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cantly reduce the impact of non-perturbative corrections, and in particular the underlying-
event contribution. This eventually will enable a more direct comparison of accurate per-
turbative predictions with experimental measurements. In this study we consider soft-drop
groomed dijet event shapes. We derive general results needed to perform the resummation
of suitable event-shape variables to next-to-leading logarithmic (NLL) accuracy matched to
exact next-to-leading order (NLO) QCD matrix elements. We compile predictions for the
transverse-thrust shape accurate to NLO+NLL′ using the implementation of the Caesar
formalism in the Sherpa event generator framework. We complement this by state-of-the-
art parton- and hadron-level predictions based on NLO QCD matrix elements matched
with parton showers. We explore the potential to mitigate non-perturbative corrections
for particle-level and track-based measurements of transverse thrust by considering a wide
range of soft-drop parameters. We find that soft-drop grooming indeed is very efficient in
removing the underlying event. This motivates future experimental measurements to be
compared to precise QCD predictions and employed to constrain non-perturbative models
in Monte-Carlo simulations.

Keywords: Resummation, Perturbative QCD

ArXiv ePrint: 2012.09574

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP07(2021)142

mailto:jfbaron@buffalo.edu
mailto:daniel.reichelt@uni-goettingen.de
mailto:steffen.schumann@phys.uni-goettingen.de
mailto:niklas.schwanemann@stud.uni-goettingen.de
mailto:vtheeuwe@gmail.com
https://arxiv.org/abs/2012.09574
https://doi.org/10.1007/JHEP07(2021)142


J
H
E
P
0
7
(
2
0
2
1
)
1
4
2

Contents

1 Introduction 1

2 Soft drop for hadronic event shapes 3
2.1 Definition groomed event shapes 4
2.2 Event selection and phase-space constraints 6

3 NLL resummation and matching to NLO QCD 8
3.1 CAESAR in a nutshell 8
3.2 NLL resummation for soft-drop groomed event shapes 9
3.3 The non-perturbative realm 13
3.4 Matching to NLO and achieving NLL′ accuracy 15
3.5 Results for soft-drop transverse thrust 20

4 Phenomenological studies of soft-drop groomed thrust 26
4.1 Monte Carlo simulations — multijet merging, underlying event 26
4.2 Parton-level predictions 27
4.3 Underlying event mitigation 29

5 Conclusions 38

A Logarithmic contributions of zcut 40

B Auxiliary results 42

1 Introduction

Event-shape variables attribute simple real numbers to a scattering event, determined by
the momenta of the final-state particles, that characterise geometric properties of the event.
Their distributions offer a wide range of potential applications in collider phenomenology.
This includes precision QCD studies, e.g. extractions of the strong coupling, the discrimina-
tion of hypothetical new physics from Standard Model expectations, as well as stress-tests,
validation and tuning of Monte Carlo event generators. Aside from event generators, the-
oretical predictions for event shapes can be obtained from fixed-order and resummation
calculations. However, in general, event-shape observables are rather susceptible to non-
perturbative corrections, i.e. hadronisation effects and the underlying event. These need to
be taken into account when comparing high-precision calculations with experimental data,
e.g. through the evaluation of power corrections [1–3], or, via phenomenological models,
as done in event generators [4]. Their sensitivity to non-perturbative phenomena makes
event-shape observables very valuable for the tuning of Monte Carlo generators.
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There exists a vast amount of event-shape studies for e+e− colliders [5–8] for DIS [9, 10],
and corresponding higher-order and higher-logarithmic perturbative QCD predictions, see
for instance [11–23]. Event shapes such as thrust can be consistently defined also for
hadron colliders [24], but despite their great potential, they have received comparably
little attention from experiments at hadron colliders to date.

Resummed predictions for event shapes, e.g. at next-to-leading logarithmic (NLL) ac-
curacy, can be derived and matched to next-to-leading order (NLO) calculations. Ref. [25]
presented an extensive phenomenological study of a variety of event shapes in dijet pro-
duction under Tevatron and LHC conditions, based on NLO + NLL′ predictions as well
as Monte Carlo simulations. The smaller number of experimental studies of event-shape
observables in hadronic collisions is certainly related to their pronounced sensitivity to
non-perturbative corrections [25], which complicates the interpretation of measurements
in terms of perturbative predictions. Additional complications arise from constraints on
the measurement acceptance region, e.g. a maximum rapidity range, |y| ≤ ymax, or, a
non-vanishing particle (track) transverse momentum cut, ptrack

T,min, that hinder the direct
comparison between idealised theoretical predictions and experiment. Some recent LHC
measurements of event-shape variables have been based on reconstructed jets, rather than
particles, as input for the observable calculation [26–29]. While this eases the evaluation
of systematic uncertainties and acceptance corrections, it makes it extremely difficult to
address them beyond a fixed-order calculation or Monte Carlo simulations.

With this work we follow the original approach of using particles as inputs to the ob-
servable. However, we consider grooming the event using Soft Drop [30], and only use the
surviving constituent particles as inputs to the event-shape calculation. This provides the
potential to significantly reduce the impact of non-perturbative effects while retaining the
ability to analytically address these observables. As a concrete example we focus on the
transverse-thrust shape. Through variations of the grooming parameters its underlying-
event sensitivity can be regulated, providing additional means to tune the corresponding
phenomenological models. Furthermore, the impact of using a finite maximum input-
particle rapidity and minimum transverse momentum can be diminished by grooming. In
fact, for sufficiently hard grooming a rather direct correspondence between perturbative
predictions and hadron-level results is found. In refs. [31, 32] similar observations have been
made for soft-drop thrust in e+e− collisions, where a reduced sensitivity to hadronisation ef-
fects was observed. Many other jet-substructure techniques for underlying-event mitigation
exist, for example [33–37] with a detailed overview given in [38]. However, these approaches
are restricted to grooming the constituents of a given jet only. Soft-drop grooming individ-
ual jets at hadron colliders is also intensely studied theoretically, see e.g. [39–48] for recent
results. With this work we suggest to extend those methods to grooming of the entire
event, thereby generalising the work in [31, 32] to global event shapes at hadron colliders.

We derive resummed predictions at NLO + NLL′ accuracy for soft-drop transverse
thrust by employing the implementation of the CAESAR resummation formalism [49] in
the SHERPA event generator framework [50–52]. We compare the results against parton-
level shower Monte Carlo predictions before focusing on the mitigation of underlying-event
effects through soft-drop grooming.
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This paper is organised as follows: in section 2 we give a prescription to apply soft-
drop to global event shape observables for dijet events in hadronic collisions. The NLO +
NLL′ resummation and matching calculation are discussed in section 3. In section 4 we
present predictions for soft-drop thrust in dijet-event final states at the LHC. We then
compare resummed results and parton-shower simulations, and study the sensitivity to
non-perturbative corrections as well as experimentally motivated acceptance cuts. Our
conclusions are presented in section 5.

2 Soft drop for hadronic event shapes

With all final-state particles contributing to the observable calculation, event-shape vari-
ables can be particularly sensitive to non-perturbative corrections. This we illustrate here
for the transverse-thrust observable, which we will use throughout the paper as concrete
example. This hadron-collider variant of thrust is defined as1

τ⊥ ≡ 1−max
~n⊥

(∑
i |~pT,i · ~n⊥|
pT,tot

)
, pT,tot =

∑
i

pT,i , (2.1)

with the sum extending over all final-state particles, and ~pT,i the respective two-component
transverse-momentum vector with length pT,i = |~pT,i|. The unit vector ~n⊥ that maximises
the sum in eq. (2.1) defines the transverse-thrust axis. As a three-jet observable, transverse
thrust quantifies the deviation from the back-to-back event configuration.

In figure 1 we present results obtained with the SHERPA generator at different stages
of the event evolution, i.e. after parton showering but without underlying event (PL), with
the underlying-event contribution included (PL+UE), and fully hadronised (HL+UE). We
consider dijet-production at

√
s = 13TeV with the leading-jet transverse momentum above

200GeV and 500GeV, respectively. Further details on the event selections and generator
settings can be found in sections 2.2 and 4.1. We can observe that the inclusion of the un-
derlying event significantly shifts the distribution, corresponding to up to 40% corrections
in the peak region for events with a jet above 200GeV. Even for the higher transverse-
momentum criterion (500GeV) the underlying event still retains a similar impact. Hadro-
nisation corrections are comparably smaller. Qualitatively hadronisation pushes events
to somewhat higher values of transverse thrust, resulting in corrections of order 10% in
the peak region and even more sizeable in the low-τ⊥ tail, i.e. ln(τ⊥) . −3. This strong
susceptibility of the observable to non-perturbative effects over its whole range makes the
comparison of experimental measurements with purely perturbative calculations rather
indirect and plagued by significant modelling uncertainties.

Transverse thrust has been measured by the Tevatron [53] and LHC experiments [26–
29]. However, recent measurements are based on reconstructed jets as inputs to the observ-
able calculation, which simplifies dealing with the large underlying event contributions but
prevents a direct comparison to perturbative predictions, see for example the discussion
in [25]. Those have so far been presented at NLO QCD [54] and resummed to NLO+NLL′

1As commonly done, we prefer to work with an observable that vanishes in the soft limit, i.e. τ⊥ = 1−T⊥.
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Figure 1. The transverse-thrust distributions for events with a leading-jet transverse momentum
plead

T > 200GeV (left) and plead
T > 500GeV (right). Further details on the event-selection cuts are

given in section 2.2. Shown are MEPS@NLO predictions obtained with SHERPA at parton level
(PL), with the underlying event included (PL+UE), and at full hadron level (HL+UE). The lower
panels show the ratios with respect to the PL+UE prediction.

level in the CAESAR framework [55], and more recently the resummation has been ex-
tended to NNLL accuracy in the context of soft-collinear effective field theory [18, 19]. In
this work we consider full particle-level final states, i.e. charged tracks, as input to the
observable calculation. To mitigate the impact of non-perturbative effects, in particular
the underlying event, we suggest soft-drop grooming the event prior to the observable eval-
uation. We argue that the developed method should be applicable to the standard set of
observables studied by the experiments, and the derived formulae are given for a general
observable within the limitations of the CAESAR approach to resummation. For concrete-
ness, we focus on transverse thrust, as the “standard candle” event-shape variable, in our
phenomenological studies.

2.1 Definition groomed event shapes

Soft drop has a wide range of applications, including being used in boosted-particle tagging
or for pile-up mitigation. The method introduced in [30] has originally been designed as a
jet-substructure technique to remove soft wide-angle radiation from a jet. For a jet of radius
RSD the constituents get reclustered using the Cambridge-Aachen (C/A) algorithm [56, 57].
Then the last C/A clustering step is undone and the resulting two subjets are subjected to
the soft-drop criterion

min(pT,i, pT,j)
pT,i + pT,j

≥ zcut

(∆Rij
RSD

)β
, (2.2)

with pT,i the transverse momenta of the two constituent subjets with respect to the beam,
and ∆R2

ij = (yi − yj)2 + (φi − φj)2 their separation in the rapidity-azimuth plane. If the
condition is satisfied grooming ends and the jet is the combination of these two subjets,
otherwise the subjet with smaller transverse momentum is removed from the jet and the
procedure is continued for the harder subjet. The two relevant parameters are the threshold
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zcut and the angular exponent β ≥ 0. It should be noted that for β = 0, which corresponds
to the modified Mass-Drop Tagger (mMDT) [33, 36], all soft emissions at LO accuracy
are groomed. This alters the logarithmic structure of the resummation leading to only
single-logarithmic enhancement of the observable which is of collinear origin.

Here, we build up on work in [31, 58], where soft drop has been applied to the thrust
variable in e+e− collisions [59], among other event shapes. We stress that the main moti-
vation for this is to study observables close to traditional event shapes but with reduced
impact of non-perturbative effects, even though soft drop is a more general tool that could
suggest alternative observable definitions by itself. Correspondingly, the event is divided
into two hemispheres based on the thrust axis, and the soft-drop condition is applied
to both of them. We will generalise this idea and define soft-drop groomed versions of
hadronic event shapes. To this end we employ the transverse-thrust axis ~n⊥ to separate a
given event into azimuthal hemispheres, HR containing all particles with ~n⊥ · ~pT,i ≥ 0, and
HL containing all particles with ~n⊥ · ~pT,i < 0. For each hemisphere separately, we can then
apply the standard soft-drop procedure, i.e. recluster all particles in the hemisphere into a
C/A jet, then subsequently undo clustering steps and check the soft-drop criterion eq. (2.2)
as described above for jets. The remaining particles of both hemispheres, which we will
refer to as H′L and H′R, then constitute the groomed-event final state. The hemispheres
do not have an auxiliary radius associated to them, so we can make a choice RSD = 1 in
what follows. The result of this application of soft-drop is quite different from the usual
approach of grooming jets. In general, β > 0 suppresses grooming for radiation at small
angles. For a jet RSD is typically chosen equal to the jet radius and this suppression is
happening for all radiation inside the jet. However, for a hemisphere there will be cases
for which ∆Rij > RSD. For these particles, grooming will instead be even stronger. This
changes the role of the parameter β, as values β > 0 can result in more significant groom-
ing. This in particular has the potential to suppress contributions from multiple-parton
interactions, i.e. the underlying event, which are largely uncorrelated in angle with respect
to the hard process.

We now want to calculate a given event shape with the particles that survived this
grooming procedure. The exact definition of the groomed event shape for arbitrary, not
necessarily soft and/or collinear configurations might however not be uniquely fixed by this
prescription, and care has to be taken not to introduce issues regarding collinear safety, cf.
appendix A of [32] for a detailed discussion. As we are going to focus on hadronic thrust
in our phenomenological studies, we give an explicit definition of its groomed variant:

τSD
⊥ ≡

(
1−

∑
i∈H′L

|~pT,i · ~n′⊥,L|

(pT,tot)groomed −
∑
i∈H′R

|~pT,i · ~n′⊥,R|

(pT,tot)groomed

)
(pT,tot)groomed

(pT,tot)all (2.3)

with ~n′⊥,X =
∑
i∈H′X

~pT,i∣∣∣∑i∈H′X
~pT,i

∣∣∣ , and (pT,tot)groomed =
∑
i∈H′L

|~pT,i|+
∑
i∈H′R

|~pT,i| , (2.4)

where as indicated all sums run over the particles that survive grooming in the respective
hemispheres, and (pT,tot)all denotes the scalar sum of the transverse momenta of all parti-
cles, whether or not affected by grooming. Multiplying by the ratio of the total groomed
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and ungroomed transverse momentum guarantees collinear safety as mentioned above, in
full analogy with the e+e− case [31, 32].

Experimental considerations. In addition to the theoretical considerations when defin-
ing an observable, it should be viable to be measured experimentally in a setup as close to
the calculation as possible. The resummation and fixed-order consideration are based on
the distribution of partons. After applying a correction according to some hadronisation
model, or convincing ourselves that those corrections are rather small, they might be taken
as a prediction for the observable as defined on all hadrons in the final state. However, those
are not readily available in general in hadron-collider experiments, though for example the
particle-flow method used by the CMS experiment [60] gets rather close to the particle level.
However, for our final phenomenological studies, we here define the observables based on
detectable charged-particle tracks, accessible with conventional tracking techniques. Those
are assumed to resemble the overall distribution of hadrons in the event, allowing us to
relate to the analytic calculation. However, the use of charged tracks in practice results in
several limitations.

