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Abstract 

Background:  Genotype imputation is a cost-effective method to generate sequence-level genotypes for a large 
number of animals. Its application can improve the power of genomic studies, provided that the accuracy of imputa‑
tion is sufficiently high. The purpose of this study was to develop an optimal strategy for genotype imputation from 
genotyping array data to sequence level in German warmblood horses, and to investigate the effect of different 
factors on the accuracy of imputation. Publicly available whole-genome sequence data from 317 horses of 46 breeds 
was used to conduct the analyses.

Results:  Depending on the size and composition of the reference panel, the accuracy of imputation from medium 
marker density (60K) to sequence level using the software Beagle 5.1 ranged from 0.64 to 0.70 for horse chromosome 
3. Generally, imputation accuracy increased as the size of the reference panel increased, but if genetically distant 
individuals were included in the panel, the accuracy dropped. Imputation was most precise when using a reference 
panel of multiple but related breeds and the software Beagle 5.1, which outperformed the other two tested computer 
programs, Impute 5 and Minimac 4. Genome-wide imputation for this scenario resulted in a mean accuracy of 0.66. 
Stepwise imputation from 60K to 670K markers and subsequently to sequence level did not improve the accuracy of 
imputation. However, imputation from higher density (670K) was considerably more accurate (about 0.90) than from 
medium density. Likewise, imputation in genomic regions with a low marker coverage resulted in a reduced accuracy 
of imputation.

Conclusions:  The accuracy of imputation in horses was influenced by the size and composition of the reference 
panel, the marker density of the genotyping array, and the imputation software. Genotype imputation can be used to 
extend the limited amount of available sequence-level data from horses in order to boost the power of downstream 
analyses, such as genome-wide association studies, or the detection of embryonic lethal variants.
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Background
Genomic studies that use data from single nucleotide 
polymorphism (SNP) arrays are based on the linkage 
disequilibrium (LD) between markers and causal vari-
ants [1, 2]. In contrast, whole-genome sequence (WGS) 
data potentially include all causative mutations [3], which 
means that applications using WGS data are independent 

from LD structures [4]. Accordingly, using sequence data 
is expected to improve the power of genome-wide associ-
ation studies (GWAS) and genomic selection (GS) [5]. In 
GWAS, the benefit of using WGS data is obvious: while 
the use of SNP array data allows mapping causal variants 
to a genomic region, the exact identification of the causa-
tive mutations requires sequence data [6]. The benefit 
of using WGS data in GS is somewhat controversial and 
has not necessarily been proven to improve its accuracy 
[7, 8]. Nevertheless, WGS data can be used to indirectly 
increase the accuracy of GS by completing commercial 
SNP arrays with variants selected from WGS based on 
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GWAS [9, 10], or by developing customised SNP arrays 
with markers that are specifically selected for informativ-
ity [6].

However, to be beneficial, WGS data have to be avail-
able for a large number of individuals but sequencing 
large cohorts of animals is still expensive [11]. A less 
cost-intensive alternative to obtain sequence data for a 
large number of animals is to impute from lower marker 
density to sequence level [5]. Genotype imputation is 
the prediction of genotypes that have not been directly 
assayed in a study sample using a reference panel of 
haplotypes [12, 13]. By increasing the number of mark-
ers that are available for association testing, genotype 
imputation can boost the power of GWAS, facilitate 
meta-analyses, and improve fine-mapping of causative 
variants [12], e.g., because genetic variation that was not 
previously explained by the data can be included [14]. 
However, inaccurate imputation can affect the results of 
subsequent analyses [11]. Therefore, evaluating the accu-
racy of imputation is useful, to make the exclusion of 
poorly imputed markers from further investigations pos-
sible [1].

Several factors affect the accuracy of imputation, 
among which the software applied for imputation [15, 
16], minor allele frequency (MAF) of the imputed mark-
ers [17, 18], marker density of the SNP array used for 
genotyping the study samples [19, 20], as well as the size 
and composition of the reference panel [21, 22]. Increas-
ing the number of animals in the reference panel gener-
ally improves the accuracy of imputation, but including 
genetically distant animals can also result in higher error 
rates [1, 23]. A higher marker density of the genotyping 
array increases the accuracy of imputation, which can 
be further improved by stepwise imputation, first to an 
intermediate, and then to the final density of interest [5, 
20].

Only a few studies have investigated the accuracy 
of imputation in horses [24–28]. German warmblood 
horses represent a large horse population of worldwide 
importance, but the amount of information available on 
imputation accuracy is very limited for this breed while 
the implementation of GS is a declared aim [29]. There-
fore, the purpose of this study was to develop an optimal 
strategy for genotype imputation from SNP array data 
to sequence level in German warmblood horses, and to 
investigate the impact of different factors on the accuracy 
of imputation.

In addition, our aim was to characterise the variants 
present in the publicly available WGS data from various 
horse breeds that were used for the imputation study, and 
use these data to detect putative genetic defects based 
on missing homozygosity. Recessive mutations that are 
lethal in utero can be identified from variants that are 

present in a population at rather high frequencies, but 
never occur in the homozygous state in live individu-
als [30]. This method was first applied in cattle a decade 
ago [30]. Since then, based on the principle of missing 
homozygosity, several potentially deleterious haplotypes 
have been discovered in cattle (e.g., [31–34]) and other 
livestock, such as pigs [35, 36].

