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Abstract: The formulation of the Partial Information Decomposition (PID) framework by Williams
and Beer in 2010 attracted a significant amount of attention to the problem of defining redundant
(or shared), unique and synergistic (or complementary) components of mutual information that
a set of source variables provides about a target. This attention resulted in a number of measures
proposed to capture these concepts, theoretical investigations into such measures, and applications to
empirical data (in particular to datasets from neuroscience). In this Special Issue on “Information
Decomposition of Target Effects from Multi-Source Interactions” at Entropy, we have gathered current
work on such information decomposition approaches from many of the leading research groups
in the field. We begin our editorial by providing the reader with a review of previous information
decomposition research, including an overview of the variety of measures proposed, how they have
been interpreted and applied to empirical investigations. We then introduce the articles included in
the special issue one by one, providing a similar categorisation of these articles into: i. proposals of
new measures; ii. theoretical investigations into properties and interpretations of such approaches,
and iii. applications of these measures in empirical studies. We finish by providing an outlook on the
future of the field.

Keywords: mutual information; information decomposition; unique information; redundant information;
complementary information; redundancy; synergy
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1. Background to Information Decomposition

Shannon information theory [1-3] has provided rigorous ways to capture our intuitive notions
regarding uncertainty and information, and it has made an enormous impact in doing so. One of the
fundamental measures here is mutual information I(S; T), which captures the average information
contained in samples s of a set of source variables S about samples t of another variable T, and vice
versa. If we have two source variables 51, S; and a target T, for example, we can measure:

1. the information held by one source about the target I(S1; T),
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2. the information held by the other source about the target I(Sy; T), and
3.  the information jointly held by those sources together about the target I({S1, S2}; T).

Any other notion about the directed information relationship between these variables which can
be captured by classical information-theoretic measures (e.g., conditional mutual information terms
1(51; T|Sy) and I(Sy; T|S1)) is redundant with those three quantities.

However, intuitively, there is a strong desire to measure further notions of how this directed
information interaction may be decomposed, e.g., for these two sources:

1. how much redundant or shared information R(S1,S; — T) the two source variables hold about
the target,

2. how much unique information U(S1\S, — T) source variable S; holds about T that S, does not,

3. how much unique information U(S;\S1 —T) source variable S, holds about T that S; does

not, and
4. how much complementary or synergistic information C(S1,S;— T) can only be discerned by

examining the two sources together.

These notions go beyond the traditional information-theoretic view of a channel serving the
purpose of reliable communication, considering now the situation of multiple communication streams
converging on a single target. This is a common situation in biology, and in particular in neuroscience,
where, say, the ability of a target to synergistically fuse multiple information sources in a non-trivial
fashion is likely to have its own intrinsic value, independently of reliability of communication.

The absence of (completely satisfactory) measures for such decompositions into redundant,
unique and synergistic information has arguably been the most fundamental missing piece in classical
information theory. Contemporary work on this problem was triggered by the formulation of the
Partial Information Decomposition (PID) framework in a landmark paper by Williams and Beer [4]
in 2010 (note: this paper was refined under an alternate title, and circulated privately only as [5]).
This framework suggested that these quantities were related to the fundamental mutual information
measures as follows and shown in Figure 1 for two source variables (with more complex relations for
higher order interactions):

I({S1, 52}; T) = R(Sl, Sz—)T) + U(Sl\SZ—)T) + U(Sz\sl —)T) + C(Sl, Sz—)T), (1)
I(S1;T) = R(S1,S5 = T) + U(S$1\S2 = T), @)
I(Sz,‘ T) = R(51,52—>T) +U(Sz\51—>T). (3)

I(T;51,5>)

I(T;S1) I(T;S5)

Figure 1. Partial information diagram for two sources to a target showing the relationship of the
partial information quantities to the fundamental mutual information terms.
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Crucially, the PID framework proposed that all these components coexist, subverting what had
come to be the established interpretation [6] of the interaction information IT = I(Sq; T|S2) — I(S1; T),
that II > 0 implied a synergistic interaction whilst II < 0 implied redundancy (and implying
them to be mutually exclusive). Indeed, the PID framework revealed II as a net of synergy and
redundancy terms (i.e., net synergy). Crucially, the PID framework proposed a set of axioms—symimetry,
self-redundancy and monotonicity—that a measure of redundancy (for an arbitrary number of source
variables to a target) should satisfy [5] (see summary e.g., in [7]). While these axioms were not sufficient
to uniquely lock in a measure of redundancy, they do specify a partial ordering for redundancy terms
across various joint collections of sources, and an algebra for how to compute partial information atoms
attributed to such collections of sources (but no simpler collection) at nodes in a partial information lattice
representing the hierarchy according to this ordering. This approach proved particularly appealing to
the community.

