̃ũ = 0 on RN in the distributional sense. In particular, Δũ ∈
L2(RN ,R) as μ̃ũ ∈ L2(RN ,R), which further implies−Δũ + μ̃ũ = 0 almost everywhere onRN

due to the fundamental lemma of calculus of variations. Therefore part (a) of theorem IX.27
in [44] combined with 7.62 in [1] yields ũ ∈ H2(RN) with |Δũ(x)| � ‖μ̃‖L∞(RN ,R) · |ũ(x)| for
almost all x ∈ RN . Since ũ|RN\Ω = 0 and RN\Ω possesses a non-empty interior, we conclude
ũ = 0 using theorem XIII.63 in [45] and thus u = 0, which finishes the proof. �

We now return to our analysis of problem (8.4) and we put Ũ := {m ∈ X : Im m � 0
(almosteverywhere)}. Note that Ũ is not open. At this point we will highly profit from the
formulation of theorem 8.2: it suffices to check condition (8.9) on E × Ũ resp. on Ũ for fixed t
to immediately obtain an open superset of E × Ũ resp. of Ũ (depending on t in the latter case)
on which problem (8.9) is well-posed, see remark 4.2. In particular, theorem 8.4 then applies
for each open set G ⊆ Ũ, e.g.,

{m ∈ X| ∃ ε > 0 : Im(m(x)) < −ε for almost all x ∈ Ω} ,

independent of t. Therefore, the next step now is to establish condition (8.9).

Lemma 8.6. Let u ∈ V, k0 ∈ E and m ∈ Ũ such that

a1(k0)[u, v] + k2
0a2(m)[u, v] = 0 (8.21)

for all v ∈ W = V = H1(Ω). Then u = 0.

Proof. Let m = mr + imi with mr = Re m and mi = Im m. For u = v we obtain from (8.21)
the conditions

(a) u|∂Ω = 0, since ‖u‖L2(∂Ω) = 0, and
(b) mi · u = 0 almost everywhere in Ω,

which has been shown in [55]. As a result, (8.21) reduces to∫
Ω

∇u · ∇v dx − k2
0

∫
Ω

(1− mr)u · v dx = 0 (v ∈ H1(Ω)). (8.22)

Hence, choosing v ∈ C∞c (Ω), we infer that−Δu− k2
0(1− mr)u = 0 in the distributional sense

on Ω. Putting this into (8.22), we get ∂νu = 0 by the definition of the weak normal derivative.
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Summarising, we obtain

−Δu− k2
0(1− mr)u = 0 in the distributional sense on Ω,

u = ∂νu = 0 in the weak sense on ∂Ω.
(8.23)

Taking the real and imaginary part in (8.23), we see that Re u and Im u themselves satisfy
(8.23), too. As a consequence, we deduce Re u = 0 = Im u by means of proposition 8.5 and
thus u = 0. �

As a consequence, we arrive at the subsequent result.

Theorem 8.7. For m ∈ Ũ and k0 ∈ E there is at most one solution to the variational problem
(8.18).

Proof. If u and u∗ are both solutions to (8.18), then u− u∗ fulfills (8.21). Consequently,
u = u∗ by lemma 8.6. �

Remark 8.8. In [12], Bao and Li refer in the proof of their lemma 2.1, which corresponds
to our theorem 8.7, to Holmgren’s theorem. Our proof of theorem 8.7 reveals, however, that
this is not necessary. Hence, our proof is conceptually easier.

Note that at this point all the assumptions we made at the beginning of section 5 hold and we
can use the results of this section. The global version of our abstract framework now yields the
desired well-posedness result for the forward operator in (two-dimensional) THz tomography
and of the inverse medium problem. The subsequent result is crucial for the convergence of
iterative regularisation techniques such as the Landweber iteration (see, for example, [28]) or
sequential subspace optimisation (see, e.g., [54]).

Theorem 8.9. For every k0 ∈ E = (0,∞) there exists an open superset Gk0 ⊆ X :=L∞(Ω)
of Ũ such that for all m ∈ Gk0 the variational problem (8.18) resp. (8.4) has a unique solution
u ∈ H1(Ω), which depends continuously on m and there exists also an open superset U ⊆
E × X of (0,∞)× Ũ such that for each (k0, m) ∈ U the variational problem (8.18) resp. (8.4)
has a unique solution u ∈ H1(Ω), which depends continuously on m and k0. Therefore, the
forward operator

Sk0 : L∞(Ω) ⊇ Gk0 → H1(Ω), m �→ ut = u + ui (k0 ∈ (0,∞))

is well defined. Due to theorems 8.4 and 5.1, S is analytic and fulfills locally at each point of
its domain the tangential cone condition (in a strong sense).

9. Problems on Banach spaces

We now leave the Hilbert space setting considered in the previous sections to extend our set
of examples to general Banach spaces. In comparison to existing works, we shall not fix any
Banach spaces but offer a range of choices regarding the exponent indices P for the considered
Banach spaces LP(Ω).

We study the example of finding a potential c (which is named the c-problem) in the linear
elliptic equation

Δu + cu = ϕ
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as well as the example of determining a diffusion coefficient a (the a-problem) in

−∇ · (a∇u) = ϕ

provided additional measurements (i.e., observation data) of the state function u, which we
denote by y :=Q(u) := IVu = u. Since these parameter identification problems are convention-
ally called the a- resp. c-problem—the parameter a plays the role of m, while c corresponds to
t—we stick to this notation instead of using the parameters (t, m) from the preceding sections.
Also, X is the common notation for the parameter space and θ = c or θ = a, according to the
concrete example.

