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The monitoring of farm animals and the automatic recognition of deviant behavior

have recently become increasingly important in farm animal science research and in

practical agriculture. The aim of this study was to develop an approach to automatically

predict behavior and posture of sows by using a 2D image-based deep neural

network (DNN) for the detection and localization of relevant sow and pen features,

followed by a hierarchical conditional statement based on human expert knowledge

for behavior/posture classification. The automatic detection of sow body parts and

pen equipment was trained using an object detection algorithm (YOLO V3). The

algorithm achieved an Average Precision (AP) of 0.97 (straw rack), 0.97 (head), 0.95

(feeding trough), 0.86 (jute bag), 0.78 (tail), 0.75 (legs) and 0.66 (teats). The conditional

statement, which classifies and automatically generates a posture or behavior of the

sow under consideration of context, temporal and geometric values of the detected

features, classified 59.6% of the postures (lying lateral, lying ventral, standing, sitting) and

behaviors (interaction with pen equipment) correctly. In conclusion, the results indicate

the potential of DNN toward automatic behavior classification from 2D videos as potential

basis for an automatic farrowing monitoring system.

Keywords: convolutional neural network, free farrowing, object recognition, computer vision, individual

surveillance, YOLO

INTRODUCTION

The monitoring of farm animals and the automatic detection of abnormal behavior has
recently gained considerable importance in farm animal science research. In practical
agriculture it can be used, for example, as indicators of cycle-related hormonal changes
(Widowski et al., 1990) or the occurrence of diseases (Weary et al., 2009). Compared to
manual data collection, the advantage of automatic recording/sensor systems is that the
documentation is continuous, objective and can lead to significant time and cost savings
(Cornou and Kristensen, 2013). With the progressive development of machine learning
methods, especially in digital image processing, the possibility of contactless, continuous
monitoring of animals is emerging. Computer Vision (CV) algorithms allow monitoring of
the entire visible body of an animal, are non-invasive, do not influence the animal and are
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theoretically not limited in their runtime (external power supply),
(Brünger et al., 2020). If real-time processing is possible, the video
data can be processed via live stream and do not have to be saved.
The relevant data-output can be backed up to a small amount of
storage, by saving as e.g., table. Such capabilities are consistent
with most of the characteristics required for a sensor to assess
animal welfare (Rushen et al., 2012) and have already ensured
that several research approaches have been investigated using
different camera systems and algorithms of varying complexity
(examples are described in detail in the following passages).
These approaches can be separated by different camera types
(e.g., 2D images, 3D depth images), and different type of
monitoring (e.g., single pigs with detailed behavioral observation
(mainly sows) or multiple pigs and animal interactions).

For multiple pigs, Viazzi et al. (2014) developed a detection
algorithm for aggressive behaviors among fattening pigs using
intensity and specific pattern of movement recognized by 2D
CV-algorithms. Nasirahmadi et al. (2019) developed a 2D CV
and deep learning-based method to detect standing and lying
posture of multiple pigs under varying conditions. Matthews
et al. (2017) used 3D-data to detect basic behavior such as
standing, feeding, and drinking with individual tracking among
group-housed pigs for the purpose of getting information
about individual animal health and welfare aspects. Approaches
for single pigs can be found in the farrowing sector. E.g.,
the monitoring of the prenatal behavior of sows for the
estimation of the onset of farrowing using natural given
behavior deviations like nest-building and the varying amount
of position changes before farrowing using 3D accelerometer
or 2D pixel-movement (Pastell et al., 2016; Traulsen et al.,
2018; Küster et al., 2020). More detailed approaches focused
on inter birth interval and prevention of asphyxia as well
as counting of piglets or the postpartum lying behavior of
sows in regard to prevent piglet crushing and gathering
information of nursing behavior from 2D-images (Yang et al.,
2018) and 3D-depth images (Okinda et al., 2018; Zheng
et al., 2018). Leonard et al. (2019) developed an accurate
algorithm for sow postures like sitting, standing, kneeling
and lying as well as behaviors, such as feeding and drinking
using a 3D-depth threshold-based decision algorithm of crated
sows body regions. Summarizing, most of the approaches
addressing behavior or posture detection are using 3D cameras
as data input.