In that paper, Williams and Beer [4] also proposed one measure of redundancy that satisfied
the axioms they had laid out, known as I,. This measure found less favour in the community
than the framework itself, encountering various criticisms such as that it did not distinguish “the
same information or just the same amount of information” [8] (see also [7,9,10]), and did not satisfy
a chain rule across multiple target variables [8]. However, perhaps the most controversy surrounded
interpretation of the Two-bit-copy example (where a target is a copy of two IID input bits), which I,in
suggested to be 1 bit redundant and 1 bit synergistic information, yet other authors felt should be 1 bit
of unique information from each source because “the wires don’t even touch” [10], p. 167. Indeed,
the strong intuition some felt on this interpretation led Harder et al. [9] to suggest a 4th axiom (known
as identity) requiring the redundancy in such copying situations to be equal to the mutual information
between the two source variables.

Following these developments, the past few years witnessed a concentration of work by the
community in proposing, contrasting, and investigating new measures to capture these notions of
information decomposition. (See an earlier review by Wibral et al. [11], in Section 4 of that article).
Primarily amongst these were the information-geometry based L4 from Harder et al. [9], and Syx
from Griffith and Koch [10] and Ul from Bertschinger et al. [12], all of which were presented only for
a pair of sources. The latter two approaches were later found to be equivalent, and attracted much
attention due to being placed on a particularly rigorous mathematical footing, despite computational
difficulties in solving the convex optimisation they require. For example, the derivation of the measure
by Bertschinger et al. [12] followed directly (rather than being posed ad-hoc) from an assumption that
existence of unique information depended only on the pairwise marginal distributions between
the individual sources and the target (known as “Assumption (*)”). Furthermore, the measure
was given an operational interpretation in terms of how unique information could be exploited
in decision problems. Finally, many mathematical properties of the approach were proven by
Bertschinger et al. [12] and in follow up papers by these authors [13,14].

Yet while many authors welcomed the new measures for satisfying the identity property, it was
quickly realised that they did not completely solve the search for a redundancy measure for an arbitrary
number of variables. This is because Rauh et al. [13] demonstrated that no redundancy measure can
satisfy the identity property along with the original axioms of Williams and Beer [4] and still provide
non-negative partial information atoms when we have more than two source variables.

As a consequence, the search for candidate redundancy measures continued, with various
groups considering to drop either the identity property or one or more of the original Williams
and Beer [4] axioms. Olbrich et al. [14] and Perrone and Ay [15] investigated the possibility of defining
synergy via projections of probability distributions to those retaining only certain orders of interactions
(in particular using exponential families), while Rosas et al. [16] sought similar decompositions for joint
entropies. Some approaches sought to construct intermediate variables that could be used to represent
components of the decomposition, e.g., the investigation of Gacs-Korner common information by
Griffith et al. [17], Griffith and Ho [18] and constructions of variables to contain synergy only by



Entropy 2018, 20, 307 4 0f 10

Quax et al. [19]. Others investigated relatively simpler mechanisms such as the minimum mutual
information (MMI) provided by any source by Barrett [20] (and the related approach by Chatterjee
and Pal [21]).

Meanwhile, other theoretical developments were taking place in parallel. One line of work
considered how these measures relate to concepts of distributed information processing in terms
of information storage, transfer and modification [7,22-24]. Lizier et al. [7] made a case that
information decomposition approaches should (at least) be interpretable on pointwise or event-wise
realisations of the source and target variables, rather than only with their averages. Barrett [20] began
considering continuous-valued variables, and indeed showed that the minimum mutual information
was a unique form of the redundancy for linearly coupled Gaussian variables, for two sources,
under the Williams and Beer [4] axioms and Bertschinger et al.’s [12] Assumption (*). Others provided
detailed comparisons between the measures and catalogued results from various logic gates (e.g., [25]).

