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Abstract

Finding food is a vital skill and a constant task for any animal, and associative learning of

food-predicting cues gives an advantage in this daily struggle. The strength of the associa-

tions between cues and food depends on a number of parameters, such as the salience of

the cue, the strength of the food reward and the number of joint cue-food experiences. We

investigate what impact the strength of an associative odour-sugar memory has on the

microbehaviour of Drosophila melanogaster larvae. We find that larvae form stronger mem-

ories with increasing concentrations of sugar or odour, and that these stronger memories

manifest themselves in stronger modulations of two aspects of larval microbehaviour, the

rate and the direction of lateral reorientation manoeuvres (so-called head casts). These two

modulations of larval behaviour are found to be correlated to each other in every experiment

performed, which is in line with a model that assumes that both modulations are controlled

by a common motor output. Given that the Drosophila larva is a genetically tractable model

organism that is well suited to the study of simple circuits at the single-cell level, these analy-

ses can guide future research into the neuronal circuits underlying the translation of associa-

tive memories of different strength into behaviour, and may help to understand how these

processes are organised in more complex systems.

Introduction

Finding food sources is a fundamental task for any animal, and being able to learn cues to

guide this search is crucial. Therefore, even a simple animal such as the larva of the fruit fly

Drosophila melanogaster with a nervous system of only about 10,000 neurons is capable of

associating a cue such as an odour with food such as sugar (reviewed in [1–4]). Importantly,

the strength of the associative odour-food memory is variable and can be affected by various

parameters. In Drosophila larvae, the concentration of the food reward [5–6], the dilution of

the odour [7], and the number of training cycles [8–9] have been reported to change memory

strength. Analogous observations have also been made for adult Drosophila [10–12]. In all

these cases, the animals were tested in a gradient of a previously trained odour, and their
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distribution was determined after a given amount of time. After paired presentations of odour

and food reward, the animals prefer the odour more than after separate, unpaired presenta-

tions of odour and food reward. The difference observed in the distribution of animals, quanti-

fied as the associative Performance Index, is used as a proxy for memory strength [8,13–16].

Only recently, efforts were made to understand the actual modulations of locomotion that

underlie the distribution of the animals after training [17–18]. In this study, we refer to these

behavioural modifications as “microbehaviour”.

Larval chemotaxis is usually described as comprising a sequence of relatively straight runs

and lateral head movements called head casts (HC) that precede changes in direction [19–24]

(but see [25–27]). Thus, a larva theoretically has three ways to express a preference for an

odour: it can modulate its run speed according to whether it is heading towards or away from

the odour source; it can modulate its HC rate according to whether it is heading towards or

away from the odour source; or it can modulate the direction of HC more towards or away

from the odour source. Associative memories have been found mainly to modulate the latter

two aspects of chemotaxis, HC rate and HC direction [17–18].

Here, we assay groups of larvae by associative training with n-amyl acetate as the odour and

fructose as the reward, and inquire into the microbehavioural footprint of memories of differ-

ent strength induced by varying either the reward quantity, the odour concentration, or the

number of training cycles.

Material and methods

General

Third-instar feeding-stage larvae (Drosophila melanogaster) of the wildtype strain Canton-S,

aged 5 days after egg laying, were used throughout. Flies were maintained on standard

medium, in mass culture at 25˚C, 60–70% relative humidity and a 12/12 hour light/dark cycle.

We took a spoonful of food medium from a food vial, randomly selected the desired number

of larvae, briefly rinsed them in tap water and started the experiment.

For behavioural experiments, larvae were trained and tested in Petri dishes of 9 cm inner

diameter (Sarstedt, Nümbrecht, Germany) filled with 1% agarose (electrophoresis grade; Roth,

Karlsruhe, Germany). As the sugar reward, we used D-fructose (FRU; CAS: 57-48-7; Roth,

Karlsruhe, Germany), at concentrations of 0.2, 0.6 or 2 mol/L. As the odour, we used an

organic ester with a pear-like smell, n-amyl acetate (AM; CAS: 628-63-7; Merck, Darmstadt,

Germany), diluted 1:2000, 1:200 or 1:20 in paraffin oil, as it has been shown that larvae can

learn about this odour very well [7,14].

Associative odour-sugar learning

The experiments followed established protocols [28]. Odour containers were prepared by add-

ing 10 μl of odour substance into custom-made Teflon containers (5 mm inner diameter with

a lid perforated with 7 holes of 0.5-mm diameter). The Petri dishes were covered with modified

lids perforated in the centre by 15 holes of 1 mm diameter to improve aeration.

For the typical odour-sugar training, approximately 15 larvae were placed in the middle of

a Petri dish filled with agarose that contained 2 mol/L FRU as a reward (indicated below by

‘+’), and equipped with two odour containers on opposite sides, both filled with AM diluted

1:20 (this combination of stimuli, AM and FRU, is abbreviated as ‘AM+’). After 2.5 min, the

larvae were displaced onto a fresh Petri dish with plain, tasteless agarose, equipped with two

empty containers (abbreviated as ‘EM’); they also spent 2.5 min in this Petri dish. Three such

‘paired’ training cycles were performed, in each case using fresh Petri dishes (thus, in total six

Petri dishes, three containing FRU and three tasteless, were used for the training of one group
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of 15 larvae). In half of the cases training started with reward-containing Petri dishes as indi-

cated (AM+/EM), whereas in the other half of the cases the sequence was reversed (EM/AM+).

For each group of larvae trained AM+/EM (or EM/AM+), a second group was trained recipro-

cally by separated, ‘unpaired’ presentations of odour and reward. That is, larvae were placed

first, for example, on a tasteless Petri dish with AM, followed by a FRU-containing Petri dish

without AM (AM/EM+ training). Again, in half of the cases the sequence was reversed (EM

+/AM).

In three series of experiments, one of three parameters was successively changed: either the

FRU concentration was set to 0.2, 0.6 or 2 mol/L, or the odour dilution was set to 1:2000, 1:200

or 1:20, or the number of training cycles was set to 1, 2 or 3. For each condition in each experi-

ment, we assessed about 50 to 55 groups of larvae, each containing about 15 individual ani-

mals, that were trained paired, and as many groups again that were trained unpaired.