In horses, this approach to identify potentially lethal 
mutations has only been employed to a limited extent. 
Schrimpf et al. [37] scanned the equine sequence data of 
genes that are predicted to be involved in male reproduc-
tion for high-impact variants showing missing homozy-
gosity. They detected a couple of variants that potentially 
influenced stallion fertility, including a splice-site disrup-
tion variant in the NOTCH1 gene [37]. Furthermore, a 
haplotype in the LY49B gene was detected from geno-
type data on Thoroughbreds that showed a deficiency 
of homozygotes, and it represents a strong candidate for 
containing a recessive lethal mutation [38].

The detection of lethal variants can also aid in dimin-
ishing the prevalence of genetic disorders and in the opti-
misation of fertility rates in horses [38, 39]. Therefore, we 
applied an approach based on missing homozygosity to 
identify putative lethal mutations. Within the limited and 
diverse panel of sequenced horses used here, this yielded 
no statistically significant results. However, these addi-
tional analyses illustrate some of the possible applications 
of WGS data from horses, which could be obtained for 
a much larger number of animals by applying genotype 
imputation to boost the power of future studies.

Methods
Data collection, mapping and variant calling
Publicly available WGS data on 360 horses from 50 
breeds were obtained from the European Nucleotide 
Archive (ENA) at EMBL-EBI. According to the informa-
tion available in the NCBI Sequence Read Archive (SRA), 
all animals were sequenced using Illumina paired-end 
sequencing technologies and the average sequencing cov-
erage was 26.3-fold (range 5.0 to 212.8). A detailed list of 
all horse genomes used in the study is in Additional file 1: 
Table S1.

Mapping and variant calling were performed using 
the genome assembly EquCab3.0 (GCA_002863925.1, 
Ensembl release 100) and the Genome Analysis Toolkit 
(GATK) version 4.1.7.0 [40] following the GATK best 
practices recommendations [41]. Briefly, conversion 
of fastq to bam files and addition of read group infor-
mation was achieved with the tool FastqToSam before 
marking Illumina adapters with MarkIlluminaAdapters. 
Reads were mapped to the reference genome using the 
SamToFastq, BWA-MEM version 0.7.12 software [42] 
and MergeBamAlignment. MarkDuplicates was applied 
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to mark duplicates and technical artefacts, and base 
quality scores were recalibrated using BaseRecalibra-
tor and ApplyBQSR. The known-sites dataset for Base 
Quality Score Recalibration (BQSR) was dbSNP build 
151. Variant calling was performed per sample with 
HaplotypeCaller in ERC GVCF mode and the result-
ing GVCF files were merged with CombineGVCFs and 
jointly genotyped with GenotypeGVCFs. Variant fil-
tering of the raw variants was performed separately for 
SNPs and insertions and deletions (INDELs). SNPs were 
hard-filtered on the ExcessHet annotation (filter setting: 
ExcessHet > 54.69) with VariantFiltration before apply-
ing Variant Quality Score Recalibration (VQSR) with the 
VariantRecalibrator and ApplyVQSR tools. A transition/
transversion (Ti/Tv) free recalibration was performed 
because of the use of two truth datasets for VQSR: the 
variants of the EquineSNP50 BeadChip (Illumina) and 
the GeneSeek Genomic Profiler (GGP) Equine Bead-
Chip (Neogen/Illumina), which were successfully lifted 
over to EquCab3.0. For the liftover, Illumina SNP array 
ID were converted to dbSNP rsID using SNPchiMp v.3 
[43] and positions were acquired from the EquCab3.0 
dbSNP build 151 with SelectVariants. The dbSNP build 
151 was the known sites’ resource applied for VQSR and 
the truth sensitivity was set to 99.0. Lacking an independ-
ent and reliable truth dataset for their filtering, INDELs 
and mixed-type variants were hard-filtered with Vari-
antFiltration using the following filter settings: QD < 2.0, 
QUAL < 30.0, FS > 200.0, ReadPosRankSum < -20.0 and 
ExcessHet > 54.69.

The first rounds of subsequent analyses revealed the 
inadequacy of several horse genomes from three pro-
jects, which were excluded from further studies, as speci-
fied in Additional file 1: Table S1. The final dataset used 
for all following analyses consisted of 317 horse genomes 
from 46 breeds with an average sequencing coverage of 
21.4 (range 5.0 to 67.4). Variant statistics were produced 
with BCFtools stats version 1.9 [44].

Preparation of reference panels for imputation
To determine the genetic relationship of the 317 horses 
in the variant call set, multidimensional scaling (MDS) 
was performed using the PLINK 1.9 software [45] and 
R version 4.0.5 [46] for plotting the data. The analysis 
was carried out based on the marker positions of the 
GGP Equine Plus BeadChip (Neogen/Illumina) that 
contains 71,947 markers. After lifting them over to the 
new genome assembly EquCab3.0, 61,559 of the variants 
were present in the variant call set and available for the 
analysis.

Based on the results of the MDS plot, the horses were 
assigned to three groups depending on their genetic 
relationship to German warmblood horses, in order to 

define three versions of the reference panel for imputa-
tion, which differed in size and breed composition. Refer-
ence panel 1 (RP1) only included the most closely related 
animals forming the first group and therefore had the 
smallest number of horses. Reference panels 2 (RP2) and 
3 (RP3) contained progressively more animals that were 
increasingly less related. This was achieved by first add-
ing the second (RP2) and then the third group of horses 
(RP3) to RP1.