Despite the lingering issues surrounding a definitive measure of redundancy, the desire for
using such measures has been intense, and applications have been made drawing on the variety of
measures listed above. Computational neuroscience in particular emerged as a primary application
area due to significant interest in questions surrounding how target neurons integrate information
from large numbers of sources, as well as the availability of data sets on which to investigate these
questions. For example, Timme et al. [25] contrasted I i, with several earlier candidates regarding the
decomposition of information contributions between various electrode measurements from developing
neural cultures, concentrating in particular on how redundancy and synergy generally increase
during development. Later, Timme et al. [24] applied the PID view of information modification of
Lizier et al. [7] to study dynamics of spiking activity of neural cultures incorporating history vectors of
the target neuron, finding that neurons which modify “large amounts of information tended to receive
connections from high out-degree neurons” in the effective network structure. Stramaglia et al. [26] use
interaction information or net synergy interpretations to study interactions in electroencephalography
(EEG) measurements in pre-seizure states for an epileptic patient. Further, Wibral et al. [27] applied
PID to make various, theoretically proposed neural goal functions—such as infomax [28]-comparable,
and were able to clarify whether the theories do indeed represent the information components that they
had aimed at. Applications also began to emerge in examinations of biological data sets (e.g., [21,29]),
and in gambling [30].

2. Contents of the Special Issue

In December 2016 we held an informal workshop on Partial Information Decomposition at
the Frankfurt Institute for Advanced Studies and the Goethe University, bringing together some
of the leading research groups in the field to discuss their latest developments. The workshop
revealed a strong level of new activity in the area, and triggered deep discussions in particular
regarding how further progress towards a measure may be made and which axiom(s) may need to
be dropped/changed for this to occur. The attendees expressed a desire for publications of such new
activity to be gathered in a common location, resulting in this Special Issue. The issue seeks to bring
together the new efforts presented at the workshop, to capture a snapshot of current research, as well
as to provide impetus for and focused scrutiny on newer work. We also seek to present progress to the
wider community and attract further research in this area. In scope for the issue were research articles
proposing new measures or pointing out future directions, review articles on existing approaches,
commentary on properties and limitations of such approaches, philosophical contributions on how
such measures may be used or interpreted, applications to empirical data (e.g., neural data), and more.

The contributions we have published can be classified under three key themes: new PID measures,
theoretical investigations (including examinations of numerical estimators), and applications.
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2.1. New Measures of Redundancy

Considering the first, perhaps not-so surprising theme, our Special Issue carries three papers
proposing new measures of redundancy.

Raubh et al. [31] present the extractable shared information as a redundancy measure for the bivariate
case. The key feature of this measure is that, in contrast to previous proposals, it satisfies the property
of target or left monotonicity (i.e., that the redundancy is non-decreasing when more target variables
are added [8], or restated here as redundancy being non-increasing when a new target variable is
a function of the old target). This is achieved via a construction which translates any measure of
shared information into one that satisfies this property. The authors then explore the properties of this
measure, and show for example that it is not compatible with a Blackwell interpretation of unique
information (see their other contribution, [32], discussed in Section 2.2).

Ince [33] constructs a measure Iccs of redundancy by directly examining common values of
pointwise mutual information (or change in surprisal) in each realisation of the variables. Interestingly,
Ince [33] considers positive and negative pointwise information as fundamentally different and treats
their occurrence separately, counting redundancy only from pointwise co-information terms when
the signs of all relevant change in surprisal terms align. This necessitates considering redundant
misinformation as well as redundant information (and related terms such as unique misinformation).
The author argues for the justification of these new perspectives as well other properties of the
measure, including replacing a requirement of monotonicity with subset equality (which had usually
been considered only as part of monotonicity) and the use of a modified independent identity axiom
introduced here. Ince [33] also provides a game-theoretic operational interpretation to argue for
the approach presented, contrasting this with the decision-theoretic operational interpretation from
Bertschinger et al. [12]. This line of work continues in a companion paper [34].