Following training, the larvae were transferred to the middle of a test Petri dish and tested

for their odour preference. One side of the test Petri dish was equipped with an AM container,

and the other side with an EM container. During the 3 minutes of the test, we recorded larval

behaviour using a camera (Basler acA2040-90um). These videos were used for offline analysis.

All the following calculations were carried out per test Petri dish; that is, the average behav-

iour of all animals on one test Petri dish over the full 3 min of testing time was calculated.

Thus, the sample size for each of these behavioural scores (Eqs 1, 3, 5 and 7) equals the number

of groups of larvae and is stated below each box plot (S1–S3 Figs). From pairs always consisting

of one paired-trained and one unpaired-trained group, we calculated differences in behaviour

after paired and unpaired training (see below). Thus, the sample size for each of these differ-

ence scores (Eqs 2, 4, 6 and 8) equals the number of pairs of groups and is stated below each

box plot (Fig 1).

Data analysis

Larval behaviour was video-tracked and analysed as described in detail in [18]. In brief, the fol-

lowing aspects of larval behaviour were analysed per test Petri dish:

The time all the larvae spent on either side during the 3 minutes of the test was determined.

From these numbers, a preference score (Pref) was calculated as:

Pref ¼
time spent ðAMÞ � time spent ðEMÞ

time ðTotalÞ
ð1Þ

Thus, Pref values are constrained between 1 and -1, with positive values indicating a prefer-

ence for and negative values indicating avoidance of AM.

Memory strength can be assessed by the difference in preference scores between two recip-

rocally trained groups (a paired-trained and an unpaired-trained group). To quantify this dif-

ference, we calculated an associative Performance Index as:

Performance Index ¼
Pref ðPairedÞ � Pref ðUnpairedÞ

2
ð2Þ

Thus, Performance Index values can range from 1 to -1, with positive values indicating

appetitive and negative values indicating aversive memory. Next, we analysed the modulation

of the head cast (HC) rate (HC per second, HC/s):

HC rate� modulation ¼
HC=s ðawayÞ � HC=s ðtowardsÞ
HC=s ðawayÞ þ HC=s ðtowardsÞ

ð3Þ
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Fig 1. Parametric modulations of learned microbehaviour. (A) Groups of larvae were trained with either paired or unpaired presentations of n-amyl acetate (AM) as

odour (red cloud) and fructose (FRU) as reward (green filled circles). Three training cycles were performed with an AM dilution of 1:20. The FRU concentrations used

were 0.2, 0.6 and 2 mol/L, indicated by light, medium or dark green fillings in B-E, respectively. (B-D) Increasing FRU concentrations lead to increasing values of (B) the

Performance Index (KW: H = 21.0, df = 2, p< 0.0001), (C) the HC Rate Index (KW: H = 21.6, df = 2, p< 0.0001), and (D) the HC Direction Index (KW: H = 23.9,

df = 2, p< 0.0001). This indicates that higher FRU concentrations support stronger memories and lead to stronger modulations of both HC rate and HC direction. (E)

FRU concentration had no significant effect on run speed modulation (KW: H = 1.5, p = 0.47). (F) As in A, except that a fixed FRU concentration of 2 mol/L was used,

and AM dilutions were varied to be 1:2000, 1:200 or 1:20, indicated by light, medium or dark red clouds in G-J, respectively. (G-J) Increasing AM concentrations lead to

increasing values of (G) the Performance Index (KW: H = 15.7, df = 2, p = 0.0004), (H) the HC Rate Index (KW: H = 8.8, df = 2, p = 0.012), (I) the HC Direction Index

(KW: H = 15.7, df = 2, p = 0.0004), and (J) the Run Speed Index (KW: H = 7.9, df = 2, p = 0.020). (K) As in A, except that a fixed FRU concentration of 2 mol/L was used.

1, 2 or 3 training cycles were performed. (L-O) The number of training cycles did not significantly affect (L) the Performance Index (KW: H = 4.6, df = 2, p = 0.10), (M)

the HC Rate Index (KW: H = 0.2, df = 2, p = 0.92), (N) the HC Direction Index (KW: H = 1.8, df = 2, p = 0.40), or (O) the Run Speed Index (KW: H = 0.9, p = 0.64).

Thus, the memory strength was not significantly determined by training cycle number; nor were the HC rate, HC direction or run speed. Asterisks or “ns” indicate

significant or non-significant Kruskal-Wallis tests, respectively. Sample sizes are indicated below each box plot. Box plots represent the median as the middle line and

25% / 75% and 10% / 90% as box boundaries and whiskers, respectively. Outliers are not displayed. The values for preference, HC rate-modulation, Reorientation per

HC, and Run speed-modulation after paired and unpaired training that underlie this figure are displayed in S1–S3 Figs. For the underlying source data, see S1 Dataset.

https://doi.org/10.1371/journal.pone.0224154.g001
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This measure yields positive scores for attraction to the odour, which is when larvae system-

atically perform more HC while heading away from the odour (i.e. when odour concentration

decreases) than while heading towards it (i.e. when odour concentration increases). Con-

versely, it yields negative scores for aversion.

To quantify the difference in HC rate-modulation between two reciprocally trained groups

of animals, we calculated an associative HC Rate Index as:

HC Rate Index ¼
HC rate� modulation ðPairedÞ � HC rate� modulation ðUnpairedÞ

2
ð4Þ

Thus, positive values indicate more positive HC rate-modulations after paired than after

unpaired training, and hence behaviour based on an appetitive associative memory.

The modulation of HC direction is measured by the Reorientation per HC:

Reorientation per HC ¼ absðHA before HCÞ � absðHA after HCÞ ð5Þ

In this measure, the heading angle (HA) describes the orientation of the animal’s head rela-

tive to the odour, with absolute heading angles (abs(HA)) of 0˚ or 180˚, for example, indicating

that the odour is to the front or to the rear of the larvae, respectively. This measure thus yields

positive scores for attraction to the odour, i.e. when the head cast directs the larvae towards

rather than away from the odour target, whereas it yields negative scores for aversion.

To quantify the difference in HC direction between two reciprocally trained groups of ani-

mals, we calculated an associative HC Direction Index as:

HC Direction Index ¼
Reorientation ðPairedÞ � Reorientation ðUnpairedÞ

2
ð6Þ

Thus, positive values indicate a stronger bias to direct HCs towards the odour after paired

than after unpaired training, and hence behaviour based on an appetitive associative memory.