Imputation procedure and estimation of imputation 
accuracy
Haplotype phasing of the variant call set of 317 horses 
was performed using Beagle 5.1 [47] with default param-
eter settings, and the effective population size (Ne) set to 
1000. Likewise, genotype imputation for the pre-phased 
data was carried out using Beagle 5.1 [48] with standard 
settings and Ne set to 1000 unless stated elsewhere.

All imputation procedures were performed for Equus 
caballus chromosome 3 (ECA3). The imputation sce-
nario resulting in the highest accuracy of imputation was 
further applied to the whole genome. Imputation accu-
racy was evaluated using five-fold cross-validation in 65 
warmblood horses and closely-related breeds (horses 
from RP1). Individuals were divided into five equally-
sized groups (a) to (e) of 13 animals and each group was 
used once for validation. For the animals to be imputed, 
all genotypes were masked, except for the aforemen-
tioned markers on the GGP Equine Plus BeadChip 
(Neogen/Illumina) or the markers on the Axiom Equine 
Genotyping Array (Axiom MNEc670; Applied Biosys-
tems) for imputation from medium (60K) or high marker 
density (670K), respectively. The number of variants on 
ECA3 that were available for the imputation was 2959 for 
the medium-density array and 25,925 for the high-density 
array, while the sequence data contained 1,382,365 vari-
ants. Imputation for all autosomes from medium-density 
to sequence level was performed from 58,713 markers to 
26,631,480 variants. All splitting and masking procedures 
of the phased variant call set were carried out using the 
tool SelectVariants from GATK version 4.1.8.1 [40].

Imputation accuracy (r) per SNP was calculated as the 
correlation between observed genotypes and estimated 
alternate allele dosages across all samples. For this pur-
pose, the datasets were converted to additive coding with 
PLINK 2.0 [45] and the accuracy of imputation was cal-
culated with an in-house R script (see Additional file 2) 
using R version 4.0.5 [46]. Multi-allelic sites as well as 
variants that showed no variation for the observed geno-
types or the estimated alternate allele dosages in at least 
one of the validation groups were excluded from the 
analysis. Minor allelic frequency for the variants was 
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calculated from the sequence data of all animals included 
in RP1.

Imputation scenarios
To study the effect of different factors on the accuracy of 
imputation, and to determine an optimal strategy result-
ing in the highest imputation accuracy for warmblood 
horses, several scenarios were considered for imputa-
tion. Three reference panels differing in size and breed 
composition (RP1, RP2 and RP3) were used to assess the 
impact of the number of sequenced individuals and their 
genetic relationship with the study samples on the accu-
racy of imputation. In all three cases, the target panel for 
imputation was one-fifth of RP1, hence including 13 ani-
mals. The reference panel consisted either of the remain-
ing four-fifths of RP1 (imputation with RP1; 52 animals), 
the remaining four-fifths of RP1 plus all the animals in 
RP2 (imputation with RP2; 162 animals), or the remain-
ing four-fifths of RP1 plus all the animals in RP2 and RP3 
(imputation with RP3; 304 animals). Imputation was car-
ried out from medium marker density to sequence level. 
For the scenario resulting in the best accuracy of impu-
tation, the analysis was repeated using two additional 
software tools, Impute 5 [13] and Minimac 4 [49]. Impute 
5 was run with default parameter settings and Ne set 
to 1000. Since the adjustment of Ne is not supported in 
Minimac 4, the program was run without any modifica-
tions of the default settings. The reference panel was con-
verted to M3VCF format including parameter estimation 
using Minimac 3 [49] before performing imputation with 
Minimac 4. Since the use of these two software tools 
could not improve the accuracy of imputation, all subse-
quent analyses were conducted using Beagle 5.1.

To clearly separate the effect of the size of the reference 
panel from the effect of breed composition, two addi-
tional scenarios were studied for RP1. Instead of using all 
remaining four-fifths as the reference group, only the fol-
lowing two- or three-fifths were considered (e.g., for vali-
dation group (c), the groups (d) and (e) or (d), (e) and (a) 
were included in the reference group).

To investigate the impact of the marker density of 
the SNP array used for genotyping the study samples 
on imputation accuracy, the procedure for all three ref-
erence panels was repeated for imputation from high 
marker density to sequence level. Furthermore, a two-
step approach for RP1 was assessed to analyse if a step-
wise imputation could improve the accuracy of overall 
imputation. In step one, imputation was carried out 
from medium to high marker density using the previous 
two-fifths of the respective validation group as the high-
density reference panel (e.g., group (e) and (a) for valida-
tion group (b)). For the high-density reference panels, all 
markers except those on Axiom MNEc670 were masked. 

In step two, imputation was performed from the high-
density marker data obtained in step one to sequence 
level using the following two-fifths of the validation 
group as the sequenced reference panel (e.g., group (c) 
and (d) for validation group (b)). In an additional sce-
nario, step two of the imputation was performed from 
only the markers obtained in the first step that had a Dos-
age R-Squared (DR2) value greater or equal to 0.4. Step 
one, i.e., imputation from medium- to high-density, was 
subsequently repeated including all remaining four-fifths 
of RP1 in the high-density reference panel.