The first experimental restriction is the rapidity range where tracks can be measured
reliably. This results in a maximum rapidity ymax within which particles are considered to
contribute to the observable calculation. For transverse thrust this cut-off alters the log-
arithmic structure for the resummation. In [25] this was addressed by suggesting certain
changes to the observable definitions. Here, we are going to argue that our modification,
i.e. soft-drop grooming, is already sufficient. The reason for this is essentially that particles
contributing to this difference in logarithmic structure will have low transverse momentum
and therefore be prone to grooming. This allows us to ignore the rapidity cut-off in the re-
summed calculation and take it into account in the final matched distributions by including
it in the fixed-order calculation.

In addition to the spatial restriction, a track-based measurement can only be performed
based on charged particles with a transverse momentum above some threshold ptrack

T,min. This
conversion from all particles to charged tracks can not easily be consistently included in
either resummation or fixed-order computations. However, we can make use of particle-level
Monte Carlo simulations, including the parton-to-hadron transition process, to estimate the
impact of this restriction. This is studied in detail along with the parton-shower results
in section 4. There we will also verify our assumption on the correspondence between
measurements based on charged and all particles in hadronic final states.

2.2 Event selection and phase-space constraints

For completeness, we will define the full phase space we consider for both the analytic
calculation and our Monte Carlo studies. We want to study dijet events in proton-proton
collisions at

√
s = 13TeV centre-of-mass energy. We require events to contain at least two

R = 0.4 anti-kt jets [61], rather central in rapidity, and satisfying an asymmetric cut on
their transverse momenta:

|yj | < 1 , and plead
T ≥ pT,min , p2nd

T ≥ pT,min
2 . (2.5)
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Figure 2. Event-display view of a typical two-jet event from proton-proton collision at
√
s = 13TeV

at different stages of the event evolution. The respective final states are shown for various levels of
soft-drop grooming, i.e. without grooming, and zcut = {0.05, 0.1, 0.2, 0.3} with β = 1.

In what follows we consider the two choices pT,min = 200GeV and pT,min = 500GeV. Note,
these jet requirements serve as triggers only; the observable calculation is based on final-
state particles, not on jets. For validation, we produce Monte Carlo samples at parton
level as well as hadron level taking charged and neutral final states into account. To
address the restricted acceptance for particle tracks mentioned above, only particles with
|y| ≤ ymax = 2.6 are considered for both jet reconstruction and observable calculation. All
cuts mentioned so far are implemented in the fixed-order calculations as well. For our final
“experiment-level” Monte-Carlo prediction, we in addition only take into account charged
particles in the hadronic final state, with a transverse momentum of

ptrack
T ≥ ptrack

T,min = 500MeV . (2.6)

To study the impact of soft-drop grooming, we investigate a variety of parameter choices,
i.e. zcut ∈ {0.05, 0.1, 0.2, 0.3} with β ∈ {0, 1, 2}, while keeping RSD = 1 fixed. For the higher
jet transverse-momentum selection (pT,min = 500GeV) we consider in addition smaller
grooming thresholds, i.e. zcut = 0.01 and zcut = 0.02. We make use of the FASTJET
implementation of the soft-drop procedure [62].

An event display. To illustrate the potential of soft-drop grooming to mitigate the
impact in particular of the underlying event, we provide in figure 2 an event-display view
of a typical event simulated with the SHERPA generator. We use β = 1 and show the effect
of several zcut values, indicated by different colours. As done for figure 1, we consider the
event at different levels of its evolution, i.e. at parton level (lower panel), with underlying
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event included (middle panel) and at hadron level (upper panel). At all stages we take into
account all particles in the acceptance region and do not apply a ptrack

T,min cut.
Each particle in the event display is scaled linearly in size according to its transverse

momentum, with larger points corresponding to larger values of pT . The event’s two leading
jets have transverse momenta of plead

T,j ≈ 215GeV and p2nd
T,j ≈ 185GeV, respectively. The

hemispheres of the event are separated by a vertical line, which we choose to be at φ = 0,
with φ < 0 and φ ≥ 0 for the left and right hemisphere, correspondingly. It is visible that
the particles surviving the hardest grooming modes can cluster significantly away from
the original thrust axis. For this isolated event this is due to the presence of semi-hard
emissions sufficiently separated from the hardest parton of the PL event. A majority of the
underlying-event activity is already groomed away with zcut ≤ 0.1 (black and blue) while
larger values of zcut (green and orange) probe into the hard process. In this particular
event we can observe that, in the right hemisphere for zcut = 0.3, grooming probes into the
fragmentation products of the hardest PL parton. Thus, by grooming ever more aggressive,
sizeable difference between observable values at parton and hadron level can emerge despite
most hadronisation corrections already being removed at softer choices of grooming.

3 NLL resummation and matching to NLO QCD

Having established the procedure for the type of observable we wish to study, we can detail
the strategy for the resummation of this school of observables. In this section we will start
from the general CAESAR framework for resummation and show the alterations needed for
groomed event shapes. Finally, we confirm the logarithmic structure by comparing the
expansion of the resummation to fixed order for groomed transverse thrust, and present
matched NLO + NLL′ results.

3.1 CAESAR in a nutshell

We base our calculation on the well known CAESAR formalism for soft-gluon resumma-
tion [24, 55]. Starting from a well separated, hard Born configuration B, it is possible to
write the cumulative distribution of a given observable v — resummed to NLL accuracy,
with L ≡ ln (1/v) being the relevant logarithm — in a rather generic master formula

Σres(v) =
∑
δ

Σδ(v) , where

Σδ
res(v) =

∫
dBδ

dσδ
dBδ

exp

−∑
l∈δ

RBδl (L)

PBδ(L)SBδ(L)FBδ(L)Hδ(Bδ) ,
(3.1)

and NLL is defined as systematically exponentiating all contributions of the type αns Ln and
higher logarithmic powers.2 This formulation is applicable to a wide range of observables.
The sum extends over different partonic channels δ; we will drop this label in the following
if not explicitly needed. The main ingredients are the hard function H representing the

2Despite the resummation structure of soft drop for β = 0 starting at αsL at the lowest order, we stick
to a naming scheme independent of β.
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kinematic cuts on the Born kinematics B, the function F accounting for the effect of
multiple emissions, the soft function S implementing the non-trivial colour evolution, the
collinear radiators Rl for all hard legs l, and the ratio of parton-distribution-functions
(PDFs) P to take into account the true initial-state collinear scale,

PBδ(L) =
2∏
l=1

ql
(
xBδl , e

−L/(al+bl)µF
)
/ql
(
xBδl , µF

)
. (3.2)

We refer to the original literature on the CAESAR formalism, in particular the review [49],
for a detailed discussion on the construction and the applicability of the approach. It has
been used to resum a number of event shapes in hadron-hadron collisions [25]. These can
in principle all be modified and studied as soft-drop groomed variants. We will present the
general formalism to do so, we focus on groomed transverse thrust for concrete results. In
what follows we make use of the implementation of the CAESAR formalism in the SHERPA
framework presented originally presented in [50] which we recently also applied to obtain
resummed predictions for soft-drop thrust [32] and multijet resolution scales [63] in electron-
positron collisions.

The building blocks of the CAESAR resummation formula can be calculated for observ-
ables V (vanishing at Born level) that have a specific scaling behaviour when assuming an
additional soft gluon with momentum k, collinear to a leg l ∈ B, i.e.

V (k) =
(
k

(l)
t

µQ

)al
e−blη

(l)
dl (θ) gl (φ) . (3.3)

Here k(l)
t and η(l) are the emission’s transverse momentum and pseudorapidity relative to

leg l, respectively. Furthermore, φ labels the azimuthal angle of the emission, while θ is
the hard-process scattering angle in the centre-of-mass frame. Finally, µQ denotes the
hard scale, or resummation scale, of the problem. The main goal for the remainder of this
section is to recompute the building blocks including the effect of soft-drop grooming as
described in section 2.1.

3.2 NLL resummation for soft-drop groomed event shapes

Due to some of the complexities involved in the treatment of initial-state emissions we will
compute the full resummation in the strict v � zcut � 1 limit. This allows us to ensure
that the logarithms of the observables are taken into account up to NLL accuracy. We
stress that we are neglecting any contributions not associated with at least next-to-leading
order in L, logarithms of the soft-drop parameter zcut are only taken into account if they
appear in such a contribution. In practice the grooming logarithms are not with respect
to zcut but some related z′cut absorbing factors dependent on the exact hard kinematics,
which should be taken into account for the appropriate limit instead. We will specify z′cut
later and just note here that, as long as z′cut/zcut = O(1), the two limits coincide. The
region v ∼ zcut will also not be treated and therefore the resummation will not shift into
the ungroomed contribution beyond the transition point. Those effects will hence only be
accounted for to the accuracy of the fixed-order calculation.
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The behaviour of the observable in the presence of an additional soft gluon that remains
ungroomed is still given by eq. (3.3), however, grooming imposes additional phase-space
constraints given by eq. (2.2). Per construction, the C/A algorithm will always cluster the
emission to one of the final-state legs, independent of the parton it is actually radiated off.
We therefore need to treat initial- and final-state emissions separately.

In the v � zcut � 1 limit only radiation from the final-state legs will potentially not
be groomed and can result in logarithms of the observable. Collinear initial-state and the
associated PDF contributions will always be groomed away and result in logarithms of
zcut or related variables, but not be enhanced by L. The same is true for wide-angle soft
emissions. In practice, we can hence set R1 = R2 = 0 and P = 1, S = 1 in the groomed
case. Further discussion of those contributions, relevant away from the strict limit we are
working in, is presented in appendix A. We finally note that this in particular includes the
type of emissions with ∆Rij � RSD with respect to the relevant final-state leg, which we
discussed earlier due to their special nature in this approach to grooming events. Those
will hence not need any special consideration in the resummed calculation at this accuracy.

Finally, in this limit the multiple-emission nature of the observable is not altered. In
particular for the typical case where the multiple-emission function only depends on the
logarithmic derivative of the radiator, F(L) = F(R′(L)), we can use the same functional
form as in the ungroomed case, i.e. for additive observables like transverse thrust F(R′) =
e−γER

′
/Γ(1 + R′), simply with a different radiator argument. Including the limit v ∼ zcut

would change the F function, as discussed in detail in appendix B.2 of [32].
In the remainder of this section we will recompute the final-state leg radiators Rl. The

general phase-space constraints for emissions off leg l are given by:

(i) η(l) > ln(2El/Q) (with Q the mass of the radiating dipole) for the emission to be
collinear to l,

(ii) the limit given by collinear momentum conservation, i.e. η(l) < ln(2El/k
(l)
t ), and,

(iii) the condition v > V (k), cf. left hand side of figure 3 for the resulting Lund-plane
diagram.

Soft-drop grooming now imposes an additional constraint:

(iv) an emission only contributes if it is not groomed, implying

k
(l)
t e

(1+β)η(l)

2El
≥ zcut

(
RSD sin θ

2

)−β
≡ z′cut .

To derive this last condition, we rewrote the soft-drop criterion eq. (2.2) in the soft/collinear
region in terms of k(l)

t and η(l), using

pT,k = k
(l)
t

eη
(l)

2 sin θ , pT,l = El sin θ ,

|∆y| = 2e−η(l) cosφ
sin θ , |∆φ| = 2e−η(l) sinφ

sin θ .
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bl = 1

bl = 0

ln
(k

(l
)

t
/µ

Q
)

η(l)

bl = 1

β = 0β = 2

soft-gluon grooming (final state)

ln
(k

(l
)

t
/µ

Q
)

η(l)

Figure 3. The emission phase space in the Lund plane illustrating the kinematic constraints
without (left) and with grooming (right). In the left figure we consider the CAESAR parameters
al = 1 with bl = 0 and bl = 1 (valid for thrust). The blue areas in the right panel mark the
phase-space region removed by grooming with boundaries corresponding to β = 0 (solid line and
area) and β = 2 (dashed line, hatched area).

As mentioned earlier, the relevant argument of the logarithms is z′cut, as we now formally
introduced it. It differs from zcut by a factor (RSD sin θ /2)−β . Since we are interested here
in the collinear limit relative to centralised final-state particles, i.e. sin θ ∼ O(1), and choose
RSD ∼ O(1) we indeed have z′cut/zcut ∼ O(1). This implies that the limits v � z′cut � 1
and v � zcut � 1 correspond to one another. In our following numerical analysis we use
RSD = 1 and require Born-level events with |yj | < 1, cf. eq. (2.5), what corresponds to
sin θ > 0.648. Note, the limit z′cut � 1 is challenged when considering grooming parameters
zcut ≥ 0.1 and β = 2. Despite this, we still probe such choices in our phenomenological
analyses. However, corrections proportional to z′cut beyond the ones considered here might
become numerically sizeable for these cases. In any case, they will be taken into account
to NLO after matching.

With the above general considerations, radiation in the blue area in the right hand
side of figure 3 does not contribute to the groomed observable, and the integral over this
area should be subtracted from the ungroomed case. This results in the radiator function
for the groomed observable being given by

R (v, zcut) =
∑
l

Cl

[∫ µ2
Q

µ2
Qv

2
al+bl

dk2
t

k2
t

αs
(
k2
t

)
π

(
ln
(
Q

kt

)
+Bl

)

+
∫ µ2

Qv
2

al+bl

µ2
Qv

2
al

dk2
t

k2
t

αs
(
k2
t

)
π

(
ln
(
Q

2El

)
+ 1
bl

ln
[(

kt
µQ

)al
dlgl
v

])

−
∫ µ2

Q(z′cut)2

µ2
Qf(v,z′cut)

dk2
t

k2
t

αs
(
k2
t

)
π

(
ln
(
Q

kt

)
− β

1 + β
ln
(2El
kt

)
+ 1

1 + β
ln
(
z′cut

))

−
∫ µ2

Qf(v,z′cut)

µ2
Qv

2
al

dk2
t

k2
t

αs
(
k2
t

)
π

(
ln
(
Q

2El

)
+ 1
bl

ln
[(

kt
µQ

)al
dlgl
v

])]
, (3.4)
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with the soft-collinear corner parameterised as

f
(
v, z′cut

)
= v

2(1+β)
bl+al(1+β)

(
z′cut

) 2bl
bl+al(1+β) = v2p(v)

l
(
z′cut

)2p(z)
l , (3.5)

where in the second equality we defined

p
(v)
l ≡

1 + β

bl + al (1 + β) and p
(z)
l ≡

bl
bl + al (1 + β) . (3.6)

The first two lines of eq. (3.4) correspond to the original ungroomed triangle contribution.
Using the usual CAESAR convention the coefficient Bl accounts for hard-collinear splittings.
The last two lines in eq. (3.4) subtract off emissions that are groomed. The difference in
the overall scales in the kt-integration is beyond NLL accuracy and µQ can be used for
all. Note that, as already indicated by our notation, we are free to use a unique scale Q
to represent the maximal kinematic energy available for emissions from leg l, although it
generally differs for the contributions of the various dipoles l is a part of. These differences,
however, can be captured at NLL accuracy by the soft function S, which for groomed event
shapes only results in logarithms of zcut. The radiator function can be brought to a form
similar to the ungroomed case, see for instance eq. (5) in ref. [55],

R (v,zcut) =
∑
l

Cl

[
rl (L, Lz)+r′l (L, Lz)

(
ln
(
d̄l
)
−bl ln

(
2El
µQ

))

+β ṙl (L, Lz) ln
(

2El
µQ

)
+BlT

(
αsβ0L

al+bl

)
+T (αsβ0Lz) ln

(
Q

µQ

)]
. (3.7)

Here we have introduced an additional logarithm Lz=ln(1/z′cut). The function T is given by