Last, we also analysed the modulations of run speed:

Run speed� modulation ¼
Run speed ðtowardsÞ � Run speed ðawayÞ
Run speed ðtowardsÞ þ Run speed ðawayÞ

ð7Þ

Thus, if animals modified their run speed so as to speed up whenever they headed towards

the odour and slow down whenever they headed away, we would obtain a positive Run speed-

modulation.

To quantify the difference in Run speed-modulation between two reciprocally trained

groups of animals, we calculated an associative Run Speed Index as:

Run Speed Index

¼
Run speed� modulation ðPairedÞ � Run speed� modulation ðUnpairedÞ

2
ð8Þ

Thus, positive values would indicate stronger positive Run speed-modulations after paired

than after unpaired training, and hence behaviour based on an appetitive associative memory.

Statistical analyses

All statistical tests were performed using Statistica 11 (StatSoft, Tulsa, USA) for PC. Two-tailed

non-parametric tests were used (statistical assumptions for these tests were met throughout).

Values were compared across multiple groups with Kruskal-Wallis tests (KW tests), for which

we state the test statistic H (sometimes reported as the χ2-value), the degrees of freedom (df)

and the p-value. Pairwise comparisons of behaviour after paired and unpaired training were
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performed with Mann-Whitney tests (MW tests). For multiple tests a Bonferroni-Holm cor-

rection was applied [29]. For correlations, the Spearman’s rank correlation coefficient was

used. As the software we used provides only a fixed number of decimal digits for the p-value,

we report very small p-values as a maximum value (e.g. p< 0.0001). We present our data as

box plots which represent the median as the middle line and 25% / 75% and 10% / 90% as

box boundaries and whiskers, respectively. Outliers are not displayed in box plots. When scat-

ter plots are used, all values are displayed.

Results & discussions

How do memories of different strength affect the microbehaviour of Drosophila melanogaster
larvae? To answer this question, we trained groups of larvae to associate an odour with a sugar

reward. In three series of experiments, we successively varied one of three experimental

parameters: the reward quantity, the odour concentration, or the number of training cycles.

All of these parameters have previously been reported to affect the strength of the established

associative memory [5–9].

Reward quantity and odour concentration affect memory strength

First, we studied the effects of reward quantity, that is, sugar concentration (Fig 1A–1E). We

trained larvae either with paired presentations of an odour with a sugar reward (Fig 1A, left),

or with separate, explicitly unpaired presentations of odour and reward (Fig 1A, right). As

these two groups of animals share the same experience except for the contingency between

odour and sugar, any difference in behaviour in a subsequent test must be due to the difference

in contingency [13]. Associative memories are therefore quantified as the associative Perfor-

mance Index, i.e. the difference in odour preference after paired and after unpaired training.

Stronger differences in odour preference, and thus higher Performance Index values, are usu-

ally interpreted in the literature as stronger memories [8,13–16].

For low sugar concentrations, odour preference after paired training was only slightly

higher than after unpaired training (S1A Fig), resulting in a low Performance Index and indi-

cating low levels of memory (Fig 1B). Higher sugar concentrations supported stronger memo-

ries, indicated by higher Performance Index values (Fig 1B) [5–6]. Next, we analysed three

aspects of the larval microbehaviour: HC rate, HC direction and run speed. After paired train-

ing, animals made more HCs while heading away from the odour than while heading towards

the odour, resulting in a positive HC rate-modulation (S1B Fig). The HC rate-modulation was

higher after paired than after unpaired training (S1B Fig), as quantified by the HC Rate Index

(Fig 1C). Importantly, this difference increased with increasing sugar concentration, indicated

by higher HC Rate Index values (Fig 1C). Likewise, larvae biased their HC direction more

towards the odour source after paired than after unpaired training (S1C Fig), as quantified by

the HC Direction Index (Fig 1D). This difference too increased with increasing sugar concen-

tration, indicated by higher HC Direction Index values (Fig 1D). Arguably, the larvae could

also express an odour preference by moving faster when heading towards the odour than

when heading away from the odour, which would result in a positive run speed-modulation.

However, we found no such modulation either after paired or unpaired training (S1D Fig),

resulting in zero Run Speed Index values for all sugar concentrations (Fig 1E). These results

are in line with our previous findings that associative memories mainly modulate HC rate and

HC direction, but not run speed [17–18].

Similarly, higher odour concentrations supported stronger memories (Figs 1F and 1G and

S2A) [7] and increased the differences in modulations of both HC rate and HC direction after

paired and unpaired training (Figs 1H and 1I and S2B and S2C). In addition, we found a very
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slight increase in the differences in run speed-modulation after paired and unpaired training

(Figs 1J and S2D).

Finally, we varied the number of training cycles (Figs 1K–1O and S3A–S3D). Here, we con-

firmed recent results showing that even a single training cycle supports a relatively low level of

memory (Fig 1L, left group; S3A Fig) [9]. Additional training cycles increased memory scores

only slightly and non-significantly (Fig 1L, middle and right groups). This increase was bigger

and significant in previous studies [8–9]. The lack of a significant increase in memory strength

was paralleled by indistinguishable modulations of HC rate, HC direction and run speed after

one, two or three training cycles (Figs 1M–1O and S3B–S3D).

In summary, two of the tested parameters, reward quantity and odour concentration, sup-

ported memories of significantly varying strength. In both cases, we observed that the two

major features of learned microbehaviour, HC rate and HC direction, were likewise affected:

weak memories occurred together with weak modulations of HC rate and HC direction, and

strong memories occurred together with strong modulations of HC rate and HC direction (Fig

1A–1J). In the third set of experiments we did not observe a significant effect of training cycle

number on memory strength. Consequently, we did not find effects on the modulations of HC

rate or HC direction either (Fig 1K–1O).

Regarding modulations of run speed, we only observed a significant effect of odour concen-

tration, but not of reward quantity or trial number. One possible explanation is that in the for-

mer experiment the odour concentration during the test was also varied, whereas this

parameter was constant in the latter two experiments. Different odour concentrations in the

test may have different impacts on run speed. Alternatively, the observed result may hint at a

generally small effect of odour-sugar memory on run speed that cannot reliably be detected

across repetitions of the experiment.