Analysis of information content
In addition, we investigated the proportion of variation in 
the 60K data, the imputed panel and the sequence data 
that could be explained by the variation in the other two 
respective datasets. For this, we used a Monte Carlo anal-
ysis of variance as suggested by de los Campos et al. [14]. 
For the imputed panel, two scenarios were considered. 
First, the panel was created by combining the five panels 
with 13 animals each that were separately imputed. Sec-
ond, the panel was created by performing imputation on 
the full set of 65 horses of RP1 jointly and using only the 
remaining 252 animals of RP3 as the reference panel.

Variant effect prediction
To analyse the likely impact of the identified variants, and 
to detect putative lethal mutations, variant effect predic-
tion was performed for the reduced variant call set of 317 
horses using SnpEff version 5.1 [50] with default settings 
and the genomic database EquCab3.0.99. Multi-allelic 
sites were excluded from the dataset prior to conducting 
the analysis. Variants that were predicted to have a high 
impact on protein-coding sequences were filtered out 
using SnpSift version 5.1 [51]. These variants were tested 
for a significant absence or reduction of homozygotes 
under the assumptions of Hardy–Weinberg equilibrium 
using a binomial test in R version 4.0.5 [50]. The obtained 
p-values were adjusted for multiple testing using Bonfer-
roni correction.

Results
Variant discovery
The analysis of WGS data from 317 horses identified 
27,685,397 polymorphic sites, of which 1,496,735 were 
multiallelic. The total numbers of SNPs and INDELs were 
24,540,424 and 5,025,312, respectively. Among these 
variants, 17,323,823 (58.6%) were previously known, i.e., 
70.1% of the SNPs (17,212,051) and 2.2% of the INDELs 
(111,772). The Ti/Tv ratio for SNPs was 1.98, and 2.04 for 
known and 1.85 for novel sites.
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Composition of reference panel groups
In accordance with the results of the MDS plot (Fig. 1), 
the horses were assigned to three groups depending on 
their genetic relationship to German warmblood horses. 
All animals that clustered directly with the warmblood 
horses were assigned to group 1. Overall, this group 
included 65 individuals that belonged predominantly 
to different breeds of German warmblood horses and 
Quarter horses. Individuals that clustered closely with 
the warmblood horses were assigned to group 2, which 
was composed of 110 horses that were mostly Arabians, 
Thoroughbreds and Standardbreds. Group 3 included the 
remaining 142 horses that belonged to various breeds.

These three groups were used to define three versions 
of the reference panel (RP) for imputation that differed 
in size and breed composition. RP1 consisted only of 
the individuals of group 1, RP2 included the individuals 
of group 1 plus those of group 2, and RP3 contained the 
horses of all three groups. Thus, the three versions of the 
reference panel used for genotype imputation contained 
65 (RP1), 175 (RP2) and all 317 horses (RP3), each with-
out 13 animals from RP1 that formed the target panel 
for imputation in the cross-validation scheme. The indi-
vidual classification of all horses is in Additional file  1: 
Table S1.

Accuracy of imputation
The accuracy of imputation for ECA3 from medium 
marker density to sequence level increased from 0.64 
to 0.68 stepwise as the size of RP1 increased from 

two- (26 animals) to four-fifths (52 animals) of the 
horses (Fig.  2). With respect to the reference group 
that was equal to four-fifths of RP1, addition of RP2 
(162 animals) slightly improved imputation accuracy to 
0.70, whereas the use of RP3 (304 animals) had almost 
no notable effect (Fig.  2). Using another software for 
imputation with RP2 did not improve the accuracy of 
imputation (Fig.  2), i.e., it was slightly reduced with 
Impute 5 (0.69), and dropped considerably with Mini-
mac 4 (0.59). Imputation from high marker density to 
sequence level resulted in considerably higher values 
for imputation accuracy compared to imputation from 
medium marker density, with RP2 and RP3 (0.90) per-
forming marginally better than RP1 (0.89). Stepwise 
imputation with RP1 did not improve the accuracy 
of imputation. The values for step one (0.61) and step 
two (0.59) were both lower than for  direct imputation 
from medium density to sequence level using two-fifths 
of the animals of RP1 as the reference group (0.64). 
Excluding all markers with a DR2 value lower than 0.4 
after the first step did not result in an improved accu-
racy for the second step, although the mean accuracy 
of the remaining markers after step one was 0.69. Like-
wise, imputation from medium to high marker den-
sity by using four-fifths of RP1 as the reference group 
resulted in lower values (0.66) than direct imputation 
to sequence level (0.68).

Group 3
Group 2
Group 1

Fig. 1  Multidimensional scaling plot showing the genetic 
relationships among the 317 horses included in this study. Based on 
the results of the plot, the horses of our variant call set were assigned 
to three groups, depending on their genetic relationship to German 
warmblood horses, in order to determine different versions of the 
reference panel used for imputation. The localisation of all German 
warmblood horses in the purple cloud of points served as the basis 
for assigning all other individuals to their respective groups

Reference panel 1
Reference panel 2

Imputation scenario (medium density to sequence)