T (X) =
∫ µ2

Q

µ2
Qe
− 2X
αsβ0

dk2
t

k2
t

αs
(
k2
t

)
π

= − ln(1− 2X)
πβ0

, (3.8)

with β0 = (11CA − 2nf )/(12π) and αs = αs(µ2
R). Furthermore, ln(d̄l) is given by the sum

of ln(dl) and the azimuthally averaged ln(gl) contribution, i.e.

ln
(
d̄l(θ)

)
= ln (dl(θ)) +

∫ 2π

0

dφ

2π ln (gl(φ)) . (3.9)

The appearing resummation functions for the groomed event shapes follow the same struc-
ture as in the ungroomed case, however, the additional function ṙl appears, given by the
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derivative of rl with respect to Lz, rather than L, as for r′l. Their explicit form reads:

rl (L, Lz) =
∫ µ2

Q

µ2
Qe
−2L
al+bl

dk2
t

k2
t

αs
(
k2
t

)
π

ln
(
µQ
kt

)

+
∫ µ2

Qe
−2L
al+bl

µ2
Qe
−2
(
p

(v)
l

L+p(z)
l

Lz

) dk2
t

k2
t

αs
(
k2
t

)
π

(
L

bl
+ al
bl

ln
(
kt
µQ

))

+
∫ µ2

Qe
−2Lz

µ2
Qe
−2
(
p

(v)
l

L+p(z)
l

Lz

) dk2
t

k2
t

αs
(
k2
t

)
π

1
1+β

(
Lz−ln

(
µQ
kt

))
= 1
αs
r1,l (αsβ0L, αsβ0Lz)+r2,l (αsβ0L, αsβ0Lz) , (3.10)

r′l (L, Lz) = 1
bl

∫ µ2
Qe
−2L
al+bl

µ2
Qe
−2
(
p

(v)
l

L+p(z)
l

Lz

) dk2
t

k2
t

αs
(
k2
t

)
π

= 1
bl

[
T
(
p

(v)
l αsβ0L+p(z)

l αsβ0Lz
)
−T

(
αsβ0L

al+bl

)]
, (3.11)

ṙl (L, Lz) = 1
1+β

∫ µ2
Qe
−2Lz

µ2
Qe
−2
(
p

(v)
l

L+p(z)
l

Lz

) dk2
t

k2
t

αs
(
k2
t

)
π

= 1
1+β

[
T
(
p

(v)
l αsβ0L+p(z)

l αsβ0Lz
)
−T (αsβ0Lz)

]
. (3.12)

The LL and NLL terms r1,l and r2,l appearing in eq. (3.10) are given by

r1,l (λ, λz) = −1
2πβ2

0

[
al+bl
bl

(
1− 2λ

al+bl

)
ln
(

1− 2λ
al+bl

)
+ 1

1+β (1−2λz) ln(1−2λz)

− al(1+β)+bl
bl(1+β)

(
1−2(p(v)

l λ+p(z)
l λz)

)
ln
(
1−2(p(v)

l λ+p(z)
l λz)

)]
, (3.13)

r2,l (λ, λz) = K

4π2β2
0

[
al+bl
bl

ln
(

1− 2λ
al+bl

)
+ 1

1+β ln(1−2λz)

−al(1+β)+bl
bl(1+β) ln

(
1−2(p(v)

l λ+p(z)
l λz)

)]
− β1

2πβ3
0

[
al+bl
bl

(1
2 ln2

(
1− 2λ

al+bl

)
+ln

(
1− 2λ

al+bl

))
(3.14)

+ 1
1+β

(1
2 ln2 (1−2λz)+ln(1−2λz)

)
−al(1+β)+bl

bl(1+β)

(1
2 ln2

(
1−2(p(v)

l λ+p(z)
l λz)

)
+ln

(
1−2(p(v)

l λ+p(z)
l λz)

))]
,

with the coefficient K in the MS renormalisation scheme given by K =
(

67
18 −

π2

6

)
CA− 5

9nf .
In order to perform the actual calculation of the resummation we extended the SHERPA
resummation plugin [50] to include the soft-drop groomed version of the final-state radiators
as presented above.

3.3 The non-perturbative realm

As is the case in the original CAESAR formalism, cf. also [64], the formulae presented
here exhibit logarithmic branch cuts as a result of integrating the strong-coupling constant
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over the Landau pole. The positions of these branch cuts can be used to estimated the
observable scales at which non-perturbative physics, i.e. hadronisation effects, dominate.
From eqs. (3.13) and (3.14) we can read off their locations as

2λ = al + bl , (3.15)

2p(v)
l λ = 1− 2p(z)

l λz . (3.16)

Here we assumed λz < 1/2. These can easily be expressed in terms of the observable
v = e−λ/αsβ0 , which yields

vHad, collinear =
(
e−1/2αsβ0

)al+bl =
(ΛQCD

µR

)al+bl
, (3.17)

vHad, wide-angle =
(
e−1/2αsβ0

)al+bl/(1+β) (
eLz
)bl/(1+β)

=
(ΛQCD

µR

)al ( ΛQCD
µRz′cut

)bl/(1+β)
.

(3.18)

For the last equality we introduced Λ2
QCD = µ2

Re
−1/αsβ0 . The notation reflects that the first

solution corresponds to the collinear limit, whereas the second one is approached for the
softest wide-angle emissions allowed by grooming (i.e. the intersection of the blue and red
line in figure 3). The condition on λz translates to z′cut > ΛQCD/µR, which if violated puts
the full groomed part of the distribution into the non-perturbative region. Hadronisation
corrections start to dominate when v approaches the larger of the two solutions, such that,
keepint in mind β ≥ 0, we have

vHad =
(ΛQCD

µR

)al+bl
, for bl ≤ 0 , (3.19)

vHad =
(ΛQCD

µR

)al ( ΛQCD
µRz′cut

)bl/(1+β)
, for bl > 0 . (3.20)

This agrees with the estimates given for example in refs. [39, 65] for the energy-energy
correlations e(α)

2 and jet angularities λ1
α, where the relevant parameters are al = 1, bl = α−1

(see the latter reference for a detailed treatment using the CAESAR parametrisation). For
reference, we note that, without grooming (i.e. β →∞), we would obtain

vungroomed
Had =

(ΛQCD
µR

)al
, for bl > 0 , (3.21)

while the bl ≤ 0 case remains unchanged since here the dominant contribution is from the
collinear limit. By comparing eqs. (3.20) and (3.21) it is apparent that grooming reduces
the impact of hadronisation corrections.

In figure 4 we present concrete results for vHad for different combinations of CAESAR
observable parameters in dependence on the dimensionless ratio µR/ΛQCD. The black
solid line corresponds to the case al = 1 and bl = −1/2, representing, for example, the
so-called LHA jet angularity λ1

1/2. As stated above, for observables with bl < 0 the onset of
hadronisation dominance is, independent of grooming, given by eq. (3.19). As also noted in
ref. [65], this observable is very susceptible to non-perturbative corrections, even for rather
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β = 2, z′cut = 0.1

β = 2, z′cut = 0.2

β = 1, z′cut = 0.1

β = 1, z′cut = 0.2
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β = 0, z′cut = 0.1
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Figure 4. Observable value vHad where to expect dominance of non-perturbative corrections, i.e.
hadronisation effects, as a function of the dimensionless quantity µR/ΛQCD. Results are given for
different combinations of CAESAR parameters. For the case al = bl = 1, relevant for example for
the thrust observable, we present results for different grooming parameter combinations.

high values of µR. The black dashed line represents the class of observables parametrised
by al = 1 and bl ≥ 0 for the case of no grooming. Compared to the LHA angularity
a somewhat reduced sensitivity to hadronisation effects is evident. However, this can be
significantly reduced through soft-drop grooming. This is exemplified for the parameter
set al = bl = 1, corresponding to the thrust observable we are going to study in what
follows. We consider here grooming with β ∈ {0, 1, 2} and two representative z′cut values,
i.e. z′cut ∈ {0.1, 0.2}. For the considered range of µR/ΛQCD grooming with β = 2 reduces
the transition point vHad by about 1–2 e-folds. However, the dependence on z′cut is rather
mild. As evident from eq. (3.20), the strongest suppression is obtained for β = 0. For
z′cut = 0.1 vHad gets reduced by about 4 e-folds at µR/ΛQCD = 1000. By increasing z′cut to
0.2 we roughly gain another factor of e.

While these estimates are certainly helpful in getting a feeling for the ultimate break-
down of the perturbative approach, we note that they do not provide information on the
scales related to the underlying event. In section 4 such effects are addressed in a phe-
nomenological study.

3.4 Matching to NLO and achieving NLL′ accuracy

We improve the pure resummation by matching to a fixed-order calculation at NLO QCD,
i.e. at O(α2

s ) relative to the Born process. We combine our NLL resummation and the NLO
in a way that allows us to effectively achieve NLL′ accuracy. In what follows we detail our
approach and discuss subtleties arising due to soft-drop grooming.

Preliminaries. Before performing the actual calculation it is common to exploit the am-
biguities present at NLL to ease the matching to a fixed-order result. The natural argument
of the logarithms Lz is the value of the transition point for these types of emissions. Natu-
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rally, grooming vanishes as v → (z′cut)
al , at which point the observable transitions back to

the ungroomed case. However, this is based on the NLL approximation of the kinematics.
Formally, in the Lund plane the LO transition point is reached when the intersection of
the η(l) = ln(2El/Q) line and the soft-drop line is at the same value of kt as that with
the observable line. When this occurs the soft-drop line no longer results in a kinematic
boundary on the emissions and instead the observable value is the only constraint. This
happens when:

z′cutQ
1+β (2El)−β =

(
vtrans
dlgl

)1/al (2El
Q

)bl/al
µQ , (3.22)

resulting in the transition point

vtrans =
(
z′cut

)al (2El
µQ

)al (
Q

2El

)al(1+β)+bl
dlgl = z̃alcut . (3.23)

At fixed logarithmic accuracy we can always shift the argument of the logarithms by mul-
tiplying z′cut with a constant and include an additional contribution to compensate for the
leading terms in Lz. This way we can make use of the actual LO transition point for
this type of emission as an argument of the logarithm, by comparing the full relations
instead of the NLL approximation. Accordingly, we shift the argument of the logarithm
from Lz = − ln(z′cut)→ − ln(z̃cut), and the additional contribution that needs to be taken
into account reads:

R→ R+ 1
al
ṙl (L, Lz)

[
al ln

(
2El
µQ

)
+ (al (1 + β) + bl) ln

(
Q

2El

)
+ ln

(
d̄l
)]

. (3.24)

Next, we include end-point corrections [66, 67] to ensure the cumulative distribution
of the resummation approaches unity and its derivative vanishes at the kinematic end-
point of the fixed-order distribution. Two types of logarithms are included, the one of the
observable, which can be altered to vanish at the end-point, and logarithms of zcut, which
will not vanish there. The observable logarithms are modified in the usual manner

ln
( 1
xLv

)
→ 1

p
ln
( 1

(xLv)p −
1

(xLvmax)p + 1
)

= L , (3.25)

where xL is chosen to be
ln(xL) = −

∑
l∈f

ln(d̄l)/n , (3.26)

see ref. [63], averaged over the final-state particles only, here n = 2. Per default we will
assume p = 1. The argument of logarithms of zcut we multiply by the same factor, i.e.
Lz = − ln(xLz̃alcut)/al. Finally the exponential is modified according to

exp
[
R̃ (L, Lz)

]
→ exp

[
R̃ (L, Lz)− R̃ (0, Lz)−

(
v

vmax

)p
R̃′ (0, Lz)L

]
, (3.27)

where R̃ includes the multiple-emission function F , and R̃′ is its derivative with respect to
L. Here we subtract R̃ (0, Lz) to consistently remove all pure Lz type of contributions.
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To remind the reader, for the practical implementation we focus on the resummation
of logarithms in the observable in the strict limit v � zcut � 1. Therefore we shall
neglect the transition point in the resummation and expansion. We will only perform the
exponentiation of the logarithms of the groomed observable, which requires the inclusion
of final-state emissions only in the exponential. Other contributions result in logarithms
of zcut and will be included through means of matching to fixed order, i.e. NLO QCD.

Definition of the matched distributions. To match the resummed predictions to
the fixed-order calculation, we follow the strategy presented using our conventions in [63].
We adopt the same notation, i.e. for every partonic channel δ we introduce the cumulant
distributions

Σδ(v) =
∫ v

0
dσδ and Σδ(v) =

∫ 1

v
dσδ , (3.28)

both, for the resummed (res) and the fixed-order (fo) calculations. They can be expanded
in αs relative to the Born configuration, which itself is O(α2

s ),

Σδ(v) = σδ,(0) + Σδ,(1)(v) + Σδ,(2)(v) + . . . , where Σδ,(n)(v) ∝ αn+2
s , (3.29)

and σδ,(0) = Σδ,(0)(1). We then define (taking the argument of the cumulants as implicit)
the multiplicatively matched cumulant distribution for channel δ

Σδ
mult = Σδ

res

[
1 + Σδ,(1)

fo − Σδ,(1)
res

σδ,(0) + 1
σδ,(0)

(
−Σδ,(2)

fo − Σδ,(2)
res −

Σδ,(1)
res

σδ,(0)

(
Σδ,(1)

fo − Σδ,(1)
res

))]
,

(3.30)

which reproduces the fixed-order result when expanded to O(α2
s ). In the limit v → 0 it

reduces to

Σδ
mult →

(
1 + αs

2πC
δ
1 +O(α2

s )
)

Σδ
res , where αs

2πC
δ
1 ≡ lim

v→0

Σδ,(1)
fo − Σδ,(1)

res

σδ,(0) . (3.31)

We later also refer to matched distributions at LO, which corresponds to including in
eq. (3.30) only the first two terms in the square brackets. Finally, the full cumulative
distribution is given by the sum over partonic channels, i.e.

Σmatch =
∑
δ∈B

Σδ
match +

∑
δ /∈B

Σδ
fo , (3.32)

where the second sum takes into account channels vanishing in the soft limit and hence
not part of the resummation.

Channel separation. In order to separate the fixed-order phase space into the different
channels δ, we employ the ‘flavour-kt’ algorithm defined in [68], called BSZ algorithm
in the following. This is the approach taken in the resummation of plain event shapes
at hadron colliders in [25]. We implemented and used the lepton-collider variant of this
algorithm in our framework in earlier work [63]. Here we will need to consider the hadron-
collider version. We obtain the fixed-order matrix elements from the COMIX generator [69],
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that provides all the required information about the flavour assignment of initial- and
final-state partons in an automated fashion. The BSZ algorithm constitutes a sequential
recombination algorithm, where the particle i with the smallest distance measure

dij =

min
(
p2
T,i, p

2
T,j

)
∆R2

ij , if softer of i, j is a gluon
max

(
p2
T,i, p

2
T,j

)
∆R2

ij , if softer of i, j is a quark
, (3.33)

diB =

min
(
p2
T,i, p

2
T,B(yi)

)
, if i is a gluon

max
(
p2
T,i, p

2
T,B(yi)

)
, if i is a quark

, (3.34)

diB =

min
(
p2
T,i, p

2
T,B

(yi)
)
, if i is a gluon

max
(
p2
T,i, p

2
T,B

(yi)
)
, if i is a quark

, (3.35)

where
pT,B(y) =

∑
j pT,j (Θ (yj − y) + Θ (y − yj) eyj−y)

pT,B(y) =
∑
j pT,j (Θ (y − yj) + Θ (yj − y) ey−yj ) , (3.36)

is combined with either final-state particle j or the forward (B) or backward (B) beam. The
flavour of the combined object is determined by the sum of the flavours of the two clustered
entities. For this purpose, any object with (anti-)quark flavour is called a quark, a gluon
is an object without any net flavour (including the case of same-flavour quark-antiquark
pairs). We run this algorithm until only two final-state objects are left. Together with
the initial state, their flavours define the channel δ to which we assign the event. The
algorithm as described so far can lead to channels that are not present as Born channels,
e.g. including objects that have multiple (anti-)quarks or anti-quarks and quarks of different
flavour associated to them. In our matching scheme they are taken into account in the sum
over δ /∈ B in eq. (3.32). We collect all those configurations in a common channel, denoted
as ‘other’. To test the infrared safety of the BSZ algorithm and our implementation we
need to check that this channel vanishes in the soft limit, i.e. if all but two particles become
soft and/or collinear to one of the two remaining particles. This validation is presented in
figure 5. We use transverse thrust τ⊥ as a measure for the hardness of the event. Infrared
safety then implies that the differential cross section for the ‘other’ channel approaches zero
in the limit τ⊥ → 0. For the results we present in this work, we will use what is referred to
as ‘bland’ version of the BSZ algorithm in [68], i.e., we veto any clustering that would lead
to such not Born like jets, by effectively setting the measure dij (and likewise the beam
distance measures) to infinity for those cases.