With the objective of avoiding complex setups in practical
production systems in mind, which are prone to errors but
essential for high data transmission with 3D-cameras. The aim
of this study was to determine, if behavior and posture of
sows without farrowing crate during late pregnancy can be
automatically detected by CV in 2D-images, acquired from
a simpler, less error-prone surveillance system. The predicted
postures/behaviors could be used, for example, to achieve
breeding goals with regard to maternal behavior, to optimize
birth management or to enable timely birth support for sows
and piglets and decrease diseases and losses (Welp, 2014),
as well as a better understanding of sow interactions with
different pen environments/equipment without restrictions of a
farrowing crate.

MATERIALS AND METHODS

Video Material and Editing
The RGB-video material was recorded at the agriculture
research farm Futterkamp of the Chamber of Agriculture of
Schleswig-Holstein from April 2016 to January 2017 in a
group-housing farrowing compartment. Each sow had her own
pen [6.24 m² (large version), 5.28 m² (small version)] for
farrowing (Figure 1) and first days of the suckling period.
Before farrowing, all sows can freely move between the pen
areas and the common area of the compartment until 3 days
antepartum (a.p.) (for more information about the group-
housing compartment see Grimberg-Henrici et al., 2019; Lange
et al., 2020). The cameras (Axis M3024LVE) were placed as
central as possible on one side of each pen (see Figure 1)
and recorded 24/7 with IR-Light during night. The data of
six cameras was stored on one Synology R© network attached
storage (NAS) with 8 TB storage space via Ethernet cable (25m)
connection with Power over Ethernet (PoE). Since the pens
were reconstructed during data acquisition, there were two
different designs for the piglet nest type and location in the
farrowing pens (new and old, see Figure 1). The sows were
not restrained and were able to move freely in the pen area
during the whole time. Randomly chosen videos of eleven
sows, 2 days before farrowing until the onset of farrowing,
recorded with a resolution of 1,280 × 800 pixels and five
frames per second, were used for training and evaluation in
this study.

Using a Python-script (Version 3.6), 1,500 images were
randomly (uniform distribution) extracted from the previously
defined subset (48 h a.p. until partum) out of the videos,
containing 525 images with the new and 975 images with the
old pen design. The relevant objects for posture detection (head,
tail, legs, teats) and for interaction detection (head, trough, straw
rack and jute bag) were annotated manually by two individuals in
the form of rectangular “Bounding Boxes” (BB’s) using the open
source-tool “Ybat”1 (Figure 2). Since the annotation in form of
rectangular BB’s was difficult to carry out for large objects without
marking a large part of the entire image, the classes jute bag and
teats were annotated differently. The jute bag was annotated only
on the top of the pen wall where it was attached. The teats were
annotated in varying form or in several BB’s, according to its
appearance. After annotation, the data set was randomly divided
into a training set 63% (945 images) and a test set 37% (555
images) based on the common 2/3 (training set) 1/3 (test set)
split (Witten et al. 2011, p. 152). Detailed information about the
dataset structure for YOLO training and evaluation can be found
in Table 1. Note, that the classes jute bag and legs can occur more
than once per image (Legs up to four and the jute bag up to two,
because the bag of the neighbor pen was partly visible too).

Training Object Detection
The annotated dataset was used without further conversions for
the training process of the “You Only Look Once”-Version 3
(YOLO V3) object detection algorithm (Redmon et al., 2016).

1https://github.com/drainingsun/ybat (accessed March 22, 2021).
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FIGURE 1 | Schematic illustration of the camera installation for a new (left) and an old (right) design of the farrowing pens within a group farrowing compartment. Due

to different size of compartments, the pens were 2.6 × 2.4m (big) or 2.4 × 2.2m (small). The white areas within a pen show the areas that are freely available to a sow.

FIGURE 2 | Example of an annotated image (old pen) from the data set with Ybat [Edited to highlight the annotated pen equipment (black background) and body

parts of the sow (yellow background)].

YOLO V3 was implemented using the Dark net framework
(Redmon and Farhadi, 2018) via the Jupyter notebook
development environment (Kluyver et al., 2016) on a computer
with 11 GB GPU. Darknet-53 was used as backbone of the neural
network and only the YOLO-Layers were fine-tuned with the
present data.