Since S :D(S) ⊆ X → V , θ �→ u (and likewise its derivative with respect to θ) only depends
on one parameter, this also holds for the mappings θ �→ a1(θ), θ �→ c(θ) in theorem 5.1 resp.
5.4. In both examples, c and a appear with their first order (see (9.10) and (9.24)), meaning a1

and c are linear; hence differentiation of a1 and c, thus of S, is straightforward in the appropriate
spaces. What remains is the question whether or not S is well-defined.

For this purpose we come back to the abstract setting for linear elliptic PDEs and set

A : (X ⊇) U × V →W∗, (θ, u) �→ a1(θ)u + c(θ)u (9.1)

with

a1(θ) : V →W∗, c(θ) : H →W∗ (9.2)

and V ↪→ H is compact. X, V, W, H are real Banach spaces, where only W is assumed to be
reflexive. However, since V and W shall be related (cf (9.3) and (9.4)), we consider V to be
reflexive as well.

Well-definedness of S is established by verification of the assumptions

(A1) Coercivity of a1(θ),
(A2) Compact embedding V � H,
(A3) Boundedness of A(θ),
(A4) Uniqueness condition.

as proposed in section 2 for the elliptic problem (9.1), i.e., in this context, for the a- and
c-problem.

The function space setting we focus on uses Lebesgue and Sobolev spaces

V = W2,P(Ω) ∩ H1(Ω) P ∈ (1,∞) (9.3)

W = LP∗ (Ω) P∗ = P/(P− 1) (9.4)

H = LM(Ω) M ∈ [1,∞] (9.5)

X = LR(Ω) or X = W1,R(Ω) R ∈ [1,∞]. (9.6)

In place of the state space V as in (9.3), an intersection with H1
0(Ω) instead of H1(Ω) is

considered in case of homogeneous Dirichlet boundary conditions. The image space W∗(Ω) =
(LP∗(Ω))∗ = LP(Ω), where P∗ is the conjugate index to P, relates to V via the power index P.
The reason for this choice will be revealed in the upcoming estimates; intuitively, the stronger
the state space V is, the stronger is the image space W∗, as it makes sense to map the state
u ∈ V into the imageϕ ∈ W∗ under the elliptic operator. The intermediate space H is compactly
embedded into V; as a consequence, M will later present a dependence on V. The choice of the
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parameter space X is subject to particular examples, i.e., whether a differentiability of order
one is needed. Here, Ω is a bounded domain with smooth boundary in RN , N = {1, 2, 3}.

Usually, in the existence theory for second order linear elliptic PDEs [20, 51], the Hilbert
space setting is achieved with

V = H2(Ω), W = L2(Ω) for c ∈ L∞(Ω), a ∈ W1,∞(Ω).

We extend this setting to a more general setting in Banach spaces by exploring an adequate
range for the value of the index P in (9.3). Furthermore, we also minimize the index R in
(9.6) to allow weaker/larger feasible parameter spaces rather than the conventional spaces of
essentially bounded functions.

In the next sections, we frequently employ the following results as well as notations.

• Let Ω ⊂ RN be a bounded Lipschitz domain. Assume 1 � p <∞ and k is nonnegative.
The continuous embedding j : Wk,p(Ω) → Lq(Ω) fulfills

Wk,p(Ω) ↪→ Lq(Ω) if q

⎧⎪⎪⎪⎨⎪⎪⎪⎩
� Np

N − kp
kp < N

< +∞ kp = N

= +∞ kp > N

,

or equivalently, if k − N
p
� −N

q
,

(9.7)

see [46, theorem 1.20], where the notation a � b means a � b with strict inequality if
b = 0.

We furthermore set

CWk,p→Lq := ‖ j‖op.

Note that we deviate from our original notation (γ := ‖ j‖op) here to give a more precise
description of the involved mappings.

• According to [46, theorem 1.21], the compactness of the embedding j : Wk,p(Ω)→ Lq(Ω)
and

Wk,p(Ω) � Lq−ε(Ω), ε ∈ (0, q− 1], (9.8)

hold for q from (9.7).
• By CPFW, we denote the constant in the Poincaré–Friedrichs–Wirtinger inequality

‖u‖Lp(Ω) � CPFW‖∇u‖Lp(Ω) for all u ∈ W1,p
0 (Ω), 1 � p �∞.

• The number p∗ = p
p−1 denotes the conjugate index to p ∈ [1,∞]. We use ‖ · ‖A→B as

another notation for the operator norm ‖ · ‖L(A,B). And by 〈·, ·〉V,V∗ we denote the paring
between dual spaces V, V∗.

9.1. The c-problem

We begin by studying the elliptic problem

−Δu + cu = ϕ in Ω

u = 0 on ∂Ω,
(9.9)
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comprising the potential term cu and a homogeneous Dirichlet boundary, where c is the
space-dependent coefficient (which is the unknown in the parameter identification problem)
and the source term ϕ is independent of c. Formulating this in the context of the abstract
framework, we have

A(c) = −Δu + cu =: a1u + c(c)u. (9.10)

This problem is investigated in the function space setting

3V = W2,P(Ω) ∩ H1
0(Ω), W = LP∗

X = LR(Ω), H = LM(Ω).

Note that in the definition of V, the part H1
0(Ω) incorporates the zero boundary condition.

Now we verify the assumptions (A1)–(A4).
(A1) Coercivity of a1:
For 0 �= u ∈ V, let us define

w :=
−Δu|Δu|P−2

‖Δu‖P−1
LP(Ω)

+
u

‖∇u‖L2(Ω)
.