Cδ
1 and NLL′ accuracy for soft-drop event shapes. The matching scheme we use

in principle provides the correct constant Cδ1 up to terms beyond NLL′ due to implicit
averaging over different Born kinematics, see also the discussion in [25, 63]. However, some
subtleties arise, as the application of soft-drop grooming implies that the limit vSD → 0
does not uniquely impose the soft limit for all particles beyond the Born multiplicity. Hence
Σδ,(1)

fo in this limit consists of several pieces. As usual, there is the constant contribution of
the virtual-real corrections at vSD = 0 and, for the real correction, there is a part of phase
space where nothing is groomed, contributing a finite remainder between the integral of this
phase space and Σδ,(1)

res . The pieces additionally present due to grooming are real corrections
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Figure 5. The O(α2
s ) contribution to the ‘other’ channel in the limit τ⊥ → 0.

that result in vSD = 0 due to one particle being groomed away. In principle those should
be multiplied by the appropriate Sudakov factors for the corresponding (n + 1)-particle
final state. However, to achieve NLL′ accuracy those are needed at LL only, i.e. only in the
limit of radiation that is simultaneously soft and collinear. This results in the same factor
as for the 2→ 2 configuration obtained by ignoring the groomed parton.

In practice, we sort all events according to the BSZ cluster algorithm described above.
A groomed gluon in a LO event will always also be clustered first, since it will have the
smallest transverse momentum overall and the remaining two particles can not be collinear
due to momentum conservation in the transverse plane. A configuration like this is shown
in figure 6 in panel (d). For a gluon, the flavour assignment from this algorithm is hence
the same as if it was simply discarded. This is still the case if a groomed quark is clustered
to the beam, since our soft-drop observables are insensitive to initial-state radiation at
LL. However, this will no longer be the case if a quark is groomed away but clustered
to another final-state parton. This can happen if two quarks are in the same hemisphere.
This is illustrated in panels (b) and (c) of figure 6, which would be classified as quark-quark
(b) and gluon-gluon (c) like final states. Finally, a quark can be in a hemisphere together
with a gluon, but be softer. The corresponding configuration in panel (a) of figure 6 would
be attributed to the quark-quark channel. However, all those cases are suppressed with
powers of zcut. Since we work in the limit zcut � 1, those terms are beyond our accuracy
target. The phase-space region where this happens is illustrated in the left part of figure 6.
For β = 0, these power corrections are logarithmically enhanced and need to be taken into
account at NLL accuracy if finite zcut effects are important, cf. [36, 70]. With β > 0, they
still provide a constant contribution which would enter at NLL′ accuracy. We note that,
despite being formally irrelevant for us, these phase-space regions might still be problematic
from a practical point of view when matching NLO and NLL resummation as we do here.
This is due to flavour assignments that have no corresponding Born process and would
thus be assigned to the ‘other’ channel. These are not guaranteed to vanish in the vSD → 0
limit (infrared safety of the flavour algorithm of course mandates that this happens in the
v → 0 limit, as we demonstrated above for v = τ⊥). This could lead to an unphysical
behaviour where the matched distribution approaches a finite constant rather than zero in
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Figure 6. Left: the emission phase space in the Lund plane with the CAESAR parameters al = 1
and bl = 1 (valid for thrust). The green area marks the phase-space region where the emitting
particle will be removed by grooming with boundaries corresponding to β = 0 (solid line and area)
and β = 2 (dashed line, hatched area). The blue area marks the region where the emitted gluon is
removed, cf. figure 3. Right: displays of the transverse plane of several LO final-state configurations.
The colour codes indicate jet association according to the BSZ algorithm, groomed particles are
in light shade and dashed in the case of quarks. (a) Sample event from the green area, where the
quark is groomed instead of the gluon. (b), (c) Sample events with two quarks in one hemisphere,
with the softer one getting groomed, for different jet clusterings. (d) Sample event from the blue
area, a soft gluon is groomed.

the soft limit. This could be solved by adjusting details of the matching scheme. However,
we do not encounter this problem as we use the ‘bland’ variant of the BSZ algorithm.

With the above discussion at hand, we can conclude that our calculations achieve
NLO + NLL′ accuracy, in the zcut � 1 limit, for histograms of differential distributions,
scaled by the overall cross section at the corresponding accuracy, i.e.

1
σ

dσ

d ln(vSD) ≡
1

Σmatch(1)
dΣmatch(vSD)
d ln(vSD) . (3.37)

3.5 Results for soft-drop transverse thrust

Here we apply our resummation for soft-drop groomed hadronic event shapes for the
transverse-thrust observable introduced in eq. (2.3). The parameters of its CAESAR repre-
sentation, cf. eq. (3.3), are collected in table 1. In addition, in table 2 we list the kinematic
end-point values vmax, extracted from fixed-order calculations, for the ungroomed observ-
able and those cases where grooming actually limits the observable range.

All phase-space integrals are performed using SHERPA [51, 52]. This includes the in-
tegration over the Born phase space in eq. (3.1), and, over the three- and four-particle
phase space needed to evaluate the cumulants at LO and NLO QCD. For the LO, i.e. the
calculation of Σ(1)

fo (vSD), we need to add the constant contribution from the virtual correc-
tion to the Born 2→ 2 parton scattering process and the real correction integrated up to
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τ⊥ al bl dl(θ) gl(φ)

l ∈ initial state 1 0 1
sin θ

(
µQ
Q12

)
1− |cosφ|

l ∈ final state 1 1 1
sin2 θ

(
µQ
Q12

)
sin2 φ

Table 1. The CAESAR parametrisation valid for both plain and soft-drop groomed transverse
thrust, given for initial- and final-state hard-process legs.

zcut β vmax
LO vmax

NLO

Ungroomed 1/3 0.3406

0.2 2 0.2927 0.3067

0.3 1 0.2929 0.3067

0.3 2 0.1994 0.2174

Table 2. Table of transverse thrust end-point values determined numerically at LO and NLO. The
kinematical end-points for the β, zcut values not shown are unaltered by grooming.

τSD
⊥ = vSD. Both parts are regularised using Catani-Seymour dipole subtraction [71, 72].
We obtain the required one-loop virtual matrix elements from OPENLOOPS [73], using the
COLLIER library [74] for the evaluation of tensor and scalar integrals. For the NLO calcula-
tion we regulate double real-correction divergences in the infrared by requiring τ⊥ > τ cut

⊥ .
This implies that we do not need to calculate the two-loop virtual corrections, for which
τ⊥ = 0. In the remaining phase space, the 2 → 3 parton matrix element is finite (though
possibly numerically large close to the cutoff), and we can evaluate the one-loop virtual
and real corrections, including one real emission that might be arbitrarily soft/collinear,
using the same tools as in the LO case. Since our matching formula eq. (3.30) only de-
pends on Σ(2)

fo (vSD), which is an integral from vSD to 1, see eq. (3.28), our final results are
independent of the infrared cut for vSD > τ cut

⊥ . Using the fact that the value of groomed
transverse thrust is strictly smaller than the corresponding value of ungroomed thrust,
we can generate all results by setting the cut in τ⊥ to the lowest observable value we are
interested in. In practice, we use τ cut

⊥ = e−11 ≈ 1.7× 10−5.
For our calculation, the factorisation, renormalisation and resummation scale are cho-

sen identical and equal to half the scalar sum of the partonic transverse momenta, i.e.

µR = µF = µQ = 1
2HT . (3.38)

We make use of the NNPDF-3.0 NNLO PDF [75] and evaluate αs(µ2
R) at two-loop starting

from αs(M2
Z) = 0.118, with a fixed number of nf = 5 active flavours.

In figure 7 we compile fixed-order results for the pT,min = 200GeV event selection for
different combinations of grooming parameters. Alongside we show the expansions of our
resummation formulae to LO and NLO in αs. Note, our NLO results are in fact independent
of the infrared regulator τ cut

⊥ since dΣ(vSD)
dvSD = −dΣ(vSD)

dvSD , cf. eq. (3.28). In the notation of the
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Figure 7. Comparison of the expansion of the NLL resummation and fixed-order results for soft-
drop groomed thrust at LO and NLO accuracy. The lower panels show the difference between
expansion and fixed order at LO and NLO.

previous section, we compare the derivatives dΣ
d ln τSD

⊥
of the cumulative distributions at LO

ΣLO(τSD
⊥ ) =

∑
δ

(
σδ,(0) + Σδ,(1)

fo (τSD
⊥ )

)
, (3.39)

Σexp LO(τSD
⊥ ) =

∑
δ

(
σδ,(0) + Σδ,(1)

res (τSD
⊥ )

)
, (3.40)

and at NLO

ΣNLO(τSD
⊥ ) =

∑
δ

(
σδ,(0)+Σδ,(1)

fo (τSD
⊥ )−Σδ,(2)

fo (τSD
⊥ )

)
, (3.41)

Σexp NLO(τSD
⊥ ) =

∑
δ

(
σδ,(0)+Σδ,(1)

res (τSD
⊥ )+Σδ,(2)

res (τSD
⊥ )

)
, (3.42)

ΣC
exp NLO(τSD

⊥ ) =
∑
δ

(
σδ,(0)+

(
1+ Σδ,(1)

fo (τSD
⊥ )−Σδ,(1)

res (τSD
⊥ )

σδ,(0)

)
Σδ,(1)

res (τSD
⊥ )+Σδ,(2)

res (τSD
⊥ )

)
,

(3.43)
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where the last definition corresponds to the inclusion of Cδ1 in the expansion in the limit
τSD
⊥ → 0. For all considered grooming parameters, we observe that the subtractions of the
LO results, i.e. d

d ln τSD
⊥

(ΣLO − Σexp LO), tend to zero as τSD
⊥ → 0 (blue lines), confirming

that all logarithmically enhanced terms are correctly captured by the expansion. In the
difference between the exact NLO results and the naive expansion, ΣNLO − Σexp NLO, for
β > 0 we expect and observe residual single-logarithmic contributions ∝ O(1)α2

sL
2, i.e.

a linear rising difference in the derivative d
d ln τSD

⊥
(ΣNLO − Σexp NLO) (orange lines). This

contribution is a cross term between the Cδ1 coefficients and the LL αsL
2 contribution.

However, as the LO structure for β = 0 starts at αsL, this cross term does not exist for
this case and the first order at which there is a difference is O(1)α2

sL. In addition there are
finite zcut contributions which, for β = 0, already contribute ∝ O(zcut)αsL, however these
effects cannot be extracted with any numerical significance.

Upon including the Cδ1 coefficients (purple lines), the NLO is expected to be captured
up to a contribution ∝ O(zcut)α2

sL
2. The slope of the remaining difference and the de-

pendence on zcut are indeed very small, to an extent that we are not able to significantly
detect them numerically. We instead observe an almost constant difference between the
derivatives of NLO and expansion, indicating missing terms of O(α2

sL) in the cumulant
ΣC

exp NLO, i.e., terms beyond NLL′ accuracy. Up to these higher-order terms the logarithmic
structure of the resummation thus fully matches the fixed order, in spite of the fact that
the latter include a rapidity cut |y| ≤ ymax for the particles contributing to the observable.
Emissions far out in rapidity will be groomed as they originate from soft wide-angle or
initial-state radiation, for details see the discussion in appendix A. This however does not
hold for ungroomed thrust, for which the logarithmic structure of initial-state emissions is
altered by such cut.

With the logarithmic structure of the expansion confirmed, we can consistently match
the full NLL resummation to the fixed-order results, using multiplicative matching as
presented in eq. (3.30).

In figure 8 we present our results for the matched NLO + NLL′ distributions for the
pT,min = 200GeV event selection, along with the corresponding NLO and pure NLL pre-
dictions. The uncertainty bands shown envelop the 7-point scale variations for µR and µF,
i.e. {(1

2µR,
1
2µF), (1

2µR, µF), (µR,
1
2µF), (µR, µF), (µR, 2µF), (2µR, µF), (2µR, 2µF)}, and,

for the resummation, separate variations of µQ by factors of 0.5 and 2, and the alternative
end-point parameter choice p = 2. The main result, the NLO + NLL′ prediction, is shown
in red, with its fixed-order ingredient (NLO) shown in blue, and the resummation contribu-
tion (NLL) in green. NLO + NLL′ and NLO are normalised to unity including underflow,
cf. eq. (3.37). The NLL here is also rescaled by σLO = σ(0) + σ(1) instead of just σ(0)

in order to reflect the limit for the matched distribution when the resummed logarithms
dominate. As before we consider β ∈ {0, 1, 2} and zcut ∈ {0.1, 0.2, 0.3}. In addition the
ratio with respect to the NLO + NLL′ result is included.

Grooming an event will reduce the value of transverse thrust, resulting in final states
that exhibit a more pencil-like topology. This is evident if we increase the threshold zcut.
In consequence the cross section increases for smaller values of τSD

⊥ , including the situation
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Figure 8. NLO + NLL′ predictions for groomed transverse thrust for β ∈ {0, 1, 2} (columns) and
zcut ∈ {0.1, 0.2, 0.3} (rows) for the pT,min = 200GeV event selection in comparison to the NLO
result and the pure NLL resummation.

that the event ends up outside the considered plot range. For β > 0 even the peak position
is significantly shifted to lower values. When comparing the matched predictions to the pure
resummation, we can note that the latter dominates in the soft region, i.e. for ln(τSD

⊥ ) < −7
for all β. However in the ratios it can be seen that there are still significant corrections
originating from the Cδ1 coefficients and missing NLO logarithms. In particular for β = 0,
where the logarithmic enhancement is reduced, effects from the matching can reach up to
40% even in the logarithmic region. In contrast, the fixed-order result dominates in the
hard region, i.e. large τSD

⊥ , i.e. for ln(τSD
⊥ ) > −5.

The NLO+NLL′ prediction smoothly combines fixed order and resummation, thereby
inheriting the strengths of both approaches. It is worthwhile to note that in particular
for the case β = 0 the NLO results remain close to the matched prediction even in the
logarithmically dominated region. In particular for zcut > 0.1 results are found to agree
within the NLO uncertainty estimate, however for zcut = 0.1 it can be read off from
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Figure 9. Same as figure 8 but for the pT,min = 500GeV event selection.

the ratios that the logarithms do still result in significant deviations for ln(τSD
⊥ ) < −7.

This agreement between NLO + NLL′ and NLO, however, does not hold in general and
for β > 0, below ln(τSD

⊥ ) < −6, the fixed-order results deviate very strongly from the
resummed predictions. This applies in particular for zcut > 0.1, while in the zcut = 0.1
case the deviation is somewhat smaller and the uncertainties tend to be larger, rendering
this statement more ambiguous.