As starting weights, pre-existing YOLO V3-weights2, which
are pre-trained on the ImageNet-dataset3, were used. In total

2https://pjreddie.com/media/files/yolov3.weights (accessed March 22, 2021).
3https://www.image-net.org/ (accessed March 3, 2021).
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14,000 iterations with a batch size of 64 were performed to fine-
tune the weights for the given detection tasks. The learning
rate was set to 0.001, after 11,200 iterations (80% of total
iterations) and after 12,600 iterations (90%) the learning rate
was multiplied by 0.1. The input images were down sampled
to a resolution of 352 × 352 px. Following 1,000 iterations,
the Average Precision (AP) and the F1-Score on the test set
were automatically determined after every 500th iteration with
an Intersection over Union (IoU) of ≥ 0.5 (Everingham et al.,
2010) and a Class Confidence Score (YOLO V3 threshold) ≥ 0.5
for each class (Redmon et al., 2016) (see Figure 5). Formula for
evaluation metrics can be found in Table 2.

TABLE 1 | Structure of the YOLO-datasets.

YOLO dataset (Object detection)

Classes Occurrence

in

trainings set

(945 images)

Occurrence

in test set

(555 images)

Occurrence

per image in

training set

Occurrence

per image in

test set

Trough 897 514 0.95 0.93

Straw

rack

767 479 0.81 0.86

Jute bag 1,155 597 1.23 1.08

Head 936 548 0.99 0.99

Teats 564 397 0.60 0.72

Tail 621 362 0.66 0.65

Legs 2,512 1,426 2.66 2.57

Classification of an Interaction or a Posture
The posture or the behavior of a sow were classified inside the
test set according to an ethogram, reflecting typical definitions
for manual behavior observation (Table 3). Following these
behavioral definitions with taking human expert knowledge into
account, a hierarchical conditional statement was developed.
Using the detected objects (body parts and pen equipment), their
positions (pixel coordinates of the corresponding BB) recognized
by the trained model (Section Training Object Detection), as well
as their distance to each other, this statement was implemented
inside a deterministic algorithm to assign a behavior or a
body posture from the ethogram to each image. Behaviors
involving interactions with the trough (eating/drinking) and
interactions with jute bag or straw rack (nest-building behavior)
are summarized as “interactions” since the number of images
showing these behaviors is underrepresented in the data set due
to the fact that sows are sitting or lying about 85–90% of the
day (Lao et al., 2016). The algorithm can be subdivided into
(i) the analysis of the pen environment (feeding trough, jute
bag, straw rack) in relationship/distance (activation area) to the
position of the head with the purpose to classify interactions
(see Figure 3) and (ii) the distance of the sow body parts [teats,
head, tail and leg(s)] to each other to classify a posture (see
Figure 4). In its first step (i), the algorithm checks in hierarchical
order (1. trough, 2. jute bag, 3. straw rack) if pen classes are
detected, where they are and if the head is within the activation
area. Note that the “feeding/drinking”-interaction is different,
since the feeding trough is not visible, due to viewing angle,
when the sow is feeding or drinking. Therefore, the path of
the algorithm is triggered when no trough is detected and the

FIGURE 3 | Illustration of the hierarchical conditional statement for classification of interactions (eating/drinking with the trough or nest-building-behavior (NBB) with

jute bag or straw rack). White arrow means “yes,” black arrow “no” and striped arrows are highlighting calculation-/threshold-steps. The pink highlighted path is an

example of the situations in Figure 8C (interaction with jute bag and Figure 8E (interaction with jute bag classified, although the sow is actually lying with a displaced

jute bag).
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TABLE 2 | Evaluation metrics (TP, true positive; FP, false positive; TN, true

negative; FN, false negative).

Metric Formula

Precision TP
(TP+FP)

Recall/sensitivity/

True positive rate

TP
(TP+FN)

F1-score 2 * (Recall * Precision)
(Recall+Precision)

Specificity/true

negative rate

TN
(TN+FP)

IoU Area of intersection of predicted and ground truth box
Area of union of predicted and ground truth box

AP Area under Precision-recall-curve with IoU threshold:

AP@IoU =
∫ 1
0 p (r) dr

mAP 1
n

k=n∑

k=1

AP(k)

Where AP (k) = the AP of class k and n = the number of

classes

Weighted The weighted metrics for multiclass classification of

unbalanced datasets
6b∈B f(b)·M(b)

6b∈B f(b)

Where b is a behavior class, f the frequency and M is a

metric score

TABLE 3 | Ethogram of sow behavior/postures based on the study by Baxter

et al. (2011).