HC rate and HC direction are correlated with memory strength

Next, we asked whether the microbehaviour of a given group of animals would be correlated

with memory strength (Fig 2). In line with the results described above, we observed that mod-

ulations of both HC rate (Fig 2A) and HC direction (Fig 2B) were positively correlated with

memory strength, whereas run speed-modulation was not (Fig 2C). Although the observed

correlations were relatively weak due to the variation across repetitions of the experiment, the

same pattern was observed in every set of experiments, no matter whether we varied reward

quantity (Fig 2A–2C), odour concentration (Fig 2D–2F) or trial number (Fig 2G–2I). This

result is particularly noteworthy in the case of the varied number of training trials, because we

did not find a significant effect of trial number on memory strength (Fig 1K–1O). Thus,

although the memory strength was not significantly affected by the parameter under study,

groups of animals that did happen to show a strong memory also showed strong modulations

of HC rate and HC direction.

HC rate and HC direction are correlated with each other

These findings so far support the view that odour preference is controlled by a single motor

output that integrates all innate and learned behavioural tendencies [18,26–27]. In this view,

larvae are thought constantly to perform left-right oscillations, the size of which is modulated

by the presence of attractive or aversive stimuli. If an attractive stimulus, such as a previously

rewarded odour, is to the left of the animal, oscillations to the left are increased, and oscilla-

tions to the right are decreased [26]. In our analysis, this would result in a strong bias of HCs

being directed towards the odour (measured as Reorientation per HC). Likewise, if the attrac-

tive odour is to the front, the oscillations get smaller to make the larva go straight ahead, and if
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the odour is to the rear, the oscillations get bigger to make the larva turn [26]. Because our

analysis uses a threshold-based detection of HCs, we detect fewer HCs when the larva is head-

ing towards the odour, and more HCs when the larva is heading away from the odour,

Fig 2. Modulations of HC rate and HC direction are correlated with memory strength. (A-C) For the experiment with varied sugar concentration, memory

strength as measured by the Performance Index is positively correlated with (A) the HC Rate Index (Spearman, rS = 0.33, p< 0.00001) and (B) the HC

Direction Index (Spearman, rS = 0.42, p< 0.00001), but not with (C) the Run Speed Index (Spearman, rS = 0.09, p = 0.228). N = 166 each. (D-F) As in A-C, but

for the experiment with varied odour concentration (Spearman, [D] rS = 0.33, p< 0.00001; [E] rS = 0.32, p< 0.00001; [F] rS = 0.05, p = 0.533; N = 170 each).

(G-I) As in A-C, but for the experiment with varied number of training trials (Spearman, [G] rS = 0.37, p< 0.00001; [H] rS = 0.39, p< 0.00001; [I] rS = 0.1,

p = 0.196; N = 156 each).

https://doi.org/10.1371/journal.pone.0224154.g002
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resulting in a positive HC rate-modulation. Thus, according to this model HC rate and HC

direction are always modulated together because both measures are merely materialisations of

the same motor output.

Indeed, we found that modulations of HC rate and HC direction were positively correlated,

as predicted by the model [26] (Fig 3). This was true for the HC rate-modulation and HC

direction (quantified as Reorientation per HC) as calculated per group of animals (Fig 3A and

3C), as well as for the differences in HC rate-modulation (indicated by the HC Rate Index)

and HC direction (indicated by the HC Direction Index) between paired-trained and

unpaired-trained groups (Fig 3B and 3D). The same correlations were also observed in the

case of the varied trial number, i.e. in a data set with no significant effects of the tested parame-

ter (Fig 3E and 3F). This suggests that this correlation of modulations in HC rate and HC

direction is a universal feature of larval microbehaviour, independent of the specific parame-

ters of the experiment. However, two caveats should be kept in mind: first, the observed corre-

lations are only weak to moderate. This may be due to technical limits of data acquisition or to

high variability in the animals’ behaviour, but it cannot be ruled out that HC rate and HC

direction may be modulated independently of each other after all. Second, our analysis relies

on group measurements. That is, we determine the average modulations of HC rate and HC

direction for groups of about 15 animals. It is possible that some individuals might modulate

HC rate more strongly, and others might modulate HC direction more strongly, in order to

express a stronger learned odour preference. This question therefore calls for future studies

analysing the behaviour of individual larvae instead of groups.

The neuronal circuit underlying memories of different strength

The current working hypothesis for associative olfactory learning in insects locates the mem-

ory trace in the output synapses of the mushroom body Kenyon cells (reviews with focus on

larvae: [1–4,30], reviews with focus on adult flies: [31–35]). The Kenyon cells receive odour

information as well as reward signals which are conveyed by a subset of dopaminergic neurons

(larvae: [36–39], adults: [40–44]). From the mushroom body, memory information is signalled

by mushroom body output neurons towards motor control (larvae: [38–39], adults: [42,44–

50]. Data from adult flies indicate that after training, the strength of the synapses from Kenyon

cells to output neurons is changed, leading to a changed response in those neurons to the

learned odour [47–48]. Thus, the mushroom body output neurons are thought to code the

learned valence of an odour (larvae: [18,38–39], adults: [48–50]).

Our results suggest that both higher odour concentration and higher reward quantity

induce stronger changes in the synaptic strength of Kenyon cell to output neuron synapses,

and thus stronger deflections of the mushroom body output neurons’ response to the learned

odour. This results in stronger positive learned odour valence signals after paired training, and

stronger negative learned odour valence signals after unpaired training. These learned odour

valence signals can then be added to the odour’s innate valence and accordingly shift both HC

rate and HC direction more towards approach or aversion [18,26].