Testing−Δu by w, then integrating by parts and invoking the zero boundary condition, we get∫
Ω

−Δuw dx =

∫
Ω

(
|Δu|P

‖Δu‖P−1
LP(Ω)

+
|∇u|2

‖∇u‖L2(Ω)

)
dx =

‖Δu‖P
LP(Ω)

‖Δu‖P−1
LP(Ω)

+
‖∇u‖2

L2(Ω)

‖∇u‖L2(Ω)

= ‖Δu‖LP(Ω) + ‖∇u‖L2(Ω).

The element w indeed belongs to W as for P∗ = P
P−1 we have

‖w‖P∗
W = ‖w‖P∗

LP∗ (Ω)
=

∫
Ω

∣∣∣∣∣−Δu|Δu|P−2

‖Δu‖P−1
LP(Ω)

+
u

‖∇u‖L2(Ω)

∣∣∣∣∣
P∗

dx

� 2P∗−1
∫
Ω

⎛⎝( |Δu|P−1

‖Δu‖P−1
LP(Ω)

)P∗

+

(
|u|

‖∇u‖L2(Ω)

)P∗
⎞⎠ dx

= 2
1

P−1

(∫
Ω

|Δu|P
‖Δu‖P

LP(Ω)

dx +

∫
Ω

|u|P∗

‖∇u‖P∗
L2(Ω)

dx

)
(9.11)

� 2
1

P−1

(
‖Δu‖P

LP(Ω)

‖Δu‖P
LP(Ω)

+

(
CPFW‖∇u‖LP∗ (Ω)

)P∗

‖∇u‖P∗
L2(Ω)

)

� 2
1

P−1

(
1 +

(
CPFWCL2→LP∗ ‖∇u‖L2(Ω)

)P∗

‖∇u‖P∗
L2(Ω)

)
if P∗ � 2 ⇔ P � 2

= 2
1

P−1

(
1 + (CPFWCL2→LP∗ )P∗

)
.
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Thus one obtains

‖w‖W � 2(1 + CPFWCL2→LP∗ ). (9.12)

For the case P∗ > 2 ⇔ P < 2, we go back to the estimate (9.11) (i.e., the third line of our
calculations above), and obtain

‖w‖P∗
W � 2

1
P−1

⎛⎝1 +

(
‖u‖LP∗ (Ω)

‖u‖H1
0(Ω)

)P∗
⎞⎠ � 2

1
P−1

⎛⎝1 +

(
CH1→LP∗ ‖u‖H1

0(Ω)

‖u‖H1
0(Ω)

)P∗
⎞⎠ ,

provided that

H1(Ω) ↪→ LP∗ (Ω) i.e., 1− N
2
� − N

P∗
= −N +

N
P

i.e., P � 2N
N + 2

∧ P ∈ (1,∞). (9.13)

Here, we take into account that V, W are reflexive spaces by constraining P ∈ (1,∞). Hence

‖w‖W � 2(1 + CH1→LP∗ ). (9.14)

Inspired by (9.12) and (9.14), we set

w̃ :=

⎧⎪⎨⎪⎩
w

2(1 + CPFWCL2→LP∗ )
, if P � 2,

w

2(1 + CH1→LP∗ )
, if P < 2,

(9.15)

which yields ‖w̃‖W � 1. Then we obtain coercivity of a1 via

sup
‖w‖W�1

|a1[u,w]| = sup
‖w‖W�1

∫
Ω

−Δuw dx �
∫
Ω

−Δuw̃ dx

= ‖Δu‖LP(Ω) + ‖∇u‖L2(Ω) =: ‖u‖W2,P(Ω)∩H1
0 (Ω) = ‖u‖V .

(A2) Compactness of embedding V � H:
From V = W2,P(Ω) ∩ H1

0(Ω), H = LM(Ω), we observe the following relations:

• If N = 1, we have M =∞ since H1
0(Ω) � L∞(Ω),

• If N � 2, P > N
2 , we have M =∞, since W2,P(Ω) � L∞(Ω).

As H = LM(Ω) is the preimage space of c(c), choosing M as large as possible benefits the
choice of X � c in the sense that it allows weaker parameter spaces X (see (A3) below). For
this reason, we set

M =∞ for P >
N
2
. (9.16)

Note that H does not need to be a reflexive space.
(A3) Boundedness of A(c):
Boundedness of A(c) is guaranteed by
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|a1[v,w]| =
∣∣∣∣∫

Ω

−Δvw dx

∣∣∣∣ � ‖Δv‖LP(Ω)‖w‖LP∗ (Ω) � ‖v‖V‖w‖W ,

|c(c)[h,w]| =
∣∣∣∣∫

Ω

chw dx

∣∣∣∣ � ‖h‖L∞(Ω)‖w‖LP∗ (Ω)‖c‖LP(Ω)

� CLR→LP‖h‖H‖w‖W‖c‖X

subject to the condition

LR(Ω) ↪→ LP(Ω) i.e., R � P. (9.17)

Above, we applied Hölder’s inequality with indices p = P, p∗ = P∗.
(A4) Uniqueness condition:
Let c∞ ∈ L∞(Ω) such that c∞ � 0 a.e. on Ω. We reformulate the original equation as

−Δu + cu = −Δu + c∞u + (c− c∞)u = ϕ.

For u ∈ V ⊆ W, we obtain, for the new right-hand side,∫
Ω

−Δuu dx +

∫
Ω

c∞u2 dx +

∫
Ω

(c− c∞)u2 dx � ‖u‖2
H1

0(Ω) +

∫
Ω

(c− c∞)u2 dx,

(9.18)

in which we further estimate∫
Ω

(c− c∞)u2 dx � ‖u‖LQ(Ω)‖(c− c∞)u‖
L

Q
Q−1 (Ω)

� ‖u‖LQ(Ω)‖u‖LQ(Ω)‖(c− c∞)‖
L

Q
Q−2 (Ω)

�
(
CH1→LQ

)2
C

LR→L
Q

Q−2
‖u‖2

H1
0(Ω)‖c− c∞‖LR(Ω).