Independent of the considered set of grooming parameters, the NLO + NLL′ results
offer a significant reduction of scale-variation uncertainties, when comparing to NLO and
pure NLL, respectively. For the fixed order and the NLL these become rather sizeable away
from their natural habitat, i.e. in the soft region for the NLO and towards the hard region
for the NLL. For the matched predictions scale variations amount to roughly 10% changes
in the peak region and for β > 0 somewhat increase towards the hard and soft end of the
spectrum where the cross section is significantly reduced.

In figure 9 we present corresponding predictions for the 500GeV event selection. The
results are in fact very similar to the pT,min = 200GeV case. The good agreement of
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the NLO + NLL′ prediction with the NLO calculation and the pure NLL resummation in
the hard and soft region respectively is confirmed. Furthermore, we recover the reduction
of scale-variation uncertainties for the matched calculation. In figure 19 in appendix B
we compile further results for smaller values of the grooming threshold, namely zcut ∈
{0.01, 0.02, 0.05}, that will be used in section 4.3 when studying the potential of soft-drop
grooming for underlying-event mitigation.

4 Phenomenological studies of soft-drop groomed thrust

In this section we present hadron-level predictions for the soft-drop groomed thrust dis-
tribution in proton-proton collisions at 13TeV centre-of-mass energy. However, we begin
by comparing our NLO + NLL′ accurate predictions to multijet merged parton-level sim-
ulations obtained with SHERPA. We then focus on the potential of soft-drop grooming to
reduce the impact of the underlying event on the event-shape distribution. To this end we
consider particle-level simulations obtained with SHERPA, HERWIG and PYTHIA.

4.1 Monte Carlo simulations — multijet merging, underlying event

To study the event-shape variable at the particle level, and to extract non-perturbative
corrections, we compile Monte Carlo predictions based on the SHERPA event generator
version 2.2.10 [52]. We simulate inclusive dijet production using the MEPS@NLO formal-
ism [76, 77], thereby merging the NLO QCD matrix elements for 2− and 3− and the LO
matrix element for the 4-parton final states obtained from COMIX [69], with virtual correc-
tions obtain from OPENLOOPS [73], dressed by the SHERPA dipole parton shower [78]. The
merging-scale parameter we set to Qcut = 30GeV.

To estimate the perturbative uncertainty of the Monte Carlo predictions, we again
consider 7-point variations of the factorisation and renormalisation scales, both in the hard
matrix elements and the parton shower, evaluated using on-the-fly reweighting [79].

The nominal perturbative scales are defined according to the CKKW-style scale setting
prescription [80], cf. [81] for details. In this procedure the hard-process partons get clustered
into a Born-like 2→ 2 configuration that defines the 2-jet core process with an associated
scale µcore, that we set to

µcore = 1
2HT . (4.1)

This corresponds to the jet transverse momentum for the reconstructed 2-jet system and
is also used to define the factorisation scale and the shower-starting scale of the core
process, i.e.

µF = µQ = µcore . (4.2)

The effective renormalisation scale, µCKKW, of the n-parton hard matrix elements corre-
sponds to

αns (µ2
CKKW) = α2

s (µ2
core)

n−2∏
i=1

αs(ti) , (4.3)

with ti the reconstructed shower-branching scales.
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To account for hadronisation effects we employ SHERPA’s cluster fragmentation
model [82]. The underlying event simulation uses the SHERPA implementation of the
Sjöstrand-Zijl multiple-parton interaction model [83]. In both models the default set of
tuning parameters is used, see [52] for details. To contrast and underpin the SHERPA
predictions with other theoretical approaches to parton showering and in particular non-
perturbative effects [4], we also compile full particle-level results with HERWIG version
7.2.1 [84, 85] and PYTHIA version 8.240 [86]. In both generators we simulate inclusive dijet
production at leading order, using the default models and parameters for the underlying
event and hadronisation simulations. We also make use of the codes’ default scale-setting
that in both cases relates the parton-shower starting scale to the pT of the hard-process jets.

For event selection and analysis we employ the RIVET analysis package [87].

4.2 Parton-level predictions

In order to further validate our analytic calculations and benchmark the perturbative inputs
to our full particle-level Monte Carlo simulations, we compare the SHERPA MEPS@NLO
parton-level (PL) predictions against our previously presented resummation results. To be
more precise, by PL we here mean terminating the event evolution right after the parton-
shower stage, determined by the dipole-shower cutoff pCSS

T,min = 1GeV. We then apply our
usual event selection to this partonic final state, cf. section 2.2, and include all generated
partons with |y| < 2.6 in the observable evaluation.

We consider our resummed predictions matched to LO and NLO, i.e. LO + NLL′ and
NLO + NLL′, respectively. Complementary to the analytic resummation approach, in
parton-shower simulations emissions off the Born process, as well as subsequent emissions
thereof, get stochastically generated, thereby accounting for momentum conservation as
well as finite recoil effects. In this context, it is important to stress that we also do not
attempt to adjust the scale choices and evolution schemes in shower or resummation to
particularly match each other which, together with the aforementioned recoil effects, can
lead to significant practical differences [88]. We here rather aim to compare the resummed
results to the exact perturbative input of our phenomenological studies. We hence should
not necessarily expect the central values to agree, and rather be prepared to accept incom-
patibilities as insufficiencies in our error estimates.

In figure 10 we compare the three perturbative calculations, with the same grooming
parameters as previously, β ∈ {0, 1, 2} and zcut ∈ {0.1, 0.2, 0.3}, for the pT,min = 200GeV
event selection. The MEPS@NLO results, including the scale-uncertainty band, are shown
in blue, NLO + NLL′ in red, and LO + NLL′ in green. In figure 11 we compile the cor-
responding results for the pT,min = 500GeV event selection, considering the same set of
grooming parameters. We furthermore present predictions for smaller values of the groom-
ing threshold, i.e. zcut ∈ {0.01, 0.02, 0.05} in figure 20 in appendix B.

For both choices of pT,min, the three predictions yield very similar qualitative results,
especially as far as the effect of grooming and the dependence on the parameters zcut and
β goes. This holds for the hard end of the spectrum, dominated by the fixed-order compo-
nents, through the intermediate transition region, as well as for the resummation (multiple
emission) dominated small-τSD

⊥ limit. The matrix-element improved parton-shower simula-
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Figure 10. NLO+NLL′ and LO+NLL′ predictions for groomed transverse thrust for β ∈ {0, 1, 2}
(columns) and zcut ∈ {0.1, 0.2, 0.3} (rows) for the pT,min = 200GeV event selection in comparison
to parton-level MEPS@NLO results from SHERPA.

tion fully confirms the observations on the impact of grooming on the distributions shape.
By increasing zcut, events are pushed to lower observable values. For β > 0 this even
affects the position of the peak of the distributions. We take this agreement as further
confirmation of the general effect of our proposed grooming procedure.

For the 200GeV selection we observe some quantitative differences, particularly so for
zcut = 0.1, most significant for the case of β = 0 and β = 1. The MEPS@NLO simulation
here predicts a somewhat narrower distribution with a more pronounced peak around the
transition point between groomed and ungroomed regions. For the case of ungroomed
transverse thrust a similar level of deviation has been observed in previous studies [25].
However, for stronger grooming these differences become smaller and we find in fact a
remarkably good agreement, given the theoretical uncertainty. This behaviour is consis-
tent with naive expectations. Soft drop, while not necessarily designed with perturbative
ambiguities in mind, after all mainly removes wide-angle radiation that is less constrained.

For the 500GeV selection, the results fully confirm our general observations for the
200GeV case. The MEPS@NLO and the resummed predictions mostly agree as long as
the final state is significantly groomed. Even for the grooming setups where differences
were obvious, e.g. zcut = 0.1 and β = 0, 1, they appear to be reduced in the 500GeV case.
Again, SHERPA predicts a somewhat narrower distribution than both the LO + NLL′ and
NLO + NLL′ for those parameters.
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Figure 11. Same as figure 10 but for the pT,min = 500GeV event selection.

We conclude from this initial parton-level comparison that the effects of soft-drop
grooming are consistently modelled between the SHERPA PL and our resummed calcula-
tions, at least for sufficient grooming. To fully interpret the significance of the remaining
differences, we should determine and confirm to what level hadronisation and underlying-
event corrections are reduced by grooming. We will do exactly that in the following section.

4.3 Underlying event mitigation

After having validated the resummed predictions and compared them to parton-level
matrix-element plus parton-shower simulations, the focus shall now shift to studying the
impact of non-perturbative corrections on the observable and the potential of soft-drop
grooming to reduce their impact. In figure 1 we already indicated the typical size of un-
derlying event and hadronisation corrections as they arise for plain transverse thrust. In
particular the underlying event results in a significant shift of the distribution towards
higher observable values. While the parton-to-hadron fragmentation has a smaller impact
for the bulk of the events, it is significant in particular in the low-τ⊥ tail. As the event
display in figure 2 illustrates, we can expect that soft-drop grooming can be quite efficient
in removing the largely uniform underlying-event activity from the final state. This can
open the possibility for a more direct reproducibility of experimental measurements by
perturbative predictions.

In figure 12 we present predictions for groomed transverse thrust for the pT,min =
200GeV event selection obtained with SHERPA taking into account all particles with |y| ≤
ymax. Results are given after showering the hard process (PL), after including the under-
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lying event (PL+UE), and at full hadron level (HL+UE). For the grooming we again use
β ∈ {0, 1, 2}, however in order to better illustrate the approach of the ungroomed case, we
additionally include a smaller zcut value and here consider zcut ∈ {0.05, 0.1, 0.2, 0.3}.

For mild grooming with zcut = 0.05 and β = 0 underlying-event corrections are indeed
of similar size as for the ungroomed case shown in figure 1. As we groom harder by enlarging
zcut we observe a more significant reduction in the impact of the underlying event. This
is most evident for the case of β = 0 (first column in figure 12). For zcut = 0.1 the peak
is still shifted when including multiple parton interactions, although much less dramatic
than for the ungroomed case. Finally, for zcut = 0.3 the impact stays below 10%. When
increasing β the effect of the underlying event is further reduced, to the level of at most
20% even for zcut = 0.1 for ln(τSD

⊥ ) > −8. For zcut ≥ 0.2 the underlying-event correction
stays well below 10%, with the exception of a few seemingly statistical exceptions.

When comparing to the ungroomed case in figure 1, hadronisation effects, similar to
the e+e− case [31], are pushed to lower observable values through grooming. This affects
predominantly the low-τSD

⊥ region, where very collimated parton-level jets get spread out.
Notably, in the region ln(τSD

⊥ ) < −8 the hadronisation corrections change sign when going
from β = 0 to β = 1, 2. For the latter choices grooming is suppressed for particles with
∆R < RSD from the hard jets, accordingly, as in the ungroomed case, hadronisation shifts
events towards larger τSD

⊥ . However, even for β = 2 there is a sizeable observable range
for which also hadronisation effects are small. Qualitatively, the observed dependence on
β and zcut for the transition to the hadronisation dominated regime is well reflected by
the estimate derived in eq. (3.20) for al = bl = 1, also illustrated in figure 4. Note, in
the Monte-Carlo simulations the parton-to-hadron transition sets in at the parton-shower
cut-off scale O(1GeV) already, rather than the Landau pole ΛQCD. Furthermore, we are
sensitive to the hadronisation of partons originating from the underlying event.

When increasing the scale of the hard dijet-production process by raising pT,min to
500GeV, the scale separation of the hard process and the underlying event increases. Ac-
cordingly, lower values of zcut are sufficient to achieve a sizeable reduction of the underlying-
event corrections. If the underlying event would be associated with the exact same scales
irrespective of the hard-jet pT requirement, we would expect zcut values scaled by a fac-
tor 200/500 = 0.4 to yield results in the pT,min = 500GeV case that are comparable to
pT,min = 200GeV, cf. eq. (2.2). We therefore consider zcut ∈ {0.01, 0.02, 0.05, 0.1} here
and present corresponding results in figure 13. For zcut = 0.01, independent of β, groom-
ing does not yet significantly reduce the underlying-event contribution. The results for
zcut = 0.02 are very similar to the findings for zcut = 0.05 for pT,min = 200GeV and the
reduction observed for the 500GeV selection with zcut = 0.05 are quite close to those for
zcut = 0.1 with the lower pT,min. When finally increasing zcut to 0.1 we observe agreement
between the parton-level predictions with and without the underlying event to better than
10%, again with the exception of a few fluctuations due to the limited statistics we could
afford for these very demanding simulations. Notably, overall the impact of hadronisation
corrections is reduced due to the increased pT,min, and correspondingly µR, consistent again
with the findings in section 3.3. For ln(τSD

⊥ ) > −8 they are in fact rather mild for all values
of zcut and β considered here.
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Figure 12. The groomed thrust distributions for β ∈ {0, 1, 2} (columns) and zcut ∈ {0.05, 0.1, 0.2,
0.3} (rows) for the pT,min = 200GeV event selection. The lower panels show the ratios with respect
to the parton-level simulation including the underlying event (PL+UE) prediction.
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Figure 13. The groomed thrust distributions for β ∈ {0, 1, 2} (columns) and zcut ∈ {0.01, 0.02, 0.05,
0.1} (rows) for the pT,min = 500GeV event selection. The lower panels show the ratios with respect
to the parton-level simulation including the underlying event (PL+UE) prediction.
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Track-based observable evaluations. Our current observable definition, based on all
final-state particles within the rapidity range |y| ≤ ymax, requires the use of sophisticated
experimental techniques such as particle flow [60]. As a simpler alternative we want to
consider the charged final-state particles only, accessible by conventional tracking detec-
tors, for tracks with sufficient transverse momentum in order to be reliably detectable.
While these measurement constraints can be imposed on a fully exclusive Monte Carlo
simulation, they obscure the comparability with purely perturbative calculations and in
addition invoke systematic uncertainties related to the modelling of low-energetic particles
in the generators’ hadronisation models. Here we want to study the effect of these con-
straints on our generator predictions and in particular explore to what extent grooming
ameliorates the correspondence with perturbative predictions. To gain statistical power for
quantifying the impact of the track-level final-state selections, we produced a high-statistics
simplified SHERPA sample setup based on the pure parton shower, i.e. without the inclusion
of higher-order matrix elements, denoted SHERPA PS in the following.

In figure 14 we compile hadron-level predictions based on SHERPA PS for the pT,min =
200GeV selection for four different inputs to the observable evaluation. We consider the
previous default, i.e. all final-state particles without any particle pT requirement, impose an
additional track pT cut of ptrack

T,min = 500MeV, and limit to charged particles, with and with-
out the ptrack

T threshold. As before we consider β ∈ {0, 1, 2} with zcut ∈ {0.05, 0.1, 0.2, 0.3}.
We can observe that the impact of calculating the observable on all vs. charged particles
only is rather mild, with the exception of regions where the cross section is rather tiny,
i.e. towards the kinematic end-point and for very low τSD

⊥ . For the latter region this ef-
fect is somewhat more pronounced for β > 0 where grooming is suppressed for objects
∆R < RSD away from the hard jets and hadronisation corrections are sizeable. In con-
trast, the track-quality cut ptrack

T,min has a much stronger impact, in particular for zcut = 0.05.
Here it significantly shifts the distribution, for β = 0 it results in corrections in the peak
region of up to 30%. Increasing β improves the agreement for the bulk of the events. How-
ever, when raising zcut to 0.2 or 0.3 all observable definitions agree with the all particles no
ptrack
T,min staying below 10% for a wide range of τSD

⊥ values. For events with pT,min = 500GeV,
corresponding plots are shown in appendix B, figure 21. The conclusions on the impact of
the restriction to charged tracks only and the track-pT cut are in fact very similar. How-
ever, as for the underlying-event suppression, the zcut values needed to reduce the impact
of the ptrack

T,min criterion scale inversely with the hardness of the hard process and are thus
significantly lowered.