How the integration of innate and learned valence is organised downstream of the mush-

room body output neurons is the subject of on-going research. The powerful resources at

hand, such as the electron-microscopy-based connectome of the brain [38] and the genetic

tools for manipulating single neurons [39], make the larva an ideal model organism for gaining

a detailed circuit-level understanding of how a relatively simple nervous system translates asso-

ciative memories of different strength into behaviour. The insights gained in the larva will

hopefully help us also to understand how these processes are organised in more complex

systems.
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Fig 3. Modulations of HC rate and HC direction are correlated with each other. (A) For the experiment with varied

sugar concentration, HC rate-modulation and Reorientation per HC are positively correlated (Spearman, rS = 0.65,

p< 0.00001, N = 336). This means that a group of animals that makes many HCs while heading away from the odour

and few HCs while heading towards the odour (high HC rate-modulation) also shows a strong bias to direct their HCs

toward the odour source (high Reorientation per HC), and vice versa. (B) The HC Rate Index, i.e. the difference in HC

rate-modulation between a group of paired-trained and a group of unpaired-trained animals, and the HC Direction

Index, i.e. the difference in Reorientation per HC between a group of paired-trained and a group of unpaired-trained

animals, are positively correlated with each other (Spearman, rS = 0.6, p< 0.00001, N = 166). (C-D) As in A-B but for

the experiment with varied odour concentration (Spearman, [E] rS = 0.59, p< 0.00001, N = 345; [F] rS = 0.51,

p< 0.00001, N = 170). (E-F) As in A-B but for the experiment with a varied number of training trials (Spearman, [G]

rS = 0.55, p< 0.00001, N = 318; [H] rS = 0.48, p< 0.00001, N = 156).

https://doi.org/10.1371/journal.pone.0224154.g003
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Supporting information

S1 Fig. Results after paired and unpaired training with various FRU concentrations. Dis-

played are the results for (A) Pref, (B) HC rate-modulation, (C) Reorientation per HC and (D)

Run speed-modulation underlying the data shown in Fig 1B–1E. Results after paired training

are displayed in grey-filled box plots, whereas results after unpaired training are displayed in

white box plots. Asterisks indicate significant Kruskal-Wallis tests (KW) across all the paired-

trained or all the unpaired-trained groups, respectively (p< 0.05 corrected according to Bon-

ferroni-Holm); hash signs indicate significant Mann-Whitney U-tests (MW) between paired-

trained and unpaired-trained groups (p< 0.05 corrected according to Bonferroni-Holm).

Odour preference, HC rate-modulation and Reorientation per HC, but not Run speed-

modulation, were significantly affected by the FRU concentration during paired training

(KW [A] H = 15.7, df = 2, p = 0.0004; [B] H = 18.2, df = 2, p = 0.0001; [C] H = 21.1, df = 2,

p < 0.0001; [D] H = 0.8, df = 2, p = 0.68). As regards unpaired training, only odour prefer-

ence was significantly affected by the FRU concentration, whereas HC rate-modulation,

Reorientation per HC and Run speed-modulation were not (KW [A] H = 10.3, df = 2,

p = 0.0057; [B] H = 5.9, df = 2, p = 0.053; [C] H = 4.3, df = 2, p = 0.11; [D] H = 2.6, df = 2,

p = 0.28). At the lowest FRU concentration, odour preference differed significantly after

paired and unpaired training, but none of the aspects of chemotaxis did (MW, [A]

U = 1008, p = 0.0011; [B] U = 1475, p = 0.59; [C] U = 1458, p = 0.53; [D] U = 1499,

p = 0.70). Higher concentrations and therefore stronger memories correspond to signifi-

cant differences after paired and unpaired training in odour preference, HC rate-modula-

tion and Reorientation per HC, but not Run speed-modulation (MW [A] U = 721,

p = 0.00001; U = 258, p < 0.00001; [B] U = 690, p < 0.00001; U = 521, p < 0.00001; [C]

U = 792, p < 0.00001; U = 432, p < 0.00001; [D] U = 1281, p = 0.10; U = 1198, p = 0.032).

Sample sizes are indicated below each box plot. Box plots represent the median as the mid-

dle line and 25% / 75% and 10% / 90% as box boundaries and whiskers, respectively. Outli-

ers are not displayed.

(TIF)

S2 Fig. Results after paired and unpaired training with various AM concentrations. Dis-

played are the results for (A) Pref, (B) HC rate-modulation, (C) Reorientation per HC and (D)

Run speed-modulation underlying the data shown in Fig 1G–1J. Results after paired training

are displayed in grey-filled box plots, whereas results after unpaired training are displayed in

white box plots.

Odour preference and Reorientation per HC, but not HC rate-modulation or Run speed-mod-

ulation, were significantly affected by the AM concentration during paired training (KW [A]

H = 9.9, df = 2, p = 0.0071; [B] H = 3.2, df = 2, p = 0.20; [C] H = 9.1, df = 2, p = 0.011; [D]

H = 2.8, df = 2, p = 0.25). As regards unpaired training, odour preference, HC rate-modulation

and Reorientation per HC were significantly affected by the AM concentration, whereas Run

speed-modulation was not (KW [A] H = 10.0, df = 2, p = 0.0066; [B] H = 7.9, df = 2, p = 0.02;

[C] H = 10.8, df = 2, p = 0.0046; [D] H = 1.3, df = 2, p = 0.52). At the lowest AM concentration,

only HC rate-modulation differed after paired and unpaired training (MW, [A] U = 1610,

p = 0.69; [B] U = 1216, p = 0.010; [C] U = 1401, p = 0.12; [D] U = 1561, p = 0.66). At the

medium AM concentration, odour preference, HC rate-modulation and Reorientation per

HC, but not Run speed-modulation, were different after paired and unpaired training (MW,

[A] U = 915, p = 0.00002; [B] U = 915, p = 0.00002; [C] U = 885, p = 0.00001; [D] U = 1672,

p = 0.95). At the highest AM concentration, all scores were significantly different after paired

and unpaired training (MW, [A] U = 611, p< 0.00001; [B] U = 643, p< 0.00001; [C] U = 489,

p< 0.00001; [D] U = 1162, p = 0.013). Sample sizes are indicated below each box plot. For
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further details, see S1 Fig.

(TIF)

S3 Fig. Results after paired and unpaired training with various numbers of training cycles.

Displayed are the results for (A) Pref, (B) HC rate-modulation, (C) Reorientation per HC and

(D) Run speed-modulation underlying the data shown in Fig 1L–1O. Results after paired

training are displayed in grey-filled box plots, whereas results after unpaired training are dis-

played in white box plots.