(9.19)

Here, we orderly invoke Hölder’s inequality first with p = Q, p∗ = Q/(Q− 1), then with
p = Q− 1, p∗ = (Q− 1)/(Q− 2). This estimate holds under the constrains

LR(Ω) ↪→ L
Q

Q−2 (Ω), i.e., R � Q
Q − 2

∧ Q � 2

H1(Ω) ↪→ LQ(Ω), i.e., 1− N
2
� −N

Q
,

in particular,

• N = 1 : Q =∞ implies R � 1,
• N = 2 : Q <∞ implies R > 1,
• N � 3 : Q � N2

N−2 implies R � 1 + 2
N2

N−1−2
= N

2 .

Together with (9.16) and (9.17), we thus postulate

1− N
2
� −N

Q
, (9.20)

R � P. (9.21)
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Inserting (9.19) into (9.18), we can argue that if

0 � ‖u‖2
H1

0(Ω) −
(
CH1→LQ

)2
C

LR→L
Q

Q−2
‖c− c∞‖LR(Ω)‖u‖2

H1
0(Ω)

=

(
1−
(
CH1→LQ

)2
C

LR→L
Q

Q−2
‖c− c∞‖LR(Ω)

)
‖u‖2

H1
0(Ω)

and c is sufficiently close to c∞ in the sense

‖c− c∞‖LR(Ω) <
1(

CH1→LQ

)2
C

LR→L
Q

Q−2

, (9.22)

then we attain 0 = ‖u‖H1
0(Ω) = ‖∇u‖L2(Ω) � 1

CPFW
‖u‖L2(Ω), meaning u = 0.

We summarize the well-posedness result in the following lemma.

Lemma 9.1. Let

• V = W2,P(Ω) ∩ H1
0(Ω), W = LP∗(Ω), H = L∞(Ω), X = LR(Ω),

• P � 2N
N+2 ∧ P > N

2 ∧ P ∈ (1,∞),
• R � P ∧ R �∞,
• 1− N

2 � −N
Q

as well as

U =

⎧⎨⎩x ∈ X : ‖c− c∞‖X <
1(

CH1→LQ

)2
C

X→L
Q

Q−2

for some 0 � c∞ ∈ L∞(Ω)

⎫⎬⎭ .

Then the c-problem (9.9), for which the model operator is defined by (9.1), (9.2) and (9.10),
admits a unique solution u ∈ V for a given coefficient c ∈ U and data ϕ ∈ W∗. In addition,

‖u‖V � ‖(−Δ+ c)−1‖W∗→V‖ϕ‖W∗ .

See also [36] for a similar choice of function spaces in the context of inverse problems.

Remark 9.2. (Hilbert space setting)
Lemma 9.1 allows a full Hilbert space setting for V, W by choosing P = 2, i.e.,

V = H2(Ω) ∩ H1
0(Ω), W = L2(Ω), X = LR(Ω), R � 2.

The fact that X = L2(Ω) is feasible here shows an improvement comparing to the common
Hilbert space framework in [20, 51], which establishes well-posedness based on X = L∞(Ω).
Indeed, our result can be independently confirmed by the contraction argument. The standard
unique existence theory for linear elliptic PDEs in Hilbert spaces [20, 51] (also by our method)
claims that −Δ+ c∞ : H2(Ω) ∩H1

0(Ω)→ L2(Ω) is an isomorphism with 0 � c∞ ∈ L∞(Ω),
∂Ω ∈ C2. From the identity

−Δu + cu = ϕ ⇔ −Δu + c∞u = (c∞ − c)u + ϕ

u = (−Δ+ c∞)−1((c∞ − c)u + ϕ)

=: Tc∞ (u),
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we observe that Tc∞ : H2(Ω) ∩H1
0(Ω)→ H2(Ω) ∩ H1

0(Ω) with

‖Tc∞(u− v)‖H2(Ω)∩H1
0 (Ω) � ‖(−Δ+ c)−1‖L2(Ω)→H2(Ω)∩H1

0 (Ω)‖(c∞ − c)(u− v)‖L2(Ω)

� ‖Tc∞‖L2(Ω)→H2(Ω)∩H1
0 (Ω)‖c∞ − c‖L2(Ω)‖u− v‖L∞(Ω)

� CH2→L∞‖Tc∞‖L2(Ω)→H2(Ω)∩H1
0 (Ω)‖c∞ − c‖L2(Ω)

× ‖u− v‖H2(Ω)∩H1
0 (Ω)

is a contraction if ‖c∞ − c‖L2(Ω) is sufficiently small.
As a result, it ensures the existence of a unique solution u ∈ H2(Ω) ∩ H1

0(Ω). This criterion
on smallness of ‖c∞ − c‖L2(Ω) reflects the relevance of our suggestion for U in lemma 9.1.

Remark 9.3. (Adjoint problem)
As W is assumed to be reflexive, we can carry out the dual argument

〈A(c)u,w〉W∗,W = 〈−Δu + cu,w〉W∗,W =

∫
Ω

(−Δu + cu)w dx

=

∫
Ω

u(−Δw + cw) dx = 〈u, A(c)∗w〉V,V∗ ,

where we impose the boundary condition for the adjoint state w as w|∂Ω = 0.
Then

A(c) : V →W∗, A(c)∗ : W → V∗ with A(c) = A(c)∗ = −Δ+ c.