In summary, our findings indicate that in particular for heavier grooming resummed
predictions could quite directly be compared to experimental data, without significant
non-perturbative or track-level corrections.

Generator-level predictions. Based on the SHERPA MEPS@NLO simulations we have
demonstrated the potential of soft-drop grooming to reduce the impact of the underlying
event on the transverse-thrust distribution. Furthermore, we could show that the effect of
constraining the observable evaluation to charged-particle tracks above a minimal ptrack

T,min
threshold is significantly reduced by soft-drop grooming. This, in fact, allows for a more
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Figure 14. Hadron-level results for groomed thrust for β ∈ {0, 1, 2} (columns) and zcut ∈
{0.05, 0.1, 0.2, 0.3} (rows) for the pT,min = 200GeV event selection. Shown are predictions from a
parton-shower based SHERPA simulation, where the observable gets determined from all or charged
final-state particles only. In addition, the effect of a minimal particle transverse-momentum cut of
ptrack

T,min = 500MeV is studied. The lower panels show ratios with respect to the all particles and no
track-pT cut prediction.
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direct comparison of experimental measurements with perturbative predictions. Further-
more, the tunable sensitivity to the underlying event for different grooming parameters
provides means to constrain Monte Carlo generator models for non-perturbative phenom-
ena. Given corresponding measurements, this can be employed in the validation and the
tuning of the models and their parameters.

To confirm the viability and robustness of our conclusions and to establish the two
use cases, it remains to be studied to what extent our findings are possibly generator
specific. To this end, we contrast our hadron-level track-based MEPS@NLO predictions
from SHERPA, based on the 2− and 3-jet NLO matrix elements, with track-level results
from the HERWIG and PYTHIA generators. For the latter we simulated leading-order dijet
production, dressed with parton showers, employing the generators’ default underlying-
event and hadronisation models and parameter settings.

In figures 15 and 16 we compile the corresponding predictions for the pT,min = 200GeV
and 500GeV event selections, respectively. We consider the cases β ∈ {0, 1, 2} and zcut ∈
{0.05, 0.1, 0.2, 0.3} (pT,min = 200GeV) and zcut ∈ {0.01, 0.02, 0.05, 0.1} (pT,min = 500GeV).
For each set of grooming parameters zcut and β we provide the ratios with respect to
the SHERPA hadron-level prediction (first ratio panels), as well as to the corresponding
parton-level result of the respective generator, i.e. HL+UE

PL for each Monte Carlo (lower
ratio panels).

Overall we observe that the three generator predictions agree well for the shape of
the track-level thrust distribution for all considered combinations of grooming parameters
and both pT,min selections. In particular in the peak region the differences observed for
the hadron-level predictions rarely exceed 10%. The results from HERWIG and PYTHIA
are very similar and certainly consistent within LO uncertainties. However, the SHERPA
MEPS@NLO simulation, using exact NLO matrix elements, produces somewhat harder
emission spectra, resulting in more events with larger values of τSD

⊥ . Also in the low-τSD
⊥

tails the differences can get more significant, in particular for β > 0.
In the lowest panel of the plots we compare for each simulation the fully hadronised

prediction with the underlying event included against the corresponding parton-level result.
This allows us to extract the non-perturbative corrections for each simulation and provides
an estimate for the generator-model dependence. The corrections in fact are very similar
for the three simulations. As observed before for the SHERPA simulation, non-perturbative
corrections get significantly reduced through grooming also for HERWIG and PYTHIA. For
zcut ≥ 0.2 for the 200GeV selection and zcut ≥ 0.05 for pT,min = 500GeV they stay around
or below 10% when we consider the region −7 < ln(τSD

⊥ ) < −2 for all three generators.
The observations in these generator comparisons support the earlier observations. They

robustly confirm the finding that soft-drop grooming is very efficient in removing contri-
butions of non-perturbative phenomena from the events’ final state. We further conclude
that for the event selections considered here the remaining differences between the various
generator predictions are rather mild and mainly affect the tails of the distribution where,
however, the event rates are rather small.

This highlights the potential of groomed transverse thrust for precision QCD stud-
ies, using fixed- or all-orders predictions. For sufficient grooming the remaining non-
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Figure 15. Hadron-level results based on charged-particle tracks with ptrack
T,min > 500MeV for

groomed thrust with β ∈ {0, 1, 2} (columns) and zcut ∈ {0.05, 0.1, 0.2, 0.3} (rows) for the pT,min =
200GeV event selection. Shown are predictions based on the leading-order dijet production from
PYTHIA and HERWIG, as well as the MEPS@NLO result from SHERPA. The two lower panels
present the ratios with respect to the SHERPA hadron-level prediction and the generators’ parton-
level prediction, respectively.
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Figure 16. Same as figure 15 but for the pT,min = 500GeV event selection and zcut ∈
{0.01, 0.02, 0.05, 0.1}.

perturbative corrections are rather small and seemingly under good control. By lowering
the grooming parameters more underlying-event activity can be blended in, providing valu-
able input to the validation and tuning of phenomenological models in Monte Carlo event
generators.
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5 Conclusions

In this article we considered soft-drop grooming final states of hadronic collisions prior
to the evaluation of QCD event-shape variables. This offers great potential to largely
remove final-state contributions originating from the underlying event, enabling more direct
comparisons of accurate theoretical predictions with experimental data.

To compile first accurate perturbative results, we have extended the well-known
CAESAR formalism for the resummation of NLL soft-gluon corrections to groomed event-
shape observables in hadronic collisions. We correspondingly generalised the CAESAR im-
plementation in the SHERPA event-generator framework. To take into account exact fixed-
order corrections we worked out the matching of the resummation up to NLO accurately
split up into flavour channels. With this at hand we provide the means to make NLO+NLL′

accurate predictions for a wide range of hadronic event shapes, with and without grooming.
We focused the first application on groomed transverse thrust in inclusive dijet pro-

duction at the LHC. This generalisation of the transverse-thrust variable is based on the
division of the event final state into two hemispheres that separately get soft-drop groomed.
The remaining set of final-state particles, dependent on the chosen set of soft-drop param-
eters β and zcut, then enter the adapted observable evaluation.

We compared our NLO+NLL′ results against state-of-the-art parton-level predictions
based on NLO matrix-element improved parton-shower simulations in the MEPS@NLO for-
malism from the SHERPA event generator. Both methods confirm the feature that grooming
shifts the thrust variable to lower values, with larger grooming thresholds zcut resulting in
larger shifts. While for mild grooming we observe notable differences between the two
theoretical approaches, the more aggressive the grooming, the better agreement is found.

With the consistency of the two complementary approaches to describe the observable
established, we focused on the phenomenology of the groomed thrust variable. In particular
we explored the potential of soft-drop grooming to reduce the impact of non-perturbative
corrections on the thrust event shape. By comparing Monte-Carlo predictions at parton
level with and without the underlying event included, as well as full hadron-level simu-
lations, we found enormous potential of soft-drop grooming to unmask the hard-process
final state from non-perturbative contributions. In fact, through sufficient grooming the
underlying event can almost entirely be removed, resulting in non-perturbative corrections
to the parton-level predictions of less than 10% for a wide range of the observable.

Our initial theoretical considerations have been based on the analysis of all final-state
particles, i.e. partons or charged and neutral hadrons, with rapidity |y| < ymax. While
this can, after grooming, directly be related to resummed predictions, a corresponding
experimental analysis would have to employ sophisticated particle-flow techniques. Alter-
natively, the observable can experimentally be defined on charged-particle tracks above a
certain transverse-momentum threshold ptrack

T,min. Accordingly, we studied the impact of re-
stricting the observable input to charged-tracks with ptrack

T,min = 500MeV. We found that for
groomed thrust there remains a close correspondence between the track-based observable
and its all-particles variant. We furthermore validated our predictions by comparing to re-
sults from HERWIG and PYTHIA, that confirmed our findings with regards to the reduction
of non-perturbative corrections for groomed transverse thrust.

– 38 –



J
H
E
P
0
7
(
2
0
2
1
)
1
4
2

NLO+NLL’
MEPS@NLO PL
MEPS@NLO HL+UE (tracks)

pleadT > 200 GeV√
s = 13 TeV

SHERPA

zcut = 0.3, β = 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
1/

σ
d
σ
/
d
ln
(τ

SD ⊥
)

-10 -8 -6 -4 -2
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4

ln(τSD⊥ )

X
H
L
+U

E
NLO+NLL’
MEPS@NLO PL
MEPS@NLOHL+UE (tracks)

pleadT > 500 GeV√
s = 13 TeV

SHERPA

zcut = 0.05, β = 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1/
σ
d
σ
/
d
ln
(τ

SD ⊥
)

-10 -8 -6 -4 -2
0.5
0.6
0.7
0.8
0.9
1

1.1
1.2
1.3
1.4

ln(τSD⊥ )

X
H
L
+U

E

Figure 17. The groomed transverse-thrust distributions for events with a leading-jet transverse
momentum plead

T > 200GeV, with zcut = 0.3 and β = 1 (left) and plead
T > 500GeV, with zcut = 0.05

and β = 1 (right). Shown are results at NLO + NLL′ accuracy as well as MEPS@NLO predictions
obtained with SHERPA at parton level (PL), full hadron level (HL+UE), the latter based on charged
tracks with ptrack

T > 500MeV. In all cases we only include final-state particles with |y| < 2.6 in the
observable evaluation. The lower panels show the ratios with respect to the HL+UE prediction.

In figure 17 we summarise our main results by comparing predictions at NLO + NLL′

with MEPS@NLO simulations at parton level, without the underlying event included, and
at full hadron level. While the parton-level simulation takes into account all partons, the
hadron-level prediction is based on charged-particle tracks with ptrack

T > 500MeV. We
show representative results for our two dijet event selections. For pT,min = 200GeV we
consider the case of rather hard grooming using zcut = 0.3 and β = 1. We find that indeed
the remaining non-perturbative corrections are significantly reduced over a wide range of
τSD
⊥ . Furthermore, the NLO+NLL′ result nicely agrees with the generator predictions. In
the pT,min = 500GeV example we instead consider rather mild grooming with zcut = 0.05
and β = 1. Even for such low zcut the non-perturbative corrections are largely reduced, in
particular when comparing with the ungroomed case, see figure 1. A measurement could
hence be sensitive to the differences between perturbative predictions.

Our results indicate that potential future experimental measurements of groomed event
shapes offer a great opportunity for precision studies on perturbative QCD, and possibly
can differentiate and constrain theoretical approaches based on fixed-order perturbation
theory, all-orders resummation, or parton-shower simulations. By varying the hardness
of the selected dijet events or the grooming parameters zcut and β the observable offers
detailed insights into the transition away from the strict dijet limit. Complementary to
this, such variations offer means to tune and constrain the non-perturbative components
of Monte Carlo event generators.

Beyond the transverse-thrust shape considered here, grooming the event final state
before evaluating the actual observable can easily be applied to other variables as well. Our
derived generalisation of the CAESAR formalism and its implementation in the resummation
plugin to the SHERPA framework provides means for largely automated NLL resummation
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for a wide range of hadronic event shapes. We note that this even applies to observables
that measure the deviation from more complex final states than the dijet configuration,
with simple modifications such as suitably generalising the notion of splitting of the event
into two hemispheres.
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A Logarithmic contributions of zcut

Though we do not perform the resummation of logarithms of zcut we can outline a method
to treat them. First we will elaborate on initial-state radiation, where we follow the same
approach as for final-state radiation discussed in section 3.2. In addition, the treatment
for soft contributions and PDF ratios will be discussed, neither of which contribute at LL
and therefore offer some freedom in their treatment at NLL accuracy.

Initial-state radiators. For initial-state emissions the same soft-drop condition is used,
however the criterion is here taken with respect to the nearest final-state leg in the trans-
verse plane. Accordingly, one can derive

p
(i)
T = k

(l)
t , p

(j)
T = Ef sin θ , (A.1)

|∆y| =
∣∣∣η(l) − y(l)

f

∣∣∣ , |∆φ| = φ , (A.2)

where Ef and y
(l)
f denote energy and rapidity of the closest final-state leg to which the

emission is clustered. This results in the soft-drop condition:

k
(l)
t

Ef sin θ > zcut


(
η(l) − y(l)

f

)2
+ φ2

R2
SD


β/2

, (A.3)

which in the limit of large η(l) results in

k
(l)
t

Ef sin θ > zcut

(
η(l)

RSD

)β
. (A.4)
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This provides a relation that directly depends on η(l), whereas all other conditions depend
on eη(l) only. Accordingly, we are faced with a set of conditions that will not result in simple
integration boundaries in ln k(l)

t and η(l) simultaneously. We do not calculate the integral
associated with it, but note again that from figure 18 it is clear that it will not result in any
logarithms of vSD for small enough vSD, hence does not contribute at our target accuracy.

In order to get a better idea of the structure for these contributions an alternative
distance measure can be used, namely ∆R2

ij = 2 cosh (yi − yj)− 2 cos (φi − φj). This defi-
nition corresponds to the canonically used relation in the limit of small angular difference.
The soft-drop condition then reads

k
(l)
t

Ef sin θ > zcut

2 cosh
(
η(l) − y(l)

f

)
− 2 cosφ

R2
SD

β/2 , (A.5)

which in the large-η(l) limit instead reduces to

k
(l)
t

Ef sin θ > zcut

eη(l)
e−y

(l)
f

R2
SD

β/2 = 2
sin θ z̄cute

βη(l)/2 , (A.6)

where we define z̄cut such that it absorbs the dependence on θ and RSD. This condition
scales with η(l) in the opposite manner as the final-state contribution, cf. condition (iv) in
section 3.2, and results in an increase in grooming when β is increased, unless η(l) ≈ y

(l)
f .

The result makes sense, since for η(l) ≈ y
(l)
f the emission is collinear to the final-state leg,

but otherwise the value of ∆R becomes large and results in an enhancement of grooming
due to an increase in β. This can also be seen in the Lund diagram for this condition
depicted in figure 18.

The transition point does not work the same as for final-state legs, in fact in general
there exist two transition points. Below the first transition there are only logarithms of
zcut, in between the two there is a mix of logarithms of v and zcut and finally above the
second transition point there are only logarithms of the observable. Here the two transition

points are given by z̄alcut, z̄
2(al+bl)

2+β
cut . Whichever of the two has smaller value defines the first

transition point, the other consequently the second one. This does mean that for 2bl = alβ

these two transition points are identical. For transverse thrust the CAESAR parametrisation
for initial-state emissions yields bl = 0, and accordingly, there is only a single transition
point when β = 0.

This can be illustrated by the Lund diagram in figure 18. As the observable line
moves up and the value of the observable increases it will eventually cross the soft-drop
line leading to the transition. When 2bl = alβ the observable and soft-drop bounds are
parallel and there will be only a single transition. However, for the β = 2 line we can see
that when the observable crosses the left-hand side of the soft-drop bound both conditions
contribute to the integral. Once it passes the right-hand side of the soft-drop boundary
the observable is the only limit that matters.