None of the measured aspects of chemotaxis was significantly changed by varying the number

of paired-training trials (KW [A] H = 1.1, df = 2, p = 0.58; [B] H = 0.9, df = 2, p = 0.64; [C]

H = 1.0, df = 2, p = 0.61; [D] H = 2.7, df = 2, p = 0.26). Odour preference and Reorientation

per HC were significantly affected by the number of unpaired-training trials, whereas HC rate-

modulation and Run speed-modulation were not (KW [A] H = 7.5, df = 2, p = 0.023; [B]

H = 3.8, df = 2, p = 0.15; [C] H = 8.8, df = 2, p = 0.012; [D] H = 0.8, df = 2, p = 0.67). Irrespec-

tive of the number of training trials, odour preference, HC rate-modulation and Reorientation

per HC differed after paired and unpaired training, whereas Run speed-modulation did not

(MW from left to right: [A] U = 858, p = 0.00057; U = 613, p< 0.00001; U = 545, p< 0.00001;

[B] U = 900, p = 0.0015; U = 830, p = 0.00045; U = 995, p = 0.0067; [C] U = 1084, p = 0.043;

U = 923, p = 0.0036; U = 909, p = 0.0012; [D] U = 1153, p = 0.11; U = 1043, p = 0.032;

U = 1350, p = 0.62). Sample sizes are indicated below each box plot. For further details, see S1

Fig.

(TIF)

S1 Dataset. Source data of all behavioural experiments. This Excel file contains all the data

displayed in this study. The data underlying Figs 1, 2, 3B, 3D and 3F are shown in the first tab

and organised in accordance with Fig 1. The data underlying Figs S1 and 3A are shown in the

second tab; the data underlying Figs S2 and 3C are shown in the third tab; and the data under-

lying Figs S3 and 3E are shown in the last tab.

(XLSX)
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N. Mancini, N. Toshima, B. Webb and A. Wystrach are gratefully acknowledged. We thank R.

D.V. Glasgow (Zaragoza, Spain) for language editing.

Author Contributions

Conceptualization: Vignesh Viswanathan, Emmanouil Paisios, Michael Schleyer.

Data curation: Michael Thane, Michael Schleyer.

Formal analysis: Michael Thane, Emmanouil Paisios, Michael Schleyer.

Investigation: Michael Thane, Vignesh Viswanathan, Tessa Christin Meyer, Michael Schleyer.

Methodology: Emmanouil Paisios.

Project administration: Michael Schleyer.

Software: Michael Thane, Emmanouil Paisios.

Supervision: Michael Schleyer.

Modulations of microbehaviour by associative memory strength

PLOS ONE | https://doi.org/10.1371/journal.pone.0224154 October 21, 2019 12 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0224154.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0224154.s004
https://doi.org/10.1371/journal.pone.0224154


Validation: Michael Schleyer.

Visualization: Michael Schleyer.

Writing – original draft: Michael Schleyer.

Writing – review & editing: Michael Thane, Vignesh Viswanathan, Tessa Christin Meyer,

Michael Schleyer.

References
1. Gerber B, Stocker RF, Tanimura T, Thum AS. Smelling, tasting, learning: Drosophila as a study case.

Results Probl Cell Differ. 2009; 47: 139–85. https://doi.org/10.1007/400_2008_9 PMID: 19145411

2. Diegelmann S, Klagges B, Michels B, Schleyer M, Gerber B. Maggot learning and Synapsin function. J

Exp Biol. 2013; 216(Pt 6): 939–51. https://doi.org/10.1242/jeb.076208 PMID: 23447663

3. Schleyer M, Diegelmann S, Michels B, Saumweber T, Gerber B. ’Decision-making’ in larval Drosophila.

In: Menzel R, Benjamin P, editors. Invertebrate Learning and Memory. München: Elsevier; 2013. p.

41–55.

4. Widmann A, Eichler K, Selcho M, Thum AS, Pauls D. Odor-taste learning in Drosophila larvae. J Insect

Physiol. 2018; 106(Pt 1): 47–54. https://doi.org/10.1016/j.jinsphys.2017.08.004 PMID: 28823531

5. Schipanski A, Yarali A, Niewalda T, Gerber B. Behavioral analyses of sugar processing in choice, feed-

ing, and learning in larval Drosophila. Chem Sens. 2008; 33(6): 563–73.

6. Rohwedder A, Pfitzenmaier JE, Ramsperger N, Apostolopoulou AA, Widmann A, Thum AS. Nutritional

value-dependent and nutritional value-independent effects on Drosophila melanogaster larval behavior.

Chem Sens. 2012; 37(8): 711–21.

7. Mishra D, Chen YC, Yarali A, Oguz T, Gerber B. Olfactory memories are intensity specific in larval Dro-

sophila. J Exp Biol. 2013; 216(Pt 9): 1552–60. https://doi.org/10.1242/jeb.082222 PMID: 23596280

8. Neuser K, Husse J, Stock P, Gerber B. Appetitive olfactory learning in Drosophila larvae: effects of rep-

etition, reward strength, age, gender, assay type and memory span. Anim Behav. 2005; 69: 891–8.

9. Weiglein A, Gerstner F, Mancini N, Schleyer M, Gerber B. One-trial learning in larval Drosophila. Learn

Mem. 2019; 26(4): 109–20. https://doi.org/10.1101/lm.049106.118 PMID: 30898973

10. Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman S, Heisenberg M. Dopamine and octo-

pamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci.

2003; 23(33):10495–502. https://doi.org/10.1523/JNEUROSCI.23-33-10495.2003 PMID: 14627633

11. Colomb J, Kaiser L, Chabaud MA, Preat T. Parametric and genetic analysis of Drosophila appetitive

long-term memory and sugar motivation. Gen Brain Behav. 2009; 8(4):407–15.

12. Niewalda T, Voller T, Eschbach C, Ehmer J, Chou WC, Timme M, et al. A combined perceptual, phy-

sico-chemical, and imaging approach to ’odour-distances’ suggests a categorizing function of the Dro-

sophila antennal lobe. PloS one. 2011; 6(9):e24300. https://doi.org/10.1371/journal.pone.0024300

PMID: 21931676

13. Scherer S, Stocker RF, Gerber B. Olfactory learning in individually assayed Drosophila larvae. Learn

Mem. 2003; 10(3): 217–25. https://doi.org/10.1101/lm.57903 PMID: 12773586

14. Saumweber T, Husse J, Gerber B. Innate attractiveness and associative learnability of odors can be

dissociated in larval Drosophila. Chem Sens. 2011; 36(3): 223–35.