Since V, W are reflexive Banach spaces, it is straightforward that A(c) is invertible iff its adjoint
is invertible; moreover ‖A(c)‖ = ‖A(c)∗‖ and ‖(A(c)∗)−1‖ = ‖(A(c)−1)∗‖ = ‖A(c)−1‖.

This means lemma 9.1 implies also the unique existence result for the c-problem, where⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δ+ c : LP∗ → (W2,P(Ω) ∩ H1(Ω))∗ for c ∈ U ⊆ LR(Ω),

P, R and U as in lemma 9.1,

‖(−Δ+ c)−1‖(W2,P(Ω)∩H1(Ω))∗→LP∗ = ‖(−Δ+ c)−1‖LP(Ω)→W2,P(Ω)∩H1(Ω).

9.2. The a-problem

The second example addresses the identification of the diffusion coefficient a in the elliptic
problem

−∇ · (a∇u) = ϕ in Ω

u = 0 on ∂Ω.
(9.23)

with homogeneous boundary. In the abstract framework, we set

A(a) = −aΔu−∇a∇u =: a1(a)u + c(a)u, (9.24)
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where the parameter a (the unknown in the parameter identification problem) is space-
dependent and assumed to be bounded away from zero in order to meet the ellipticity
criterion. Accordingly, a must, first of all, belong to L∞(Ω), so that its essential boundedness
away from zero makes sense. In addition, (9.23) forces us to use spaces of differentiability of
order one for a. Still, the source term ϕ is independent of a.

We thus use the function space setting

V = W2,P(Ω) ∩ H1
0(Ω), W = LP∗ (Ω)

X = W1,R(Ω), R > N, H = W1,M(Ω) (9.25)

such that X = W1,R ↪→ L∞(Ω) for R > N and define

U := {a ∈ X : a � a > 0 a.e. on Ω}.

The choice of H in this example also needs to comprise a certain differentiability, since c(a) :
H →W∗, u �→ ∇a∇u requires the first derivative of u. The state space V containing H1

0(Ω)
yields the zero boundary condition.

Similar to lemma 9.1 in the c-problem one can show that, under certain conditions,
(A1)–(A4) hold. The following lemma summarizes the respective result:

Lemma 9.4. Let

• V = W2,P(Ω) ∩ H1
0(Ω), W = LP∗ (Ω), H = W1,M(Ω), X = L1,R(Ω),

• P � 2N
N+2 ∧ P ∈ (1,∞),

• M � P ∧ 1− N
P > − N

M ,
• ( R � P > N ∨ R > P = N ∨ R > N > P ) ∧ R �∞,
• U = {a ∈ X : a � a > 0 a.e. onΩ}.

Then the a-problem (9.23), whose model operator is defined by (9.1), (9.2) and (9.24),
admits a unique solution u ∈ V for a given coefficient a ∈ U and data ϕ ∈ W∗.

In addition,

‖u‖V � ‖(−∇ · (a∇))−1‖W∗→V‖ϕ‖W∗ .

See also [36] for a similar choice of function spaces in the context of inverse problems.

Remark 9.5. (Hilbert space setting)
Lemma 9.4 yields a possible full Hilbert space setting for V, W by choosing P = 2 such that

V = H2(Ω) ∩ H1
0(Ω), W = L2(Ω), X = W1,R(Ω), R > N.

In [20, 51], the results in the respective Hilbert space framework are established for a ∈ C1(Ω).
Actually, the smoothness condition for the coefficient a needed in the proof is that a is differ-
entiable and its derivative is essentially bounded on Ω; this means a ∈ W1,∞(Ω) is sufficient in
those settings. Here, we require only a ∈ W1,R, R > N, where, of course, in both cases positivity
of a must be satisfied.

Remark 9.6. (Adjoint problem)
Similarly to the c-problem, the adjoint problem to (9.23) has the same form as the a-problem

according to
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〈A(a)u,w〉W∗,W = 〈−∇ · (a∇u),w〉W∗,W

=

∫
Ω

u (−∇· (a∇w) dx = 〈u, A(c)∗w〉V,V∗

with the boundary condition for the adjoint equation being w|∂Ω = 0. We then get

A(a) : V →W∗, A(a)∗ : W → V∗ with A(a) = A(a)∗ = −∇ · (a∇).

Reflexivity of V, W as well as boundedness and invertibility of A(a) enable us to conclude the
existence of a unique solution to the a-problem in the framework

−∇(a∇) : LP∗ → (W2,P(Ω) ∩ H1(Ω))∗ for a ∈ U ⊆ W1,R(Ω)

with P, R and U as in lemma 9.4 and

‖(−∇ · (a∇))−1‖(W2,P(Ω)∩H1(Ω))∗→LP∗ = ‖(−∇ · (a∇))−1‖LP(Ω)→W2,P(Ω)∩H1(Ω).

10. Conclusion and outlook

We have introduced an abstract, functional analytic framework based on form methods that
is suited to the analysis of parameter identification problems arising from certain parameter-
dependent, elliptic boundary value problems in divergence form, which encompass equations
that are of particular interest in imaging with waves, most notably the inverse medium problem
and the inverse scattering problem of THz tomography,but also the a- and the c-problem, which
often serve as benchmark problems and were considered in a Banach space setting in this
work.