Behavior and postures Description

Interaction Eat/drink Head in the trough, or trough is not visible/not

detected (while the head is near the last

detected trough)

Nest-building

behavior

Interaction (head) with jute bag or straw rack

Lying Lateral Right or left; legs stretched out, teats visible

Ventral Lying on the belly, front legs under the sow,

teats mostly not visible

Sitting Extended front legs, front claws touching the

ground

Standing/moving Standing or moving using all four legs

head is next to the coordinates of the last detected trough
(since the trough is fixed). If no interaction is classified, the
second part of the algorithm (ii) loops, also in hierarchical
order [1. teats, 2. head, 3. tail, 4. leg(s)], through the detected
body parts. Every posture has several unique paths, which are
triggered dependent on the composition of the other body
parts (see Figure 4). At the end of each path, a posture is
classified to the image. If YOLO V3 does not detect a body part,
the image is classified as “Not classified.” The performance of
this multiclass classification was evaluated using the metrics in
Table 2.

Evaluation of Video Sequences
For automatic evaluation of video sequences, the algorithm
considers contextual, geometric and temporal relationships of
successive images with consistent interval. In order to verify the
resulting detection and deduct a qualified labeling of each image,

we implemented plausibility checks. One verification method
is to check for a reasonable number of detected classes and
their geometrical context (e.g., Is there more than one head
detected? If yes, determine which head has the closest proximity
to the other detected features). After saving an interaction or
a posture, the algorithm performs the other plausibility check
using temporal threshold [a new posture/interaction needs to
endure more than 2 s based on the defined duration of a drink
nipple visit (Kashiha et al., 2013)]. If this threshold is not
reached, the posture/interaction is deleted and the image gets
the assignment accordingly to the last classification (Table 4 and
Equation 1).

Equation 1: Temporal threshold:

If (X0 6= X−1) ∧ (X−1 6= X−2) −→ X−1 : = X−2 (1)

where X0 is the actual image and X−1 and X−2 are respectively
previous and pre-previous images.

RESULTS

In this section, we first show the results of the object detection
(Section YOLO V3 Object Detection Algorithm) and afterwards
the performance of the hierarchical conditional statement for
sow behavior/posture classification (Section Behavior/Posture
Classification). Additionally, we present the diurnal posture
changes of one sow as an example for possible usage and
evaluation (Section Diurnal Amount of Interactions and Postures
Changes) as well as examples of situations where the algorithm
struggles (Section Examples for Struggling Situations).

YOLO V3 Object Detection Algorithm
The accuracy of the detection of the trained classes (body parts
and pen equipment) with YOLO V3, is given in the form of
the Average Precision (AP), defined as the Area under Curve
(AuC) of the recall-precision graph, evaluated on the test set
(555 images). The mean Average Precision (mAP), which is
the arithmetic mean of the AP from all classes, was 0.84.
The pen equipment was detected with an AP of 0.97 (straw
rack), 0.95 (feeding trough) and 0.86 (jute bag). The body
parts show more diverse accuracy values ranging from 0.97
(head), 0.78 (tail), 0.75 (legs) to 0.66 (teats) (see Figure 5).
The average intersection over Union (IoU) of all classes was
improved from 0.59 to 0.69 and the average F1-Score of all
classes, which represents the harmonic mean of precision and
recall for all classes, was raised from 0.73 to 0.88 during the
training process. An i7 CPU with 2.1 GHz needs in mean 2.57 s
to predict the boxes and save them to a table for 1 frame on the
test set.

Behavior/Posture Classification
The classification of posture/interaction of sows by the
deterministic algorithm with implemented hierarchical
conditional statement was evaluated on the test set (555
images), since we know the performance level of object
detection for this data (Table 5). Multiclass classification metrics
(Precision, Sensitivity (Recall/True Positive Rate), Specificity
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FIGURE 4 | Illustration of the hierarchical conditional statement for the body posture classification of a sow. White arrow means “yes,” black arrow “no” and striped

arrows are highlighting calculation-/threshold-steps. The algorithm can be separated in four different paths + “Not classified” with up to four side paths. The final

classification of a body posture (lying lateral, lying ventral, sitting or standing) depends on the location of all detected features within a path. If there are no detected

features, the body posture is set to “Not classified”. The pink highlighted paths are examples of the situations in Figure 8A (lying ventral classified, although the sow is

actually standing), Figure 8B (standing with detected head) and Figure 8D (standing without detected head).