In a similar way as was explained for final-state legs in section 3.4 we can shift the
transition point by factors and introduce a compensating term, while maintaining NLL
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Figure 18. The Lund diagram showing the kinematic constraints for soft drop applied to initial-
state emissions. As examples al = 1 with bl = 0 and β = 0 (solid line and area) and β = 2 (dashed
line, hatched area) are shown.

accuracy. This means we can choose to shift the z̄alcut transition point to be equal to the
final-state-leg transition point. However, the second type of transition point cannot be
made equal as it depends on a different power of zcut.

Soft emissions and PDF contributions. The argument of logarithms from soft wide-
angle emissions is directly related to the kt/µQ scaling of the lower left-hand corner of
a Lund diagram. For both initial- and final-state emissions, in the limit v � zcut � 1,
this is zcut up to overall factors, which are beyond NLL accuracy. When the distribution
transitions for larger values of the observable the scaling changes to the ungroomed case
v

1
al . This allows us to shift the argument of the logarithms and the transition point for

these types of emissions at NLL accuracy to zalcut. When extending this argument beyond
NLL accuracy a separate treatment for initial- and final-state emissions will be needed for
the soft function S.

The scale for the ratio of the pdfs also first enters at NLL accuracy. These contributions
are linked to the initial-state collinear scaling. This kt scale can be found at the right-hand
corner of the Lund diagram, which results in a scaling z

2
2+β
cut . As for the soft function, for

larger values of the observable this contribution transitions back to the ungroomed case,

which scales as v
1

al+bl . This would place the transition point at z
2(al+bl)

2+β
cut similar to the

second transition for initial-state emissions.

B Auxiliary results

Here we collect supplementary material for the validation of the matched resummed pre-
dictions, figure 19, and parton-level results from SHERPA, figure 20, for the pT,min event
selection. In figure 21 we present additional results for the generator studies presented in
section 4, for the pT,min = 500GeV dijet selection.
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Figure 19. NLL resummed predictions matched to LO and NLO for groomed transverse thrust for
β ∈ {0, 1, 2} (columns) and zcut ∈ {0.01, 0.02, 0.05} (rows) for the pT,min = 500GeV event selection,
cf. figure 8 for details.
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Figure 20. Comparison of NLL resummed results matched to LO and NLO and MEPS@NLO
parton-level predictions from SHERPA for groomed transverse thrust for β ∈ {0, 1, 2} (columns) and
zcut = 0.01, 0.02, 0.05 (rows) for the pT,min = 500GeV event selection.
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Figure 21. Hadron-level results for groomed thrust for β ∈ {0, 1, 2} (columns) and zcut ∈
{0.01, 0.02, 0.05, 0.1} (rows) for the pT,min = 500GeV event selection. Shown are predictions from a
parton-shower based SHERPA simulation, where the observable gets determined from all or charged
final-state particles only. In addition, the effect of a minimal particle transverse-momentum cut of
ptrack

T,min = 500MeV is studied. The lower panels show ratios with respect to the all particles and no
track-pT cut prediction.

– 45 –



J
H
E
P
0
7
(
2
0
2
1
)
1
4
2

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] Y.L. Dokshitzer and B.R. Webber, Calculation of power corrections to hadronic event shapes,
Phys. Lett. B 352 (1995) 451 [hep-ph/9504219] [INSPIRE].

[2] Y.L. Dokshitzer, G. Marchesini and B.R. Webber, Dispersive approach to power behaved
contributions in QCD hard processes, Nucl. Phys. B 469 (1996) 93 [hep-ph/9512336]
[INSPIRE].

[3] Y.L. Dokshitzer and B.R. Webber, Power corrections to event shape distributions, Phys.
Lett. B 404 (1997) 321 [hep-ph/9704298] [INSPIRE].

[4] A. Buckley et al., General-purpose event generators for LHC physics, Phys. Rept. 504 (2011)
145 [arXiv:1101.2599] [INSPIRE].

[5] ALEPH collaboration, Studies of QCD at e+e− centre-of-mass energies between 91 and
209GeV, Eur. Phys. J. C 35 (2004) 457 [INSPIRE].

[6] OPAL collaboration, Measurement of event shape distributions and moments in e+e− →
hadrons at 91–209GeV and a determination of αs, Eur. Phys. J. C 40 (2005) 287
[hep-ex/0503051] [INSPIRE].

[7] DELPHI collaboration, A Study of the energy evolution of event shape distributions and
their means with the DELPHI detector at LEP, Eur. Phys. J. C 29 (2003) 285
[hep-ex/0307048] [INSPIRE].

[8] L3 collaboration, Studies of hadronic event structure in e+e− annihilation from 30 to
209GeV with the L3 detector, Phys. Rept. 399 (2004) 71 [hep-ex/0406049] [INSPIRE].

[9] H1 collaboration, Measurement of event shape variables in deep-inelastic scattering at
HERA, Eur. Phys. J. C 46 (2006) 343 [hep-ex/0512014] [INSPIRE].

[10] ZEUS collaboration, Event shapes in deep inelastic scattering at HERA, Nucl. Phys. B 767
(2007) 1 [hep-ex/0604032] [INSPIRE].

[11] R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Thrust at N3LL with
Power Corrections and a Precision Global Fit for αs(mZ), Phys. Rev. D 83 (2011) 074021
[arXiv:1006.3080] [INSPIRE].

[12] R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu and I.W. Stewart, Precision Thrust
Cumulant Moments at N3LL, Phys. Rev. D 86 (2012) 094002 [arXiv:1204.5746] [INSPIRE].

[13] A.H. Hoang, D.W. Kolodrubetz, V. Mateu and I.W. Stewart, C-parameter distribution at
N3LL’ including power corrections, Phys. Rev. D 91 (2015) 094017 [arXiv:1411.6633]
[INSPIRE].

[14] A. Banfi, H. McAslan, P.F. Monni and G. Zanderighi, A general method for the resummation
of event-shape distributions in e+e− annihilation, JHEP 05 (2015) 102 [arXiv:1412.2126]
[INSPIRE].

[15] Z. Tulipánt, A. Kardos and G. Somogyi, Energy-energy correlation in electron-positron
annihilation at NNLL+NNLO accuracy, Eur. Phys. J. C 77 (2017) 749 [arXiv:1708.04093]
[INSPIRE].

– 46 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0370-2693(95)00548-Y
https://arxiv.org/abs/hep-ph/9504219
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9504219
https://doi.org/10.1016/0550-3213(96)00155-1
https://arxiv.org/abs/hep-ph/9512336
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9512336
https://doi.org/10.1016/S0370-2693(97)00573-X
https://doi.org/10.1016/S0370-2693(97)00573-X
https://arxiv.org/abs/hep-ph/9704298
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9704298
https://doi.org/10.1016/j.physrep.2011.03.005
https://doi.org/10.1016/j.physrep.2011.03.005
https://arxiv.org/abs/1101.2599
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.2599
https://doi.org/10.1140/epjc/s2004-01891-4
https://inspirehep.net/search?p=find+J%20%22Eur.Phys.J.%2CC35%2C457%22
https://doi.org/10.1140/epjc/s2005-02120-6
https://arxiv.org/abs/hep-ex/0503051
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ex%2F0503051
https://doi.org/10.1140/epjc/s2003-01198-0
https://arxiv.org/abs/hep-ex/0307048
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ex%2F0307048
https://doi.org/10.1016/j.physrep.2004.07.002
https://arxiv.org/abs/hep-ex/0406049
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ex%2F0406049
https://doi.org/10.1140/epjc/s2006-02493-x
https://arxiv.org/abs/hep-ex/0512014
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ex%2F0512014
https://doi.org/10.1016/j.nuclphysb.2006.05.016
https://doi.org/10.1016/j.nuclphysb.2006.05.016
https://arxiv.org/abs/hep-ex/0604032
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ex%2F0604032
https://doi.org/10.1103/PhysRevD.83.074021
https://arxiv.org/abs/1006.3080
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.3080
https://doi.org/10.1103/PhysRevD.86.094002
https://arxiv.org/abs/1204.5746
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1204.5746
https://doi.org/10.1103/PhysRevD.91.094017
https://arxiv.org/abs/1411.6633
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.6633
https://doi.org/10.1007/JHEP05(2015)102
https://arxiv.org/abs/1412.2126
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.2126
https://doi.org/10.1140/epjc/s10052-017-5320-9
https://arxiv.org/abs/1708.04093
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.04093


J
H
E
P
0
7
(
2
0
2
1
)
1
4
2

[16] G. Bell, A. Hornig, C. Lee and J. Talbert, e+e− angularity distributions at NNLL′ accuracy,
JHEP 01 (2019) 147 [arXiv:1808.07867] [INSPIRE].

[17] Z.-B. Kang, X. Liu and S. Mantry, 1-jettiness DIS event shape: NNLL+NLO results, Phys.
Rev. D 90 (2014) 014041 [arXiv:1312.0301] [INSPIRE].

[18] T. Becher and X. Garcia i Tormo, Factorization and resummation for transverse thrust,
JHEP 06 (2015) 071 [arXiv:1502.04136] [INSPIRE].

[19] T. Becher, X. Garcia i Tormo and J. Piclum, Next-to-next-to-leading logarithmic
resummation for transverse thrust, Phys. Rev. D 93 (2016) 054038 [Erratum ibid. 93 (2016)
079905] [arXiv:1512.00022] [INSPIRE].

[20] L.J. Dixon, M.-X. Luo, V. Shtabovenko, T.-Z. Yang and H.X. Zhu, Analytical Computation
of Energy-Energy Correlation at Next-to-Leading Order in QCD, Phys. Rev. Lett. 120 (2018)
102001 [arXiv:1801.03219] [INSPIRE].

[21] A. Gao, H.T. Li, I. Moult and H.X. Zhu, Precision QCD Event Shapes at Hadron Colliders:
The Transverse Energy-Energy Correlator in the Back-to-Back Limit, Phys. Rev. Lett. 123
(2019) 062001 [arXiv:1901.04497] [INSPIRE].

[22] L.J. Dixon, I. Moult and H.X. Zhu, Collinear limit of the energy-energy correlator, Phys.
Rev. D 100 (2019) 014009 [arXiv:1905.01310] [INSPIRE].

[23] T. Gehrmann, A. Huss, J. Mo and J. Niehues, Second-order QCD corrections to event shape
distributions in deep inelastic scattering, Eur. Phys. J. C 79 (2019) 1022
[arXiv:1909.02760] [INSPIRE].

[24] A. Banfi, G.P. Salam and G. Zanderighi, Resummed event shapes at hadron-hadron colliders,
JHEP 08 (2004) 062 [hep-ph/0407287] [INSPIRE].

[25] A. Banfi, G.P. Salam and G. Zanderighi, Phenomenology of event shapes at hadron colliders,
JHEP 06 (2010) 038 [arXiv:1001.4082] [INSPIRE].

[26] ATLAS collaboration, Measurement of event shapes at large momentum transfer with the
ATLAS detector in pp collisions at

√
s = 7 TeV, Eur. Phys. J. C 72 (2012) 2211

[arXiv:1206.2135] [INSPIRE].

[27] CMS collaboration, Study of Hadronic Event-Shape Variables in Multijet Final States in pp
Collisions at

√
s = 7TeV, JHEP 10 (2014) 087 [arXiv:1407.2856] [INSPIRE].

[28] CMS collaboration, Event shape variables measured using multijet final states in
proton-proton collisions at

√
s = 13TeV, JHEP 12 (2018) 117 [arXiv:1811.00588]

[INSPIRE].

[29] ATLAS collaboration, Measurement of hadronic event shapes in high-pT multijet final states
at
√
s = 13TeV with the ATLAS detector, JHEP 01 (2021) 188 [arXiv:2007.12600]

[INSPIRE].

[30] A.J. Larkoski, S. Marzani, G. Soyez and J. Thaler, Soft Drop, JHEP 05 (2014) 146
[arXiv:1402.2657] [INSPIRE].

[31] J. Baron, S. Marzani and V. Theeuwes, Soft-Drop Thrust, JHEP 08 (2018) 105 [Erratum
ibid. 05 (2019) 056] [arXiv:1803.04719] [INSPIRE].

[32] S. Marzani, D. Reichelt, S. Schumann, G. Soyez and V. Theeuwes, Fitting the Strong
Coupling Constant with Soft-Drop Thrust, JHEP 11 (2019) 179 [arXiv:1906.10504]
[INSPIRE].

– 47 –

https://doi.org/10.1007/JHEP01(2019)147
https://arxiv.org/abs/1808.07867
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.07867
https://doi.org/10.1103/PhysRevD.90.014041
https://doi.org/10.1103/PhysRevD.90.014041
https://arxiv.org/abs/1312.0301
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.0301
https://doi.org/10.1007/JHEP06(2015)071
https://arxiv.org/abs/1502.04136
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.04136
https://doi.org/10.1103/PhysRevD.93.054038
https://arxiv.org/abs/1512.00022
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.00022
https://doi.org/10.1103/PhysRevLett.120.102001
https://doi.org/10.1103/PhysRevLett.120.102001
https://arxiv.org/abs/1801.03219
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.03219
https://doi.org/10.1103/PhysRevLett.123.062001
https://doi.org/10.1103/PhysRevLett.123.062001
https://arxiv.org/abs/1901.04497
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.04497
https://doi.org/10.1103/PhysRevD.100.014009
https://doi.org/10.1103/PhysRevD.100.014009
https://arxiv.org/abs/1905.01310
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.01310
https://doi.org/10.1140/epjc/s10052-019-7528-3
https://arxiv.org/abs/1909.02760
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.02760
https://doi.org/10.1088/1126-6708/2004/08/062
https://arxiv.org/abs/hep-ph/0407287
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0407287
https://doi.org/10.1007/JHEP06(2010)038
https://arxiv.org/abs/1001.4082
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1001.4082
https://doi.org/10.1140/epjc/s10052-012-2211-y
https://arxiv.org/abs/1206.2135
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1206.2135
https://doi.org/10.1007/JHEP10(2014)087
https://arxiv.org/abs/1407.2856
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.2856
https://doi.org/10.1007/JHEP12(2018)117
https://arxiv.org/abs/1811.00588
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.00588
https://doi.org/10.1007/JHEP01(2021)188
https://arxiv.org/abs/2007.12600
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.12600
https://doi.org/10.1007/JHEP05(2014)146
https://arxiv.org/abs/1402.2657
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.2657
https://doi.org/10.1007/JHEP08(2018)105
https://arxiv.org/abs/1803.04719
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.04719
https://doi.org/10.1007/JHEP11(2019)179
https://arxiv.org/abs/1906.10504
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.10504


J
H
E
P
0
7
(
2
0
2
1
)
1
4
2

[33] J.M. Butterworth, A.R. Davison, M. Rubin and G.P. Salam, Jet substructure as a new Higgs
search channel at the LHC, Phys. Rev. Lett. 100 (2008) 242001 [arXiv:0802.2470]
[INSPIRE].

[34] S.D. Ellis, C.K. Vermilion and J.R. Walsh, Techniques for improved heavy particle searches
with jet substructure, Phys. Rev. D 80 (2009) 051501 [arXiv:0903.5081] [INSPIRE].

[35] D. Krohn, J. Thaler and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084
[arXiv:0912.1342] [INSPIRE].

[36] M. Dasgupta, A. Fregoso, S. Marzani and G.P. Salam, Towards an understanding of jet
substructure, JHEP 09 (2013) 029 [arXiv:1307.0007] [INSPIRE].

[37] F.A. Dreyer, L. Necib, G. Soyez and J. Thaler, Recursive Soft Drop, JHEP 06 (2018) 093
[arXiv:1804.03657] [INSPIRE].

[38] S. Marzani, G. Soyez and M. Spannowsky, Looking inside jets: an introduction to jet
substructure and boosted-object phenomenology, vol. 958, Springer (2019) [DOI]
[arXiv:1901.10342] [INSPIRE].