Our main focus was on the question of well-definedness and the analytic properties of the
corresponding parameter-to-state operators. The first and crucial step consisted in an operator
theoretic reformulation of abstract variational problems, which provided an easy account to
(global and local) well-posedness results, hence, to well-definedness results for the parameter-
to-state operator. In addition, it was this operator theoretic reformulation that allowed us to
study the analytic properties of the parameter-to-state operator and to show that, under appro-
priate and reasonable conditions, this operator is Fréchet-differentiable, smooth, analytic, or
fulfills a very strong version of the tangential cone condition, which is often postulated for
numerical solution techniques. In particular, our approach allows an insight into how the math-
ematical properties of the relevant inclusions, norms etc influence the constant κ that appears
in the tangential cone condition. This is useful information when one chooses regularisation
methods like, for instance, sequential subspace optimisation techniques, where κ influences
the algorithm.

We applied our abstract results to a broad range of elliptic boundary value problems with
Dirichlet, Neumann, Robin, or mixed boundary conditions, including real world problems such
as an inverse problem in THz tomography and the inverse medium problem, providing a far-
reaching extension of these previous results.

The framework may provide a basis for the analysis of further elliptic parameter identifica-
tion problems arising in future research.
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Appendix A. Additional statements and proofs of section 3

A.1. Proof of lemma 3.2

Proof. Let t ∈ E and w ∈ W. Thanks to lemma 3.1 we have an isomorphism Tt : V →W∗

with

‖Tt‖L(V,W∗) � ‖a1(t)‖S(V×W,K), ‖T −1
t ‖L(W∗,V) �

1
c(t)

,

and

a(t)
1 (v,w) = (Ttv)[w] (A.1)

for all v ∈ V. One easily verifies that the continuity of a1 implies that the function T : E →
L(V , W∗), t �→ Tt is continuous. For t ∈ E and m ∈ U we consider the mapping

Bt,m : H →W∗, x �→ c(t,m)(x, · ).

We first observe that Bt,m is well-defined. Indeed, for x ∈ H the mapping c(t,m)(x, ·) is clearly
antilinear. We further obtain∣∣c(t,m)(x,w)

∣∣ � ‖c(t,m)‖S(H×W,K) · ‖x‖H · ‖w‖W .

Hence, c(t,m)(x, ·) is continuous with ‖c(t,m)(x, · )‖W∗ � ‖c(t,m)‖S(H×W,K) · ‖x‖H. Since Bt,m

is linear, as one easily verifies, the last inequality also shows that Bt,m is bounded with
‖Bt,m‖L(H,W∗) � ‖c(t,m)‖S(H×W,K). Moreover, we claim that the mapping

B : E × U →L(H, W∗), m �→ Bt,m

is continuous. In fact, for t, t̃ ∈ E and m, m̃ ∈ U we compute

‖Bt,m − B̃t,m̃‖L(H,W∗) = sup
x∈H

‖x‖H�1

‖c(t,m)(x, · ) − c(˜t,m̃)(x, · )‖W∗

= sup
x∈H

‖x‖H�1

sup
w∈W

‖w‖W�1

|c(t,m)(x,w)− c(˜t,m̃)(x,w)|

= ‖c(t,m) − c(˜t,m̃)‖S(H×W,K)

= ‖c(t, m)− c(̃t, m̃)‖S(H×W,K) −−−−−−→
(t,m)→(˜t,m̃)

0.
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Recall that we consider the canonical embedding j : V→ H, v �→ v (with embedding constant
γ, see (2.1)). We put

C̃ t,m := T −1
t Bt,m ∈ L(H, V), Ct,m := jC̃t,m ∈ L(H)

and we consider

C : E × U →L(H), (t, m) �→ Ct,m.

If the inclusion map j is compact, Ct,m is compact as a product of a compact and a bounded
linear operator. Furthermore, Ct,m(H) ⊆ V . Thus, we immediately see that CV

t,m = T −1
t Bt,m j.

Hence, CV
t,m is a bounded operator and it is compact as the product of a bounded and a compact

operator provided that j is compact. One easily verifies that the mapping

Ψ : L(W∗, V)× L(H, W∗)→L(H), (F, G) �→ jFG

is a continuous bilinear mapping (with norm bounded by γ). Moreover, the mapping

invV,W∗ : Lis(V , W∗)→Lis(W∗, V), T �→ T−1

is continuous. Therefore f := invV,W∗ ◦ T and thus

g : E × U →L(W∗, V)× L(H, W∗), (t, m) �→ ( f (t),Bt,m)

are continuous, too. Hence, C = Ψ ◦ g is continuous. Analogously, one can show that CV is
continuous.

For every x ∈ H and w ∈ W we estimate (see also above)

‖Ct,mx‖V = ‖C̃t,mx‖V � ‖T −1
t ‖L(W∗,V) · ‖Bt,mx‖W∗ � 1

c(t)
· ‖Bt,mx‖W∗

� 1
c(t)

· ‖Bt,m‖L(H,W∗) · ‖x‖H � 1
c(t)

‖c(t,m)‖S(H×W,K) · ‖x‖H

� M(t, m)
c(t)

· ‖x‖H

and we compute

a(t)
1 (Ct,mx,w) = a(t)

1 (C̃t,mx,w) = a(t)
1 (T −1

t Bt,mx,w)
(A.1)
= (TtT −1

t Bt,mx)[w]

= Bt,mx[w] = c(t,m)(x,w).

Consequently,C and Ct,m are mappings of the desired type and assertion (a)–(d) are established.
In order to finish the proof, it only remains to show that Ct,m is unique. For this purpose let

C′t,m ∈ L(H) be another operator with C′(H) ⊆ V and

a(t)
1 (C′t,mx,w) = c(t,m)(x,w)

for every x ∈ H and each w ∈ W, where t ∈ E and m ∈ U. This yields

TtC′t,mx
(A.1)
= a(t)

1 (C′t,mx, · ) = c(t,m)(x, · ) = Bt,mx,

which implies

C′t,mx = T −1
t Bt,mx = C̃t,mx = Ct,mx.