(True Negative Rate) and F1-Score) are given for postures: lying
lateral, lying ventral, standing, sitting and behaviors summarized
as interactions as well as no classification and a weighted metric
score of all classes equal weighted based on their occurrence on

the test set (Table 6). In total, the overall accuracy was 59.6%
on the test set (Table 5). It is notable that the postures lying
ventral, standing, and sitting account for over 80% of the total
FP predictions of the algorithm, even though they make up
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FIGURE 5 | The Average Precision (AP) of all trained classes in the YOLO V3 training/learning process with settings of intersection over Union (IoU) ≥ 0.5. After

14,000 iterations the classes straw rack, feeding trough and head are detected with an AP of 1.0–0.9. The classes jute bag and legs have an AP in the area of

0.89–0.7. Whereas, the class teats is the only class with an AP < 0.7.

TABLE 4 | Example temporal threshold (One frame per second analyzed).

Output statement Output after threshold conformity

Time Frame Posture Time Frame Posture

18:18:38 219 Lying ventral 18:18:38 219 Lying ventral

X−2 18:18:39 220 Lying ventral 18:18:39 220 Lying ventral

X−1 18:18:40 221 Standing 18:18:40 221 Lying ventral

X0 18:18:41 222 Lying ventral 18:18:41 222 Lying ventral

The bold values indicate an example where the temporal threshold was not reached and the image “x-1” gets a new posture assignment.

only 30% of the data set (Table 5). These result are confirmed
by the low values for Precision, Recall and F1-Score for these
three classes (Table 6). An i7 CPU with 2.1 GHz needs on
average 0.047 s for the classification step of one frame of the
test set.

Diurnal Amount of Interactions and
Postures Changes
As an example, the mean amount in minutes per hour of
postures/interactions of one sow for 48 consecutive hours
(48 h a.p.–partum) was evaluated. One frame per second was
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TABLE 5 | Confusion matrix of the body posture/behavior classifications identified by the hierarchical conditional statement.

Predicted

Actual Lateral Ventral Standing Sitting Interaction Not classified Total

Lateral 245 17 8 2 5 0 277

Ventral 68 50 25 7 3 0 153

Standing 16 19 18 5 13 0 71

Sitting 15 4 1 5 1 0 26

Interaction 8 1 1 2 13 0 25

Not classified 1 1 0 1 0 0 3

Total 353 92 53 22 35 0 555

Overall accuracy 0.596

In total, 552 out of 555 images were classified with a body posture/behavior, while three images resulted in no detected features and were classified as “Not classified.” The gray

elements show the amount of correct classifications for each behavior/posture. The overall Accuracy = sum correct classification/total classifications.

TABLE 6 | Multiclass classification performance for body posture/behaviors.

Metrics Lateral Ventral Standing Sitting Interaction Not classified Weighted

Precision 0.89 0.33 0.25 0.19 0.52 0 0.68

Sensitivity (recall/true positive rate) 0.69 0.54 0.33 0.22 0.37 0 0.59

Specificity (true negative rate) 0.84 0.78 0.89 0.96 0.98 0.99 0.85

F1-score 0.78 0.41 0.29 0.21 0.43 0 0.63

All values are rounded to the second decimal. Metric Formula can be found in Table 2.

FIGURE 6 | Demonstration of the varying amount (in min per hour) of behavior/posture (lying ventral, lying lateral, standing, sitting and interaction) in mean for 2 h

intervals. The black crosses indicate the mean total amount of behavior/posture changes per 2 h. The yellow and gray colors between the intervals indicate day and