15. Kleber J, Chen YC, Michels B, Saumweber T, Schleyer M, Kahne T, et al. Synapsin is required to

"boost" memory strength for highly salient events. Learn Mem. 2016; 23(1): 9–20. https://doi.org/10.

1101/lm.039685.115 PMID: 26670182

16. Schleyer M, Miura D, Tanimura T, Gerber B. Learning the specific quality of taste reinforcement in larval

Drosophila. eLife. 2015; 4.

17. Schleyer M, Reid SF, Pamir E, Saumweber T, Paisios E, Davies A, et al. The impact of odor-reward

memory on chemotaxis in larval Drosophila. Learn Mem. 2015; 22(5): 267–77. https://doi.org/10.1101/

lm.037978.114 PMID: 25887280

18. Paisios E, Rjosk A, Pamir E, Schleyer M. Common microbehavioral "footprint" of two distinct classes of

conditioned aversion. Learn Mem. 2017; 24(5): 191–8. https://doi.org/10.1101/lm.045062.117 PMID:

28416630

19. Gomez-Marin A, Stephens GJ, Louis M. Active sampling and decision making in Drosophila chemo-

taxis. Nat Comm. 2011; 2: 441.

Modulations of microbehaviour by associative memory strength

PLOS ONE | https://doi.org/10.1371/journal.pone.0224154 October 21, 2019 13 / 15

https://doi.org/10.1007/400_2008_9
http://www.ncbi.nlm.nih.gov/pubmed/19145411
https://doi.org/10.1242/jeb.076208
http://www.ncbi.nlm.nih.gov/pubmed/23447663
https://doi.org/10.1016/j.jinsphys.2017.08.004
http://www.ncbi.nlm.nih.gov/pubmed/28823531
https://doi.org/10.1242/jeb.082222
http://www.ncbi.nlm.nih.gov/pubmed/23596280
https://doi.org/10.1101/lm.049106.118
http://www.ncbi.nlm.nih.gov/pubmed/30898973
https://doi.org/10.1523/JNEUROSCI.23-33-10495.2003
http://www.ncbi.nlm.nih.gov/pubmed/14627633
https://doi.org/10.1371/journal.pone.0024300
http://www.ncbi.nlm.nih.gov/pubmed/21931676
https://doi.org/10.1101/lm.57903
http://www.ncbi.nlm.nih.gov/pubmed/12773586
https://doi.org/10.1101/lm.039685.115
https://doi.org/10.1101/lm.039685.115
http://www.ncbi.nlm.nih.gov/pubmed/26670182
https://doi.org/10.1101/lm.037978.114
https://doi.org/10.1101/lm.037978.114
http://www.ncbi.nlm.nih.gov/pubmed/25887280
https://doi.org/10.1101/lm.045062.117
http://www.ncbi.nlm.nih.gov/pubmed/28416630
https://doi.org/10.1371/journal.pone.0224154


20. Lahiri S, Shen K, Klein M, Tang A, Kane E, Gershow M, et al. Two alternating motor programs drive nav-

igation in Drosophila larva. PloS one. 2011; 6(8): e23180. https://doi.org/10.1371/journal.pone.0023180

PMID: 21858019

21. Gershow M, Berck M, Mathew D, Luo L, Kane EA, Carlson JR, et al. Controlling airborne cues to study

small animal navigation. Nat Methods. 2012; 9(3): 290–6. https://doi.org/10.1038/nmeth.1853 PMID:

22245808

22. Davies A, Louis M, Webb B. A model of Drosophila larva chemotaxis. PLoS Comp Biol. 2015; 11(11):

e1004606.

23. Schulze A, Gomez-Marin A, Rajendran VG, Lott G, Musy M, Ahammad P, et al. Dynamical feature

extraction at the sensory periphery guides chemotaxis. eLife. 2015; 4.

24. Gomez-Marin A, Louis M. Active sensation during orientation behavior in the Drosophila larva: more

sense than luck. Curr Op Neurobiol. 2012; 22(2):208–15. https://doi.org/10.1016/j.conb.2011.11.008

PMID: 22169055

25. Gomez-Marin A, Louis M. Multilevel control of run orientation in Drosophila larval chemotaxis. Front

Behav Neurosci. 2014; 8:38. https://doi.org/10.3389/fnbeh.2014.00038 PMID: 24592220

26. Wystrach A, Lagogiannis K, Webb B. Continuous lateral oscillations as a core mechanism for taxis in

Drosophila larvae. eLife. 2016; 5.

27. Loveless J, Webb B. A neuromechanical model of larval chemotaxis. Integr Comp Biol. 2018; 58

(5):906–14. https://doi.org/10.1093/icb/icy094 PMID: 30060198

28. Michels B, Saumweber T, Biernacki R, Thum J, Glasgow RDV, Schleyer M, et al. Pavlovian conditioning

of larval Drosophila: An illustrated, multilingual, hands-on manual for odor-taste associative learning in

maggots. Front Behav Neurosci. 2017; 11: 45. https://doi.org/10.3389/fnbeh.2017.00045 PMID:

28469564

29. Holm S. A simple sequentially rejective multiple test procedure. Scand J Statist. 1979; 6(2):65–70.

30. Thum AS, Gerber B. Connectomics and function of a memory network: the mushroom body of larval

Drosophila. Curr Opin Neurobiol. 2019; 54: 146–54. https://doi.org/10.1016/j.conb.2018.10.007 PMID:

30368037

31. Heisenberg M. Mushroom body memoir: from maps to models. Nature Rev. 2003; 4(4):266–75.

32. Guven-Ozkan T, Davis RL. Functional neuroanatomy of Drosophila olfactory memory formation. Learn

Mem. 2014; 21(10):519–26. https://doi.org/10.1101/lm.034363.114 PMID: 25225297

33. Cognigni P, Felsenberg J, Waddell S. Do the right thing: neural network mechanisms of memory forma-

tion, expression and update in Drosophila. Curr Opin Neurobiol. 2018; 49:51–8. https://doi.org/10.1016/

j.conb.2017.12.002 PMID: 29258011

34. Tumkaya T, Ott S, Claridge-Chang A. A systematic review of Drosophila short-term-memory genetics:

Meta-analysis reveals robust reproducibility. Neurosci Biobehav Rev. 2018; 95:361–82. https://doi.org/

10.1016/j.neubiorev.2018.07.016 PMID: 30077573

35. Horiuchi J. Recurrent loops: Incorporating prediction error and semantic/episodic theories into Drosoph-

ila associative memory models. Genes, brain, and behavior. 2019:e12567. https://doi.org/10.1111/gbb.