43



Inverse Problems 38 (2022) 075005 H Hoffmann et al

As a result, we have shown that Ct,m is unique. �

A.2. Proof of theorem 3.6

Proof. on (a): take an arbitrary sequence (un,ϕn)n in At,m converging in H× H∗ to (u,ϕ). In
particular, (un)n converges in H weakly to u. Furthermore, we recall that un ∈ V for all n ∈ N.
Using (2.4), pick a vn ∈ V for each n ∈ N such that ‖vn‖V = 1 and

|a(t)
1 (un, vn)| � c(t)

2
‖un‖V . (A.2)

As V is reflexive by assumption, we may extract a subsequence (vnk )k weakly converging to a
v ∈ V due to the Banach–Alaoglu theorem. One immediately sees that limk→∞ϕnk (vnk ) = ϕ(v).
Since limk→∞unk = u in H, we obtain

lim
k→∞

c(t,m)(unk , ·) = c(t,m)(u, ·)

with convergence in H∗. Therefore, the same considerations as before yield

lim
k→∞

c(t,m)(unk , vnk ) = c(t,m)(u, v),

too. Hence,

a(t)
1 (unk , vnk ) = ϕnk (vnk )− c(t,m)(unk , vnk )−−−→

k→∞
ϕ(v)− c(t,m)(u, v).

As a result, the sequence (a(t)
1 (unk , vnk))k is bounded. Consequently, thanks to (A.2), the

sequence (unk)k is bounded in V. Employing once again the Banach–Alaoglu theorem, we
assume w.l.o.g. that (unk)k converges in V weakly to some u0 ∈ V. Then (unk)k also con-
verges in H weakly to u0 because the embedding j is continuous. The uniqueness of weak
limits implies u = u0 and thus u ∈ V. Now, it is clear that limn→∞at,m(un,w) = at,m(u,w) and
limn→∞ϕn(w) = ϕ(w) for all w ∈ V. From this we conclude (u,ϕ) ∈ At,m.
on (b): this is essentially a standard result from functional analysis and follows directly from
the facts that V is reflexive and that j is injective with dense range and with ‖ j‖op = γ.
on (c): let u ∈ D(( j 	)−1Tt), i.e., u ∈ V with Ttu ∈ D(( j 	)−1) = R( j 	). Consequently, there
exists ϕ ∈ H∗ such that Ttu = ϕ j. We therefore calculate

ϕ(v) = 〈v,ϕ j〉 = 〈v, Ttu〉 = a(t)
1 (u, v)

for all v ∈ V which shows (u,ϕ) ∈ A(t)
1 . This means u ∈ D(A(t)

1 ) and A(t)
1 u = ϕ = ( j 	)−1Ttu. It

only remains to verify that D(A(t)
1 ) ⊆ D(( j 	)−1Tt) in order to show that A(t)

1 = ( j 	)−1Tt. Let
u ∈ D(A(t)

1 ). Then,

〈v, Ttu〉 = a(t)
1 (u, v) = 〈v, A(t)

1 u〉 = 〈 jv, A(t)
1 u〉 = 〈v, j 	A(t)

1 u〉

for all v ∈ V and thus Ttu = j 	A(t)
1 u, i.e., Ttu ∈ R( j 	) and u ∈ D(( j 	)−1Tt). By part (b), ( j 	)−1

is continuously invertible by j	 and densely defined. Hence, A(t)
1 possesses a bounded inverse

given by T −1
t j 	. Consequently, A(t)

1 is closed andD(A(t)
1 ) = T −1

t (R( j 	)) is dense in V and thus
in H.
on (d): this is a direct consequence of part (c) and (e).
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on (e): let (u,ϕ) ∈ At,m. Then u ∈ V and a(t)
1 (u, v) + c(t,m)(u, v) = a(u, v) = ϕ(v) for all v ∈ V.

Due to lemma 3.2, this yields

a(t)
1 ((IV + CV

t,m)u, v) = a(t)
1 (u, v) + a(t)

1 (Ct,mu, v) = a(t)
1 (u, v) + c(t,m)(u, v)

= a(u, v) = ϕ(v) = 〈v, At,mu〉

for each v ∈ V, i.e., ((IV + CV
t,m)u, At,mu) ∈ A(t)

1 . We have thus shown that u ∈ V and (IV +

CV
t,m)u ∈ D(A(t)

1 ) with A(t)
1 (IV + CV

t,m)u = At,mu for all u ∈ D(At,m), i.e., At,m ⊆ A(t)
1 (IV + CV

t,m).
So, it only remains to check that D(A(t)

1 (IV + CV
t,m)) ⊆ D(At,m). For that purpose, pick u ∈

D(A(t)
1 (IV + CV

t,m)), i.e., u ∈ V with x := (IV + CV
t,m)u ∈ D(A(t)

1 ), and put ϕ :=A(t)
1 (IV + CV

t,m)u =

A(t)
1 x ∈ H∗. Using the same computation as above, we then arrive at

ϕ(v) = 〈v, A(t)
1 x〉 = a(t)

1 (x, v) = a(t)
1 ((IV + CV

t,m)u, v) = a(u, v) = at,m(u, v)

for all v ∈ V and we conclude that u ∈ D(At,m).
on (f): we already know that (a) and (b) are equivalent . Furthermore, the addendum follows
from part (a) and the closed graph theorem. Thanks to part (d), At,m is injective if and only if
IV + CV

t,m is injective. Moreover,

R(Tt(IV + CV
t,m)) ∩R( j 	) = j 	(R(At,m)) ⊆ R( j 	).