Reference panel 3

Fig. 2  Accuracy of imputation from medium-density to sequence 
level for various imputation scenarios for the ECA3 chromosome. 
Imputation was performed for three reference panels (RP), including 
65 (RP1), 175 (RP2) or 317 (RP3) horses. Imputation with RP1 was 
carried out for three panel sizes, including two (2/5), three (3/5) or 
four (4/5) fifths of the panel in the reference group. For imputation 
with RP2 and RP3, always four-fifth of the RP1 animals plus all 
additional animals of RP2 or RP3 were included. Imputation with RP2 
was performed with three computer programs, Beagle 5.1 (B5.1), 
Impute 5 (I5) and Minimac 4 (M4). Otherwise, the software Beagle 5.1 
was used for imputation, which in all cases was carried out for equine 
chromosome 3 (ECA3), as an example
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In general, the accuracy of imputation increased as the 
MAF of markers increased, especially for MAF lower 
than 0.2 (Fig. 3a). In comparison with RP1 and RP3, the 
use of RP2 improved the accuracy of imputation for 
markers with a low MAF (≤ 0.2) somewhat better than 
for markers with a higher MAF (Fig. 3b). For imputation 
from high marker density to sequence level, the depend-
ency of the accuracy of imputation on MAF was less 
clear than for imputation from medium marker density 
to sequence level (Fig. 3c). Furthermore, the accuracy of 
imputation varied along ECA3, with reduced values in 
some regions and the most prominent reduction being 
between 37 and 38  Mb. In addition, two striking gaps 
were observed between 5 and 6 Mb and between 46 and 
47 Mb, which corresponded to the absence of medium-
density markers at those positions (Fig. 3d).

Applying RP2 and Beagle 5.1, the mean accuracy of 
imputation from medium marker density to sequence 
level for the whole genome was 0.66 and ranged from 

0.49 to 0.71 (Fig.  4a). Imputation accuracy was lower 
than 0.6 for the three ECA12, 13, and 31 chromosomes. 
For chromosomes with a higher marker density on the 
medium-density SNP array, imputation accuracy tended 
to be higher (Fig.  4b). Splitting ECA31 into 1-Mb seg-
ments and calculating the marker density of the medium-
density SNP array and the accuracy of imputation for 
each segment separately showed an even more obvi-
ous correlation between marker density and imputation 
accuracy (Fig.  4c). Plotting the accuracy of imputation 
against the position on ECA31 showed that the accuracy 
of imputation was greatly reduced for regions with a low 
marker coverage, namely the first 11 and the last 1  Mb 
of this chromosome (Fig. 4d). Similar observations were 
made for other chromosomes (see Additional file 3: Fig-
ure S1). The correlation between MAF and imputation 
accuracy for the whole genome was very similar to the 
results for ECA3 as shown in Additional file 4: Figure S2.

Fig. 3  Accuracy of imputation to sequence level for the ECA3 chromosome. Imputation was performed for three reference panels (RP), including 
52 (RP1), 162 (RP2) or 304 (RP3) horses, taking equine chromosome 3 (ECA3) as an example and using the software Beagle 5.1. a Accuracy of 
imputation plotted against minor allele frequency (MAF). Imputation from medium-density to sequence level applying RP2. The line in a and c is 
the average imputation accuracy per MAF. b Accuracy of imputation from medium-density versus MAF depending on the reference panel used for 
imputation. MAF categories ‘x–y’ stand for ‘x < MAF ≤ y’. c Accuracy of imputation from high-density to sequence level with RP2 plotted against MAF. 
d Accuracy of imputation from medium-density with RP2 plotted against the position on ECA3, with positions of the medium-density SNP array 
shown in orange
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Analysis of information content
Since the results of the analysis of information content 
were very similar with both imputing methods, we pre-
sent only the results obtained by combining the five 
separately imputed data panels into a joint set. Using 
RP2 with Beagle 5.1, the Monte Carlo analysis of vari-
ance indicated that the 60K data already explained 
98.4% of the variation for the sequence panel (Fig.  5). 
This proportion was further increased by imputation, 
as the imputed panel included 99.7% of the variation of 
the sequence data. However, imputation did not only 
add information that was actually present in the real 
sequence data, since only 79.1% and 83.6% of the vari-
ation of the imputed panel were explained by the 60K 
and sequence data, respectively. As expected, both the 
imputed panel and the sequence data fully explained 
the 60K data, which indicates that no information 
was lost by imputation and thereby by increasing the 
marker density (Fig. 5).

When the size of the reference panel increased, 
the proportion of the variation of the imputed panel 
explained by the other panels decreased, which indicates 

d

1 2 3 4 5 6 7 8 9   11  13  15  17  19  21  23  25  27  29  31

ECA31 ECA13

ECA26
ECA29

ECA12

ECA3

c

ba

Imputed markers
MD SNP array markers

Fig. 4  Accuracy of imputation from medium-density to sequence level. Imputation was performed using a reference panel of 162 horses (RP2) and 
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Beagle 5.1 software
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that more noise was introduced to the model without 
any significant difference in the proportion of the varia-
tion of the sequence data. However, since this proportion 
reaches already 99.8%, this result should not be overin-
terpreted. The proportions of variation explained when 
using Impute 5 or Beagle 5.1 were very similar. However, 
when using Minimac 4, only 99.0% of the variation of the 
sequence data was explained by the imputed panel. A full 
list of the proportions of variation explained between the 
different panels is in Additional file 5: Table S2.

Detection of putative lethal variants
Variant effect prediction of the biallelic sites with SnpEff 
annotated 53,656,734 effects on the variants, of which 
59.7% were classified as intronic variants. In total, 23,148 
variants were predicted to have a high impact on pro-
tein-coding sequences (see Additional file  6: Table  S3) 
and 17,769 of those variants were not observed in the 
homozygous state. However, none of the variants showed 
a significant absence or reduction of homozygotes after 
correction for multiple testing.