From a similar pointwise perspective, Finn and Lizier [35] build on earlier work to now directly
identify positive and negative components of pointwise information from each source to the target as
specificity and ambiguity [36], and argue that redundancies in these should be treated independently to
avoid blurring them (in the same way that PID originally sought to avoid how interaction information
blurs synergy and redundancy). The authors introduce a new example called “Pointwise Unique”,
where in any pointwise configuration only one source holds non-zero information about the target.
They demonstrate that other existing measures do not identify unique information in this case, unlike
their new approach. They also introduce a new operational interpretation of redundancy in terms
of probability mass diagrams, and in allowing negative terms in net, show that their pointwise and
component-wise approach is unique in satisfying a chain-rule over target variables. The latter feature
also allows the approach to provide a consistent answer to Two-bit-copy of 1 bit redundant and 1 bit
synergistic information, regardless of the order in which target bits are decomposed.

It is interesting to note that the latter two of these new approaches independently make similar
departures from the status quo here: both taking a “bottom-up” pointwise information perspective,
considering negative partial information terms, dropping the identity axiom, and being extendible to
three or more source variables.

2.2. Theoretical Investigations

Next, the special issue contains a number of theoretical investigations into the properties of PID
approaches in general and with regard to specific measures.

James and Crutchfield [37] make the case for measures of information decomposition beyond the
standard Shannon measures by seeking to differentiate two examples of three variable systems:
one constructed with dyadic dependencies and the other with triadic. Via a comprehensive
analysis, they show that no standard Shannon measure can differentiate between the two examples,
whilst various measures of information decomposition, e.g., Gacs-Korner common information and
the Bertschinger et al. [12] PID, are able to. Whilst these two PID approaches do provide such
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a differentiation, the authors express a general desire for the additional existence of a symmetric
decomposition that does not partition variables into sources and targets.

Pica et al. [38] examine a two-source one-target PID from three perspectives in total, i.e.,
one perspective for each variable as the target, in order to examine commonalities between the
perspectives. Assuming non-negativity but not any specific PID measure, they identify only seven
non-negative information subatoms that are required to construct each of the three PIDs in full, subject
to knowing the ordering of the three redundancy terms. The authors also suggest novel definitions
for a split between source redundancy (arising from correlations between the source variables) and
non-source redundancy. Indeed, the authors use their approach to provide further insights into the
information structure of the dyadic-vs-triadic example of James and Crutchfield [37].

Rauh [39] identifies the cryptographic interpretation of secret sharing as a useful model to consider
information decomposition, since secret sharing schemes incorporate specific understanding of which
subsets of participants have information about the secret. The author establishes correspondence
between secret sharing and PID, and then uses this approach as a model to explore the partial
information lattice. Negative terms in the lattice are identified for more than two participants
(analogous to the argument by Rauh et al. [13]), which leads the author to discuss whether and
how such terms could or should be interpreted, and subsequently questions whether the lattice needs
to be extended or improved in some fashion.

Rauh et al. [32] examine the decision-theoretic Blackwell partial order, which ranks information
channels (with a common input) according to the utility that can be obtained when decisions are
made on the channel outputs. The authors present the unexpected result that a coarse-graining of one
channel output may actually result in improved utility. They go on to compare the Blackwell ordering
to mutual information, and discuss implications of the result for information decomposition.

Faes et al. [40] utilise vector autoregressive Gaussian models and the MMI measure, coupled
with the aforementioned perspective of information modification, to examine the decomposition
of contributions from information sources to a target over various temporal scales. The method of
investigating the decomposition of contributions across different scales is achieved by a combination of
filtering and then downsampling, and synthetic examples in the first instance are used to demonstrate
that the method can reveal quite different decompositions at different temporal scales due to contrasting
fast and slow dynamics. The authors then apply the approach to intracranial EEG data obtained prior
to and during epileptic seizures, revealing in particular how synergistic and unique information
transfer components change with scale.

Makkeh et al. [41] consider the the convex optimisation problem that must be solved in order
to evaluate the Bertschinger et al. [12] approach, continuing on from the original observations by
Bertschinger et al. [12] that Mathematica could not directly solve these optimisation problems.
The authors provide both theoretical and practical perspectives, discussing various algorithmic
approaches to the problem and why some perform poorly, and empirically comparing the performance
of a number of software packages. Importantly, the authors identify two software packages which
perform satisfactorily, and make recommendations regarding their use here.

2.3. Applications of Information Decomposition

Applications of PID form a substantial class of papers in our special issue. As identified above,
neural applications (in addition to the EEG analysis by Faes et al. [40] above) account for the largest
portion of these.