As j	 is injective, we have R(At,m) = H	 if and only if j 	(R(At,m)) = R( j 	). As a conse-
quence,R(At,m) = H	 if and only if R( j 	) ⊆ R(Tt(IV + CV

t,m)). This shows that (b) and (c) are
equivalent.
on (g): we assume that problem (2.6) is H-well-posed. Clearly, J is well-defined and injec-
tive due to parts (e) and (f) above. In addition, it is also surjective. Indeed, pick x ∈ D(A(t)

1 ).
Since At,m is surjective, we may take u ∈ D(At,m) ⊆ V such that At,mu = A(t)

1 x. We then obtain,
employing part (e),

A(t)
1 x = At,mu = A(t)

1 (IV + CV
t,m)u,

which implies x = (IV + CV
t,m)u due to the injectivity of A(t)

1 (see part (c)). Thus u belongs to
D(A(t)

1 (IV + CV
t,m)) = D(At,m) and satisfies J u = x. We estimate

‖J u‖A(t)
1
= ‖J u‖H + ‖A(t)

1 J u‖H∗ = ‖J u‖H + ‖A(t)
1 (IV + CV

t,m)u‖H∗

� ‖IH + Ct,m‖L(H) · ‖u‖H + ‖At,mu‖H∗

� ξ(‖u‖H + ‖At,mu‖H∗) = ξ‖u‖At,m

for all u ∈ D(A), where ξ := max{1, ‖IH + Ct,m‖L(H)}. Thanks to the open mapping theorem
and the fact that (A(t)

1 , ‖ · ‖
A(t)

1
) and (At,m, ‖ · ‖At,m ) are Banach spaces by parts (a) and (c) above,

J is an isomorphism.
on (h): we first establish the claim for j	At,m and assume that problem (2.6) is strongly
well-posed. By (c) and (e), j 	At,m ⊆ Tt(IV + CV

t,m). Since Tt(IV + CV
t,m) is closed as a bounded

operator from V to V∗, we derive that j	At,m is closable with j 	At,m ⊆ Tt(IV + CV
t,m). Fix

(u,ϕ) ∈ Tt(IV + CV
t,m) and pick a sequence (ψn)n from H∗ such that limn→∞ j	(ψn) = ϕ in V∗.

This is in fact possible since j	 has dense range. As problem (2.6) is strongly well-posed, the
operator Tt(IV + CV

t,m) has a bounded inverse thanks to proposition 3.4. We thus obtain
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V � un := (Tt(IV + CV
t,m))−1( j 	(ψn))−−−→

n→∞
(Tt(IV + CV

t,m))−1ϕ = u

in V. By part (a) of proposition 3.4, at,m(un, v) = j	(ψn)(v) = ψn( j(v)) = ψn(v) for all v ∈ V
and we therefore have un ∈ D(At,m) with At,mun = ψn for every n ∈ N. Thus, we finally deduce

j 	At,m � (un, j 	(ψn))−−−→
n→∞

(u,ϕ)

in V× V∗. This shows j 	At,m ⊇ Tt(IV + CV
t,m).

The proof for j 	A(t)
1 is similar, but simpler. �

Appendix B. Additional statements and proofs of section 5

B.1. Proof of theorem 5.1

Proof. Using part (a) of proposition 3.4 and the construction of CV
t,m, we see that

S(m) = (IV + CV
t,m)−1T −1

t Φ(m) = (IV + T −1
t Bt,m j)−1T −1

t Φ(m) (B.1)

for all m ∈ Gt, where Bt,m : H →W∗, x �→ c(t,m)(x, · ). It is well-known and easy to check that
the operator

Ξ : S(H ×W,K)→L(H, W∗), d �→ Ξ(d),

where Ξ(d)[x] = d(x, ·) for x ∈ H, is a well-defined isometric isomorphism. We further
consider the mappings

• LT −1
t

: L(H, W∗)→L(H, V), T �→ T −1
t T (bounded, linear),

• RT −1
t

: L(V) →L(W∗, V), T �→ TT −1
t (bounded, linear),

• R j : L(H, V)→L(V), T �→ T j (bounded, linear),
• ct = c(t, ·) : Gt →S(H ×W,K), m �→ c(t,m) = c(t, m) (continuous),
• τ : L(V) →L(V), T �→ IV + T,
• b : L(W∗, V)×W∗ → V , (T,ϕ) �→ Tϕ (bounded, bilinear),
• invV : Lis(V)→Lis(V), T �→ T−1.

We set

S̃ :=RT −1
t
◦ invV ◦ τ ◦ R j ◦ LT −1

t
◦ Ξ ◦ ct : Gt →L(W∗, V)

and claim that

S(m) = b(S̃(m),Φ(m)) (B.2)

for all m ∈ Gt. Since bounded (multi)linear operators, translations as well as the inversion of
isomorphisms (see [58, p 1080]) are analytic functions, the chain rule (see [58, p 1079] and [4,
theorem VII.5.7]) gives us the assertions as soon as we will have shown (B.2). Take m ∈ Gt.
By definition,

(Ξ ◦ ct)(m)x = c(t,m)(x, ·) = Bt,m(x) (B.3)
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for all x ∈ H, i.e., (Ξ ◦ ct)(m) = Bt,m = Bt(m), where Bt : Gt →L(H, W∗), m �→ Bt,m. As a
result, we infer

S̃(m) = RT −1
t

(invV(τ (R j(LT −1
t

(Bt,m))))) = (IV + T −1
t Bt,m j)−1T −1

t , (B.4)

which finally yields

b(S̃(m),Φ(m)) = (IV + T −1
t Bt,m j)−1T −1

t Φ(m) = S(m)

due to (B.1). �
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