Discussion
Accuracy of genotype imputation
To develop an optimal strategy for genotype imputation 
in German warmblood horses, we analysed the impact of 
several factors on the accuracy of imputation. Depending 
on the scenario, imputation accuracy for ECA3 ranged 
from 0.59 to 0.70 for the imputation from medium-den-
sity to sequence level. Considering the small number of 
available reference animals, especially of German warm-
blood horses, these results are comparable to those from 
studies on other livestock species that had similar pre-
conditions, such as marker densities and the availability 
of reference animals [5, 11, 26, 52]. Only a few studies 
have evaluated the accuracy of imputation in horses and 
the reported estimates of imputation accuracy vary con-
siderably depending on imputation strategies and pre-
conditions [24–28].

Size and composition of the reference panel
When the breed composition remained the same and 
only animals that are closely related to the study sam-
ple were included (imputation within RP1), increasing 
the size of the reference panel resulted in an improved 
accuracy of imputation. Similar observations have been 
made for the imputation in other livestock, such as cat-
tle [5], sheep [21], chicken [52], and also horses [24]. To 
be precisely imputed, variants have to be present in the 
reference panel [48], and as the size of the reference panel 
increases, the number of haplotypes serving as a template 
for imputation increases [1].

It is less clear, whether more distantly-related animals, 
if available, should be added to the reference panel. We 
found that adding horses from breeds that were used as 
foundation stock for warmblood horses, such as Arabians 
[53] and Thoroughbreds [54], as well as breeds influenced 
by Thoroughbreds themselves, such as Standardbreds 
[54], improved the accuracy of imputation for ECA3 from 
0.68 (RP1) to 0.70 (RP2). Conversely, including in RP3 all 
available horses, regardless of their genetic relationship 
to German warmblood horses, resulted in a drop in accu-
racy of imputation, which was similar to that obtained 
when using RP1, although the number of reference ani-
mals was almost six-fold greater than that of RP1.

Regarding the inclusion of multiple breeds in the 
reference panel, previous studies in various livestock 
populations have led to mixed conclusions. In several 
cases, using an extended multi-breed reference panel 
was advantageous compared to applying a single-breed 
panel in cattle [15, 17, 55] and sheep [2]. However, Hozé 
et  al. [56] did not report any improvement of accuracy 
of imputation by adding individuals from other breeds 
to the reference panel. Likewise, contradictory observa-
tions have been made in horses. For three horse breeds, 
within-breed imputation turned out to be slightly more 
advantageous compared to imputation using a reference 
panel of various breeds, although the latter included con-
siderably more animals than the reference panels consist-
ing of only one breed [28]. Alternatively, for three other 
horse breeds, a large mixed-breed reference panel was 
shown to perform better than a small within-breed refer-
ence panel [24].

The question of how to select the animals to be 
included in the reference panel was recently addressed 
in detail for a panel of diverse chicken breeds [23]. The 
results demonstrated that error rates tended to decrease 
when subpopulations that showed shorter genetic dis-
tances to the study samples were included in the ref-
erence panel, while they increased when less related 
subpopulations were included. Hence, as stated by the 
aforementioned authors [23], optimisation of the accu-
racy of imputation with respect to reference panel com-
position is a trade-off between ensuring a sufficient large 
representation of genetic diversity of the animals and the 
introduction of unnecessary noise through the inclusion 
of genetically  distant animals. An accurate determina-
tion of the genetic relationship between individuals is not 
easily obtained and the availability of WGS data for spe-
cific horse breeds is limited. Therefore, our findings are 
consistent with those of other studies and suggest that all 
the horses not only from the particular breed of interest 
but also from related breeds should be included in the 
reference panel for imputation but that the horses from 
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breeds that are genetically distant to the study population 
should be omitted.

Imputation software
The choice of the imputation software noticeably affected 
the accuracy of imputation, as already shown in other 
studies (e.g., [15, 26]). While Beagle 5.1 and Impute 5 
performed similarly, using Minimac 4 resulted in a con-
siderable drop in accuracy of imputation. All three pro-
grams are based on a Hidden Markov model [13, 48, 49] 
as first proposed for genotype imputation by Li and Ste-
phens [57]. Since most available imputation tools were 
initially developed and optimised for outbred human 
populations [23], both Beagle 5.1 and Impute 5 param-
eter settings were adapted to improve their performance 
with livestock data. Both software tools allow to adapt 
the size of Ne while Minimac 4 does not and was there-
fore used without adapting this parameter. According to 
the results of a study in chicken and maize, adjustment 
of Ne size in the Beagle tool is of essential importance for 
accurate imputation in populations that have a low level 
of genetic diversity [23]. Hence, it cannot be excluded 
that the absence of an option to adapt Ne in Minimac 4 
might be partly responsible for the markedly lower accu-
racy achieved with this tool.