[39] C. Frye, A.J. Larkoski, M.D. Schwartz and K. Yan, Factorization for groomed jet substructure
beyond the next-to-leading logarithm, JHEP 07 (2016) 064 [arXiv:1603.09338] [INSPIRE].

[40] S. Marzani, L. Schunk and G. Soyez, The jet mass distribution after Soft Drop, Eur. Phys. J.
C 78 (2018) 96 [arXiv:1712.05105] [INSPIRE].

[41] Z.-B. Kang, K. Lee, X. Liu and F. Ringer, The groomed and ungroomed jet mass distribution
for inclusive jet production at the LHC, JHEP 10 (2018) 137 [arXiv:1803.03645] [INSPIRE].

[42] Z.-B. Kang, K. Lee, X. Liu and F. Ringer, Soft drop groomed jet angularities at the LHC,
Phys. Lett. B 793 (2019) 41 [arXiv:1811.06983] [INSPIRE].

[43] G. Bell, R. Rahn and J. Talbert, Two-loop anomalous dimensions of generic dijet soft
functions, Nucl. Phys. B 936 (2018) 520 [arXiv:1805.12414] [INSPIRE].

[44] Z.-B. Kang, K. Lee, X. Liu, D. Neill and F. Ringer, The soft drop groomed jet radius at NLL,
JHEP 02 (2020) 054 [arXiv:1908.01783] [INSPIRE].

[45] A.H. Hoang, S. Mantry, A. Pathak and I.W. Stewart, Nonperturbative Corrections to Soft
Drop Jet Mass, JHEP 12 (2019) 002 [arXiv:1906.11843] [INSPIRE].

[46] A. Kardos, A.J. Larkoski and Z. Trócsányi, Two- and three-loop data for the groomed jet
mass, Phys. Rev. D 101 (2020) 114034 [arXiv:2002.05730] [INSPIRE].

[47] A. Kardos, A.J. Larkoski and Z. Trócsányi, Groomed jet mass at high precision, Phys. Lett.
B 809 (2020) 135704 [arXiv:2002.00942] [INSPIRE].

[48] D. Anderle, M. Dasgupta, B.K. El-Menoufi, J. Helliwell and M. Guzzi, Groomed jet mass as
a direct probe of collinear parton dynamics, Eur. Phys. J. C 80 (2020) 827
[arXiv:2007.10355] [INSPIRE].

[49] A. Banfi, G.P. Salam and G. Zanderighi, Principles of general final-state resummation and
automated implementation, JHEP 03 (2005) 073 [hep-ph/0407286] [INSPIRE].

[50] E. Gerwick, S. Hoeche, S. Marzani and S. Schumann, Soft evolution of multi-jet final states,
JHEP 02 (2015) 106 [arXiv:1411.7325] [INSPIRE].

[51] T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007
[arXiv:0811.4622] [INSPIRE].

– 48 –

https://doi.org/10.1103/PhysRevLett.100.242001
https://arxiv.org/abs/0802.2470
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.2470
https://doi.org/10.1103/PhysRevD.80.051501
https://arxiv.org/abs/0903.5081
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0903.5081
https://doi.org/10.1007/JHEP02(2010)084
https://arxiv.org/abs/0912.1342
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0912.1342
https://doi.org/10.1007/JHEP09(2013)029
https://arxiv.org/abs/1307.0007
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.0007
https://doi.org/10.1007/JHEP06(2018)093
https://arxiv.org/abs/1804.03657
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.03657
https://doi.org/10.1007/978-3-030-15709-8
https://arxiv.org/abs/1901.10342
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.10342
https://doi.org/10.1007/JHEP07(2016)064
https://arxiv.org/abs/1603.09338
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.09338
https://doi.org/10.1140/epjc/s10052-018-5579-5
https://doi.org/10.1140/epjc/s10052-018-5579-5
https://arxiv.org/abs/1712.05105
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.05105
https://doi.org/10.1007/JHEP10(2018)137
https://arxiv.org/abs/1803.03645
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.03645
https://doi.org/10.1016/j.physletb.2019.04.018
https://arxiv.org/abs/1811.06983
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.06983
https://doi.org/10.1016/j.nuclphysb.2018.09.026
https://arxiv.org/abs/1805.12414
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.12414
https://doi.org/10.1007/JHEP02(2020)054
https://arxiv.org/abs/1908.01783
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.01783
https://doi.org/10.1007/JHEP12(2019)002
https://arxiv.org/abs/1906.11843
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.11843
https://doi.org/10.1103/PhysRevD.101.114034
https://arxiv.org/abs/2002.05730
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.05730
https://doi.org/10.1016/j.physletb.2020.135704
https://doi.org/10.1016/j.physletb.2020.135704
https://arxiv.org/abs/2002.00942
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.00942
https://doi.org/10.1140/epjc/s10052-020-8411-y
https://arxiv.org/abs/2007.10355
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.10355
https://doi.org/10.1088/1126-6708/2005/03/073
https://arxiv.org/abs/hep-ph/0407286
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0407286
https://doi.org/10.1007/JHEP02(2015)106
https://arxiv.org/abs/1411.7325
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.7325
https://doi.org/10.1088/1126-6708/2009/02/007
https://arxiv.org/abs/0811.4622
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0811.4622


J
H
E
P
0
7
(
2
0
2
1
)
1
4
2

[52] Sherpa collaboration, Event Generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034
[arXiv:1905.09127] [INSPIRE].

[53] CDF collaboration, Measurement of Event Shapes in Proton-Antiproton Collisions at
Center-of-Mass Energy 1.96TeV, Phys. Rev. D 83 (2011) 112007 [arXiv:1103.5143]
[INSPIRE].

[54] Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision,
Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].

[55] A. Banfi, G.P. Salam and G. Zanderighi, Generalized resummation of QCD final state
observables, Phys. Lett. B 584 (2004) 298 [hep-ph/0304148] [INSPIRE].

[56] Y.L. Dokshitzer, G.D. Leder, S. Moretti and B.R. Webber, Better jet clustering algorithms,
JHEP 08 (1997) 001 [hep-ph/9707323] [INSPIRE].

[57] M. Wobisch and T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic
scattering, in Workshop on Monte Carlo Generators for HERA Physics (Plenary Starting
Meeting), (1998) [hep-ph/9907280] [INSPIRE].

[58] A. Kardos, G. Somogyi and Z. Trócsányi, Soft-drop event shapes in electron-positron
annihilation at next-to-next-to-leading order accuracy, Phys. Lett. B 786 (2018) 313
[arXiv:1807.11472] [INSPIRE].

[59] E. Farhi, A QCD Test for Jets, Phys. Rev. Lett. 39 (1977) 1587 [INSPIRE].

[60] CMS collaboration, Particle-flow reconstruction and global event description with the CMS
detector, 2017 JINST 12 P10003 [arXiv:1706.04965] [INSPIRE].

[61] M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008)
063 [arXiv:0802.1189] [INSPIRE].

[62] M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012)
1896 [arXiv:1111.6097] [INSPIRE].

[63] N. Baberuxki, C.T. Preuss, D. Reichelt and S. Schumann, Resummed predictions for
jet-resolution scales in multijet production in e+e− annihilation, JHEP 04 (2020) 112
[arXiv:1912.09396] [INSPIRE].

[64] G. Luisoni and S. Marzani, QCD resummation for hadronic final states, J. Phys. G 42
(2015) 103101 [arXiv:1505.04084] [INSPIRE].

[65] S. Caletti et al., Jet angularities in Z+jet production at the LHC, JHEP 07 (2021) 076
[arXiv:2104.06920] [INSPIRE].

[66] S. Catani, L. Trentadue, G. Turnock and B.R. Webber, Resummation of large logarithms in
e+e− event shape distributions, Nucl. Phys. B 407 (1993) 3 [INSPIRE].

[67] R.W.L. Jones, M. Ford, G.P. Salam, H. Stenzel and D. Wicke, Theoretical uncertainties on
αs from event shape variables in e+e− annihilations, JHEP 12 (2003) 007 [hep-ph/0312016]
[INSPIRE].

[68] A. Banfi, G.P. Salam and G. Zanderighi, Infrared safe definition of jet flavor, Eur. Phys. J.
C 47 (2006) 113 [hep-ph/0601139] [INSPIRE].

[69] T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039
[arXiv:0808.3674] [INSPIRE].

[70] S. Marzani, L. Schunk and G. Soyez, A study of jet mass distributions with grooming, JHEP
07 (2017) 132 [arXiv:1704.02210] [INSPIRE].

– 49 –

https://doi.org/10.21468/SciPostPhys.7.3.034
https://arxiv.org/abs/1905.09127
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.09127
https://doi.org/10.1103/PhysRevD.83.112007
https://arxiv.org/abs/1103.5143
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1103.5143
https://doi.org/10.1103/PhysRevD.68.094002
https://arxiv.org/abs/hep-ph/0307268
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0307268
https://doi.org/10.1016/j.physletb.2004.01.048
https://arxiv.org/abs/hep-ph/0304148
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0304148
https://doi.org/10.1088/1126-6708/1997/08/001
https://arxiv.org/abs/hep-ph/9707323
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9707323
https://arxiv.org/abs/hep-ph/9907280
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9907280
https://doi.org/10.1016/j.physletb.2018.10.014
https://arxiv.org/abs/1807.11472
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.11472
https://doi.org/10.1103/PhysRevLett.39.1587
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C39%2C1587%22
https://doi.org/10.1088/1748-0221/12/10/P10003
https://arxiv.org/abs/1706.04965
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.04965
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0802.1189
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1111.6097
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.6097
https://doi.org/10.1007/JHEP04(2020)112
https://arxiv.org/abs/1912.09396
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.09396
https://doi.org/10.1088/0954-3899/42/10/103101
https://doi.org/10.1088/0954-3899/42/10/103101
https://arxiv.org/abs/1505.04084
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.04084
https://doi.org/10.1007/JHEP07(2021)076
https://arxiv.org/abs/2104.06920
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.06920
https://doi.org/10.1016/0550-3213(93)90271-P
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB407%2C3%22
https://doi.org/10.1088/1126-6708/2003/12/007
https://arxiv.org/abs/hep-ph/0312016
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0312016
https://doi.org/10.1140/epjc/s2006-02552-4
https://doi.org/10.1140/epjc/s2006-02552-4
https://arxiv.org/abs/hep-ph/0601139
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0601139
https://doi.org/10.1088/1126-6708/2008/12/039
https://arxiv.org/abs/0808.3674
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0808.3674
https://doi.org/10.1007/JHEP07(2017)132
https://doi.org/10.1007/JHEP07(2017)132
https://arxiv.org/abs/1704.02210
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.02210


J
H
E
P
0
7
(
2
0
2
1
)
1
4
2

[71] S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO
QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. 510 (1998) 503] [hep-ph/9605323]
[INSPIRE].

[72] T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur.
Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].

[73] F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering Amplitudes with Open Loops, Phys.
Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].

[74] A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in
Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792]
[INSPIRE].

[75] NNPDF collaboration, Parton distributions for the LHC Run II, JHEP 04 (2015) 040
[arXiv:1410.8849] [INSPIRE].

[76] S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers:
The NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].

[77] S. Hoeche and M. Schonherr, Uncertainties in next-to-leading order plus parton shower
matched simulations of inclusive jet and dijet production, Phys. Rev. D 86 (2012) 094042
[arXiv:1208.2815] [INSPIRE].

[78] S. Schumann and F. Krauss, A Parton shower algorithm based on Catani-Seymour dipole
factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].

[79] E. Bothmann, M. Schönherr and S. Schumann, Reweighting QCD matrix-element and
parton-shower calculations, Eur. Phys. J. C 76 (2016) 590 [arXiv:1606.08753] [INSPIRE].

[80] S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers,
JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].

[81] S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated
showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].

[82] J.-C. Winter, F. Krauss and G. Soff, A Modified cluster hadronization model, Eur. Phys. J. C
36 (2004) 381 [hep-ph/0311085] [INSPIRE].

[83] T. Sjöstrand and M. van Zijl, A Multiple Interaction Model for the Event Structure in
Hadron Collisions, Phys. Rev. D 36 (1987) 2019 [INSPIRE].

[84] J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J. C 76 (2016) 196
[arXiv:1512.01178] [INSPIRE].

[85] J. Bellm et al., HERWIG 7.2 release note, Eur. Phys. J. C 80 (2020) 452
[arXiv:1912.06509] [INSPIRE].

[86] T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015)
159 [arXiv:1410.3012] [INSPIRE].

[87] A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803
[arXiv:1003.0694] [INSPIRE].

[88] S. Höche, D. Reichelt and F. Siegert, Momentum conservation and unitarity in parton
showers and NLL resummation, JHEP 01 (2018) 118 [arXiv:1711.03497] [INSPIRE].

– 50 –

https://doi.org/10.1016/S0550-3213(96)00589-5
https://arxiv.org/abs/hep-ph/9605323
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9605323
https://doi.org/10.1140/epjc/s10052-007-0495-0
https://doi.org/10.1140/epjc/s10052-007-0495-0
https://arxiv.org/abs/0709.2881
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0709.2881
https://doi.org/10.1103/PhysRevLett.108.111601
https://doi.org/10.1103/PhysRevLett.108.111601
https://arxiv.org/abs/1111.5206
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.5206
https://doi.org/10.1016/j.cpc.2016.10.013
https://arxiv.org/abs/1604.06792
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.06792
https://doi.org/10.1007/JHEP04(2015)040
https://arxiv.org/abs/1410.8849
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.8849
https://doi.org/10.1007/JHEP04(2013)027
https://arxiv.org/abs/1207.5030
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.5030
https://doi.org/10.1103/PhysRevD.86.094042
https://arxiv.org/abs/1208.2815
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1208.2815
https://doi.org/10.1088/1126-6708/2008/03/038
https://arxiv.org/abs/0709.1027
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0709.1027
https://doi.org/10.1140/epjc/s10052-016-4430-0
https://arxiv.org/abs/1606.08753
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.08753
https://doi.org/10.1088/1126-6708/2001/11/063
https://arxiv.org/abs/hep-ph/0109231
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0109231
https://doi.org/10.1088/1126-6708/2009/05/053
https://arxiv.org/abs/0903.1219
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0903.1219
https://doi.org/10.1140/epjc/s2004-01960-8
https://doi.org/10.1140/epjc/s2004-01960-8
https://arxiv.org/abs/hep-ph/0311085
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0311085
https://doi.org/10.1103/PhysRevD.36.2019
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD36%2C2019%22
https://doi.org/10.1140/epjc/s10052-016-4018-8
https://arxiv.org/abs/1512.01178
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.01178
https://doi.org/10.1140/epjc/s10052-020-8011-x
https://arxiv.org/abs/1912.06509
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.06509
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.3012
https://doi.org/10.1016/j.cpc.2013.05.021
https://arxiv.org/abs/1003.0694
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1003.0694
https://doi.org/10.1007/JHEP01(2018)118
https://arxiv.org/abs/1711.03497
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.03497

	Introduction
	Soft drop for hadronic event shapes
	Definition groomed event shapes
	Event selection and phase-space constraints

	NLL resummation and matching to NLO QCD
	Caesar in a nutshell
	NLL resummation for soft-drop groomed event shapes
	The non-perturbative realm
	Matching to NLO and achieving NLL' accuracy
	Results for soft-drop transverse thrust

	Phenomenological studies of soft-drop groomed thrust
	Monte Carlo simulations — multijet merging, underlying event
	Parton-level predictions
	Underlying event mitigation

	Conclusions
	Logarithmic contributions of zcut
	Auxiliary results