Kay et al. [42] consider the PID between a neural receptive field input and the signal modulating
(amplifying or suppressing) it, giving rise to an output signal. In particular they demonstrate that,
contrary to intuition from some perspectives, a modulatory signal can affect the transmission of
information about other inputs without being transmitted itself. The authors go on to apply the
Ince [33] and Bertschinger et al. [12] PID measures, as well as a related decomposition of entropy by
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Ince [34], to results from a visual contrast detection task in order to demonstrate that such forms of
modulation may occur in real neural systems.

Wibral et al. [43] apply PID to decompose information storage, transfer and in particular
information modification in developing neural cultures, following the perspective of Lizier et al. [7].
Utilising the Bertschinger et al. [12] PID measure via the publicly available IDT*] toolkit [44],
the authors identify the aforementioned components of information processing from pairs of input
(multi-unit) spike train recordings to each output recording. They report that information modification
initially rose during development with maturation of the culture (indicating intricate processing
capabilities), followed by a decay when redundant information among neurons took over (possibly
due to a lack of external inputs).

Moving on to artificial neural computation then, Tax et al. [45] also use PID to analyse neural
development, but this time the development of a restricted Boltzmann machine during training.
The authors focus on decomposing the information held by (sample pairs of) individual hidden
neurons about the target variable to be classified, using I,in [4]. They observe a first phase where
neurons appear to learn predominantly redundant information about the target, followed by a second
phase where the neurons specialise to learn unique information about the target (also with a significant
synergistic component). Further, the authors report that while larger networks appear to utilise
higher order representations to a greater extent, individuals in smaller networks appear to learn more
unique details, and conclude that perhaps network size pressure on learning can lead to disentangled
representations.

Ghazi-Zahedi et al. [46] apply PID in order to further our understanding of morphological
computation, “processes in the body that would otherwise have to be conducted by the brain”.
Examining the embodied concept of the sensorimotor loop model, the authors quantify morphological
computation as synergistic information from the cognitive system’s actuators and the current world
state (incorporating both the system’s morphology and the part of the environment that can be affected
by and affects the system) to the next world state. The authors focus on the synergy measure of Perrone
and Ay [15] for this purpose, comparing it to previous measures and finding it to be generally more
reliably oriented with their intuition, though not in all cases.

As highlighted above, computational biology has also emerged as an interesting application area
for PID, and here Maity et al. [47] use PID to examine cross-talk in biochemical networks between
two mitogen-activated protein kinase (MAPK) pathways. The authors examine data from models of
these pathways, using Gaussian model calculations of the information-theoretic terms and quantifying
net synergy. They demonstrate differences in information decomposition between different pathway
architectures, e.g., signal integration motifs and signal bifurcation motifs.

Sootla et al. [48] turn our attention to various canonical complex systems, demonstrating how PID
can provide still new insights into these well-understood examples. Utilising the Bertschinger et al. [12]
PID (building on work by some of the authors on estimators for this measure in another contribution
to the special issue [41]), the authors begin by examining decomposition of information in triplets of
spins in the 2D Ising model, while the temperature is varied. They report that redundant information
is maximised at the critical point, whilst synergistic information peaks in the disordered phase. Next,
the authors decompose information of cells in 1D elementary cellular automata (ECA) from the
two neighbouring sources of those cells. They perform a dimensionality reduction on the PID atoms
(as dimensions), identifying some (but not perfect) distinction in characteristics between Wolfram’s
rule classes.

3. Outlook

Information decomposition into redundant, unique and synergistic components has been
recognised as a crucial theoretical problem which has proven far more difficult to solve than may
have been expected. Thankfully, there is very strong activity in the community leading to progress on
information decomposition approaches, which as outlined above is well reflected in this special issue.
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We hope that our presentation of these papers will further the debate regarding which is the “right”
measure of redundancy, which original assumptions or axioms may need to be dropped or changed
(as per new measures and challenges to current thinking in Section 2.1), and how the approaches can
and should be interpreted and/or extended (as per investigations in Section 2.2). Certainly there is
a hunger for applications of information decomposition (as per Section 2.3), and again we hope that
the special issue helps to disseminate and encourage these approaches.

Author Contributions: All authors edited multiple manuscripts for the special issue. J.T.L. wrote the first draft
of this editorial, and all authors edited and approved the manuscript.
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