SNP array density
Imputation from high-density to sequence level was con-
siderably more accurate than imputation from medium-
density, as previously reported in cattle [5, 20] and 
chicken [52]. In contrast to imputation from medium-
density, both RP2 and RP3 slightly outperformed RP1 in 
the case of imputation from high-density. The improved 
accuracy of imputation using a reference panel including 
all available horse breeds may be caused, to some extent, 
by the design of the different genotyping arrays. Contrary 
to previous medium-density arrays, the high-density 
Axiom Equine Genotyping Array (Axiom MNEc670; 
Applied Biosystems) was explicitly designed for accu-
rate imputation to higher marker densities, especially the 
two million SNPs of the MNEc2M array, and to sequence 
level [58]. Furthermore, more data from other horse 
breeds were included in the development of the high-
density than the medium-density arrays [27, 59].

Two‑step vs. one‑step imputation
In contrast to studies in cattle [5, 19, 20], sheep [21], and 
chicken [52], stepwise imputation did not improve the 
accuracy of imputation but instead resulted in a drop of 
the accuracy of imputation. Increased error rates, which 
occurred in the first step of imputation from medium to 
high marker density, likely led to an overall reduction 
in accuracy through multiplication in the second step. 

Apparently, filtering out also poorly imputed markers 
prior to the second step of imputation could not improve 
the mean accuracy of the first step sufficiently to avoid 
this problem. This phenomenon was also described by 
Korkuć et al. [22] in cattle, when the reference panel for 
imputation to the intermediate level was small. These 
authors showed that only when large numbers of refer-
ence animals (i.e., 2145) were available for the first step 
of imputation (50K to 700K) and a few reference animals 
(30) were used for the second step (700K to sequence 
level), did the two-step imputation outperform the one-
step approach.

In sheep, two-step imputation was performed with a 
very large number of reference animals (17,000) for the 
first step of imputation from 5K to 50K and a smaller ref-
erence panel (500) for the second step from 50K to 600K 
[21]. In this case, stepwise imputation outperformed 
direct imputation from 5K to 600K using a reference 
panel of 500 animals. Nevertheless, imputation from 5K 
to 50K was less accurate than from 5K to 600K when 
including the same number of animals in the reference 
panel. The same phenomenon was observed in this study 
when comparing imputation from 60K to 670K with 
imputation from 60K to sequence level, both when using 
two-fifths or four-fifths of RP1 as the reference group.

Accordingly, two-step imputation has proven to be 
particularly beneficial when a large reference panel is 
available for the first step of the procedure [19, 21, 22]. 
Therefore, the preconditions for two-step imputation 
were not optimal in our study, since the sizes of the ref-
erence panels for both imputation steps were identi-
cal. Here, stepwise imputation appeared to multiply 
the number of errors from step to step instead of being 
advantageous. However, in cattle, a similar approach with 
equally-sized reference panels resulted in improved accu-
racies for two-step imputation compared to direct impu-
tation from 50K to sequence level [5].

Chromosome position and minor allele frequency
The accuracy of imputation varied between chromo-
somes and chromosomal regions, with local drops and 
gaps that were possibly caused by genome assembly 
errors. For instance, the absence of SNP array  markers 
and imputed variants in two regions of ECA3 are pos-
sibly due to assembly errors or structural variants that 
result in poor resolution of these regions. We observed 
reduced sequencing coverage for these two regions 
compared to that of the whole chromosome. A reduced 
accuracy of imputation for certain chromosomal regions 
or for whole chromosomes is usually associated with 
a reduced marker density of the medium-density SNP 
array in the respective regions. The three chromosomes 
with an accuracy of imputation lower than 0.6, i.e., 
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ECA12, 13, and 31, displayed large regions with a greatly 
reduced marker coverage, the most prominent example 
being on ECA31. A notably reduced accuracy of impu-
tation from the medium-density arrays was previously 
reported for ECA12 [26, 28, 60] and ECA13 [26, 60] and 
a slightly reduced accuracy for ECA31 was also found for 
Arabian horses [28]. Another reason for a low imputa-
tion accuracy in specific regions of the genome could be 
the presence of loci with a high level of sequence simi-
larity and/or of highly polymorphic loci, such as in the 
major histocompatibility complex (MHC) region [61]. 
Spanning ~ 4  Mb on ECA20 [62], the MHC region was 
found to have a reduced accuracy of imputation (0.58) 
compared to the whole chromosome (0.65) or the whole 
genome (0.66).

Imputation accuracy improved as the MAF of mark-
ers increased, as previously reported [18, 52]. Compared 
to RP1 or RP3, the use of RP2 tended to be particularly 
advantageous for the imputation of markers with a MAF 
lower than 0.2. The observation that a multi-breed refer-
ence panel was especially beneficial for the imputation of 
markers with a low MAF was also made in cattle [17, 63], 
because alleles that are rare in one population may have 
higher frequencies in other populations [5]. In our cross-
validation procedure, variants that were monomorphic 
in at least one of the validation groups could not be con-
sidered. Therefore, a number of rare SNPs were excluded 
from the analysis. As markers with a low MAF tend to be 
imputed less precisely, the overall imputation accuracy 
might be overestimated.

Analysis of information content
Our analysis on information content indicates that any 
results obtained for specific imputed markers should 
be taken with extreme caution. At least for our data 
panel that covers a diverse horse population, imputa-
tion added noise rather than actual information that was 
not already present in the 60K data. Thus, target loci or 
regions should be subsequently validated by controlling 
the imputation accuracy, e.g., if provided by the imputa-
tion software, by controlling the DR2 values for the target 
markers [64] or by subsequent sequencing of the target 
area. Note that our analysis of the information content 
does not take into account that imputation can facilitate 
the detection of genomic regions that are associated with 
certain traits of interest because it increases the marker 
resolution even if no additional variation is added to the 
dataset. These observations are also in line with previ-
ous analyses from other studies, as only minor gains are 
obtained when increasing the marker density in genomic 
prediction [65, 66], while the resolution of GWAS tends 
to improve and more hits are obtained when using impu-
tation [12, 67].