night. One frame per second was analyzed. Note that zero indicates the birth of first piglet.
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analyzed and both plausibility checks (Section Evaluation of
Video Sequences) were performed (Figure 6). During nighttime
[46 h a.p.−36 h a.p. (8:15 p.m.−6:15 a.m.)] the sow spent most
time lying lateral with low amount of changes. The interval
from 36 h a.p.−32 h a.p. (6:15–10:15 a.m.) indicates feeding time,
where the sow shows a high amount of standing and interactions
(which includes interactions with the feeding trough) as well
as a high amount of behavior/posture changes which indicates
mobility and activity. The timespan from 32 h a.p.−22 h a.p.
(10:15 a.m.−8:15 p.m.) shows resting time and an activity
peak in the afternoon (4:15–6:15 p.m.). 22 h a.p.−10 h a.p.
(8:15 p.m.−8:15 a.m.) indicates the second nighttime, where
an influence of pre-farrowing behavior like nest-building and
restlessness can be observed as an increase in changes per hour
compared to the first night. From 10 h a.p.−6 h a.p. (8:15 a.m.
−12:15 p.m.) the amount of changes and interactions continues
to rise. Within the last 6 h before farrowing (12:15–6:15 p.m.) the
amount of time spent with interactions decreases, which matches
with results of other studies about pre-farrowing behavior of
sows (Hartsock and Barczewski, 1997). Compared to the 1st
daytime (34 h a.p.−22 h a.p.) the amount of standing and
interactions rises while the amount of lying lateral decreases.
Figure 7 shows the variation of posture and behavior changes
per hour of the same sow in 8-h intervals with regard to
daytime and time until farrowing. Especially the last 16 h before

the onset of farrowing differ from the first 32 h with higher
mean amount and lower variance between each hour within
an interval.

Examples for Struggling Situations
Figure 8 shows three examples of fail classifications due to
struggling of feature detection (Figures 8A–D) or displacement
of the normally fixed class jute bag (Figure 8E). Every time
YOLO V3 does not detect all visible features in an image,
the classification algorithm can struggle with the output for
this image. Image A and B showing the same sow and
consecutive frames. On both images, the sow is standing. On
image A YOLO V3 fails to detect the left front leg of the
sow, which results in a wrong posture classification (lying
ventral). Image C and D are also showing the same sow and
situation (nest-building-behavior/interaction in IR-mode vision).
Because the head is not detected on image D. The posture is
classified as standing, since the head is not in the activation
area of the jute bag. Image E shows a situation where the
algorithm detects and classifies correct, but the jute bag has
fallen from the pen wall and changed its position. With the
position change of the jute bag the regularities of the statement
changed, which was not considered in the development and
therefore results in a classification of an interaction while the
sow is lying.

FIGURE 7 | Variation of the mean hourly behavior/posture changes per 8-h interval with diverging time until farrowing. Blue bordered 48–24 h before farrowing and

black bordered 24–0 h before farrowing. One frame per second was analyzed.
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FIGURE 8 | (A–E) Examples of struggling situations resulting in fail classification (The BB’s were edited to highlight the features and the cyan circles highlight the fail

detections/problems).
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DISCUSSION

The results show that the present approach to analyze behavior
2D-sequences in sows before farrowing automatically works. Up
to our knowledge, this was the first attempt of fine-tuning a
pre-trained network for object detection in combination with
a deterministic behavior classification. The benefits are that the
need of large annotated data sets for object detection can be
bypassed by using a pre-trained network (Shin et al., 2016) and
the classification using the hierarchical conditional statement
is transparent and easy adaptable also with changing human
expert knowledge about sow behavior. Another benefit is the
facilitation of using videos without pre-processing, which can
be beneficial toward real-time execution. The implementation
of plausibility checks enables the individual analysis of videos
even if there is an additional sow next to the focus sow
inside the videos. Which can be very helpful, when videos are
showing areas from adjacent pens to the focus pen too. The
training effect (Figure 5) was relatively small, which indicates
the good capability of detecting shapes and objects similar
to our tasks of the pre-trained YOLO V3-weights. The pen
equipment has been recognized with a high AP. This is partly
due to the good visibility, but can also be explained with the
static placement of pen equipment. The body parts were partly
recognized with a lower AP, but all above 0.6. Especially the
classes teats (0.66), leg(s), (0.75) and tail (0.73) can be optimized.
Their mobility as well as their biological variance and the
change of their position in relation to the camera (viewing
angle) are making them more difficult to be annotated and
detected correctly.