Identification of putative lethal variants
By analysing WGS data on 317 horses from various 
breeds, we were unable to detect any high-impact vari-
ants that indicated a significant absence or reduction of 
homozygotes. In cattle, several potentially deleterious 
haplotypes have been discovered based on the principle 
of missing homozygosity [31–34]. On the contrary, in 
horses, this approach to detect lethal variants has only 
been used to a limited extent [37–39]. A major shortcom-
ing of such analyses is that, especially for variants with 
a low frequency, a large sample size is necessary to sta-
tistically prove missing homozygosity. In our study, the 
sample size (317 horses) was rather small and included 
multiple breeds. Given the sample size and the number of 
identified high-impact variants, in our scenario, a MAF 
higher than 0.2 would be necessary to statistically prove 
missing homozygosity using the rules of Hardy-Weinberg 
equilibrium. However, the highest allele frequency of 
a high-impact variant for which no homozygotes were 
observed in our dataset was 0.168. Conversely, a sample 
size of 1299 animals would be necessary to statistically 
prove missing homozygosity for a variant with a MAF 
of 0.1. Hence, in our study, the preconditions to detect 
potentially lethal variants based on missing homozygo-
sity were not optimal.

Nevertheless, we were able to validate the occur-
rence of variants in our dataset that had previously been 
reported to be deleterious. For example, a 5-bp deletion 
in the PRKDC (protein kinase, DNA-activated, catalytic 
subunit) gene was present among our high-impact vari-
ants in the heterozygous state in three Arabians and one 
German riding pony, but did not occur in the homozy-
gous state (NC_009152.3:g.36395752_36395756del). 
This frameshift mutation results in the truncation of the 
protein and causes the severe combined immunodefi-
ciency (SCID) disease in horses [68]. SCID is an auto-
somal recessive disorder in Arabians [69, 70], which is 
usually lethal in the first 5 months of life due to affected 
foals being unable to induce an adequate antigen-specific 
immune response [71]. Furthermore, our dataset con-
tained a variant that had previously been suspected to be 
recessive lethal – a nonsense mutation (rs395871388) in 
the PALB2 (partner and localizer of BRCA2) gene. This 
variant had already been reported by Jagannathan et  al. 
[39] in two horses and was present in our variant call 
set in seven horses in the heterozygous state but did not 
occur in the homozygous state. Two of the horses were 
also included in the aforementioned study [39]. PALB2 
has been shown to be essential for early embryogenesis 
in mice [72].

To be able to statistically prove missing homozygo-
sity for the identified high-impact variants, our results 
should be validated and further investigated in a larger 
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study cohort. However, the availability of WGS data from 
horses is currently limited. An expansion of the sample 
size for German warmblood horses is expected soon 
due to the establishment of a large reference popula-
tion of 5000 animals with genome-wide SNP genotypes 
and phenotypes to implement genomic selection [29]. 
Although marker data can be used to map causal variants 
to genomic regions, to identify the causative mutations, 
sequence data are required. In contrast to SNP arrays, 
sequence data contain the causal variants [6]. Using 
imputed sequence-level data for the discovery of puta-
tive lethal mutations has its limitations compared to the 
use of  WGS data. Lethal variants have to be present in 
the reference panel in order to be correctly imputed and 
subsequently identified. This is of highest importance for 
recently emerged variants, which may not exist in the ref-
erence population at all, or for which the haplotype car-
rying the mutation might be present in two forms, with 
and without the new mutation. This can lead to incorrect 
imputation results and therefore result in missing lethal 
variants. Nevertheless, genotype imputation is a cost-
effective method to obtain sequence-level data for large 
cohorts of animals, such as the aforementioned refer-
ence population of warmblood horses. When the avail-
ability of WGS data for a species is limited, the restricted 
sample size may not allow for the statistical verification 
of missing homozygosity. In this case, genotype imputa-
tion can improve the detection of lethal variants based on 
missing homozygosity by increasing the number of mark-
ers compared to the use of SNP array data.

Conclusions
The accuracy of imputation from SNP array data to 
sequence level in German warmblood horses was influ-
enced by several factors: size and composition of the 
reference panel, marker density of the genotyping array, 
imputation software and MAF of the imputed markers. 
Knowing these effects allows adjusting the strategy of 
imputation in order to achieve a maximum accuracy of 
imputation even in datasets where true genotypes are not 
known. Our reference panel is a valuable resource for the 
application of genotype imputation in horses. By geno-
type imputation, the limited amount of currently availa-
ble WGS data from horses can be supplemented to boost 
the power of downstream analyses. We have also shown 
that imputation does not only add real variation to the 
dataset but also noise. Thus, imputed genotypes need to 
be approached with caution and require additional vali-
dation. In this study, no high-impact variants showing a 
significant absence or reduction of homozygotes could be 
detected. However, the sample was diverse and of limited 
size and imputed sequence-level genotypes could be used 

to improve the identification of embryonic lethal variants 
from genomic data.
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