The main reason for only reaching average accuracy (59.6%
overall) is in our opinion the behavior/posture classification
step. The dataset was created by selecting single images with a
uniform distribution and with that heterogeneity and variance
of visible situations were not controlled. Machine learning
classification methods such as decision tree or support vector
machines might increase accuracy, but need a larger dataset
with increased homogeneity in terms of class quantity and
higher variation in terms of class appearance. To accomplish
these needs, methods of dataset augmentation and expansion,
with techniques like geometrical transformations, flipping and
rotation might be helpful (Cubuk et al., 2019). A positive
attribute of the conditional statement is, that it is easier to
transfer to other husbandry conditions than a machine learning
classification approach. As Figure 8E shows, the classification
is adaptable when it comes to differences in positions of pen
equipment (e.g., trough, straw rack or jute bag). When objects
are different in design, the object detection step still has to be
retrained to minimize accuracy losses. Regarding the results of
the present approach the weighted F1-Score, which contains
precision and recall, should be seen as the best metric to describe
the performance of the present approach since the data is
unbalanced. It is remarkable, that especially the differentiation
of the postures lying ventral, standing and sitting (see Tables 5,
6) is insufficient. The problem of the differentiation arises from
the fact that in the mentioned postures almost the same body
parts are visible from the top-view camera perspective (head,

tail, no teats, two or fewer legs). Nasirahmadi et al. (2019)
found the same problems for differentiation of standing and
lying on belly for fattening pigs. This leads to the assumption
that the differentiation of these postures is more complex than
just combining visible body parts with one another. More
information on these behavior classes would be necessary for
automatic behavioral analysis systems.

Toward a practical implementation, the overall accuracy needs
to be optimized. Machine learning methods for behavior/posture
detection should be tested. Furthermore, a good performance
of the first step (object detection) is fundamental for the
second step and therefore the basis for the overall accuracy.
To improve this step a polygon based annotation such as
(Bolya et al., 2019) might be beneficial as BB’s include also
non-object information particularly for objects that are large
and varying in position and shape such as the teats of a sow.
This could optimize the accuracy of annotation, detection and
localization within the image. If relevant objects (especially
body parts) are not visible in the image, due to occlusion,
key point pose estimation, using a “skeleton-form,” could
be a useful annotation approach too (Mathis et al., 2018;
Graving et al., 2019; Pereira et al., 2019). The skeleton-form
enables the prediction of occluded body parts, which could
be an additional feature for machine learning classification
methods if the accuracy is sufficient. Nevertheless, for further
studies an annotation guideline with precise definitions of
shape and percentage of visibility for annotating polygon
masks and/or key point features within a class should be
considered. The annotation guidelines of the PASCAL Visual
Object Classes Challenge 2007 (VOC2007)4 could be helpful in
this context. Furthermore, the execution speed of the present
approach is optimizable. A refactoring of the algorithm is
planned. Additionally, a possible implementation of the newest
version of YOLO (V5) seems to work promisingly faster
than V3.

The example for diurnal evaluation of an individual sow suites
the results of established studies well and shows great potential
to identify the onset of farrowing or possible diseases, which
can affect individual diurnal act out of behavior/postures. Like in
previous work, a sow individual diurnal pattern needs to be taken
into account to detect diseases or the onset of farrowing (Cornou
and Lundbye-Christensen, 2012; Küster et al., 2020).

CONCLUSION

In conclusion, an approach to analyze 2D-video sequences of
single loose housed sows (top view) with regard to automatically
output individual postures and interactions of sows, was
developed. This solution is composed of two-steps including as
first step object detection implemented with YOLO V3 and as
second step posture and interaction classification implemented
as a human knowledge based deterministic conditional statement
using spatiotemporal information with implemented plausibility
checks. It enables the automatic evaluation of 2D-videos

4Annotation Guidelines. Available online: http://host.robots.ox.ac.uk/pascal/
VOC/voc2007/guidelines.html (accessed on 22 March, 2021).
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without further pre-processing and has advantages when it
comes to transferability to other environments, but still the
overall accuracy only achieved 59.6%. While the accuracy
of the object detection was sufficient, but still optimizable,
the implemented classification step, which was developed
as a solution to overcome issues of the present dataset
composition in form of balance, variation and size, can only
be seen as a proof of concept. All in all, after adapting the
suggested future works, this approach has potential toward
a practically implementable automatic behavior surveillance
of sows housed in free farrowing systems based on 2D-
videos.
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