12567 PMID: 30891930

36. Schroll C, Riemensperger T, Bucher D, Ehmer J, Voller T, Erbguth K, et al. Light-induced activation of

distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr Biol.

2006; 16(17):1741–7. https://doi.org/10.1016/j.cub.2006.07.023 PMID: 16950113

37. Rohwedder A, Wenz NL, Stehle B, Huser A, Yamagata N, Zlatic M, et al. Four individually identified

paired dopamine neurons signal reward in larval Drosophila. Curr Biol. 2016; 26(5): 661–9. https://doi.

org/10.1016/j.cub.2016.01.012 PMID: 26877086

38. Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, Schneider-Mizell CM, et al. The complete connec-

tome of a learning and memory centre in an insect brain. Nature. 2017; 548(7666): 175–82. https://doi.

org/10.1038/nature23455 PMID: 28796202

39. Saumweber T, Rohwedder A, Schleyer M, Eichler K, Chen YC, Aso Y, et al. Functional architecture of

reward learning in mushroom body extrinsic neurons of larval Drosophila. Nat Comm. 2018; 9(1): 1104.

40. Liu C, Placais PY, Yamagata N, Pfeiffer BD, Aso Y, Friedrich AB, et al. A subset of dopamine neurons

signals reward for odour memory in Drosophila. Nature. 2012; 488(7412):512–6. https://doi.org/10.

1038/nature11304 PMID: 22810589

41. Burke CJ, Huetteroth W, Owald D, Perisse E, Krashes MJ, Das G, et al. Layered reward signalling

through octopamine and dopamine in Drosophila. Nature. 2012; 492(7429):433–7. https://doi.org/10.

1038/nature11614 PMID: 23103875

Modulations of microbehaviour by associative memory strength

PLOS ONE | https://doi.org/10.1371/journal.pone.0224154 October 21, 2019 14 / 15

https://doi.org/10.1371/journal.pone.0023180
http://www.ncbi.nlm.nih.gov/pubmed/21858019
https://doi.org/10.1038/nmeth.1853
http://www.ncbi.nlm.nih.gov/pubmed/22245808
https://doi.org/10.1016/j.conb.2011.11.008
http://www.ncbi.nlm.nih.gov/pubmed/22169055
https://doi.org/10.3389/fnbeh.2014.00038
http://www.ncbi.nlm.nih.gov/pubmed/24592220
https://doi.org/10.1093/icb/icy094
http://www.ncbi.nlm.nih.gov/pubmed/30060198
https://doi.org/10.3389/fnbeh.2017.00045
http://www.ncbi.nlm.nih.gov/pubmed/28469564
https://doi.org/10.1016/j.conb.2018.10.007
http://www.ncbi.nlm.nih.gov/pubmed/30368037
https://doi.org/10.1101/lm.034363.114
http://www.ncbi.nlm.nih.gov/pubmed/25225297
https://doi.org/10.1016/j.conb.2017.12.002
https://doi.org/10.1016/j.conb.2017.12.002
http://www.ncbi.nlm.nih.gov/pubmed/29258011
https://doi.org/10.1016/j.neubiorev.2018.07.016
https://doi.org/10.1016/j.neubiorev.2018.07.016
http://www.ncbi.nlm.nih.gov/pubmed/30077573
https://doi.org/10.1111/gbb.12567
https://doi.org/10.1111/gbb.12567
http://www.ncbi.nlm.nih.gov/pubmed/30891930
https://doi.org/10.1016/j.cub.2006.07.023
http://www.ncbi.nlm.nih.gov/pubmed/16950113
https://doi.org/10.1016/j.cub.2016.01.012
https://doi.org/10.1016/j.cub.2016.01.012
http://www.ncbi.nlm.nih.gov/pubmed/26877086
https://doi.org/10.1038/nature23455
https://doi.org/10.1038/nature23455
http://www.ncbi.nlm.nih.gov/pubmed/28796202
https://doi.org/10.1038/nature11304
https://doi.org/10.1038/nature11304
http://www.ncbi.nlm.nih.gov/pubmed/22810589
https://doi.org/10.1038/nature11614
https://doi.org/10.1038/nature11614
http://www.ncbi.nlm.nih.gov/pubmed/23103875
https://doi.org/10.1371/journal.pone.0224154


42. Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo TT, et al. The neuronal architecture of the mush-

room body provides a logic for associative learning. eLife. 2014a; 3:e04577. https://doi.org/10.7554/

eLife.04577 PMID: 25535793

43. Aso Y, Rubin GM. Dopaminergic neurons write and update memories with cell-type-specific rules.

eLife. 2016; 5.

44. Takemura SY, Aso Y, Hige T, Wong A, Lu Z, Xu CS, et al. A connectome of a learning and memory cen-

ter in the adult Drosophila brain. eLife. 2017; 6.

45. Sejourne J, Placais PY, Aso Y, Siwanowicz I, Trannoy S, Thoma V, et al. Mushroom body efferent neu-

rons responsible for aversive olfactory memory retrieval in Drosophila. Nat Neurosci. 2011; 14(7):903–

10. https://doi.org/10.1038/nn.2846 PMID: 21685917

46. Placais PY, Trannoy S, Friedrich AB, Tanimoto H, Preat T. Two pairs of mushroom body efferent neu-

rons are required for appetitive long-term memory retrieval in Drosophila. Cell Rep. 2013; 5(3):769–80.

https://doi.org/10.1016/j.celrep.2013.09.032 PMID: 24209748

47. Hige T, Aso Y, Modi MN, Rubin GM, Turner GC. Heterosynaptic plasticity underlies aversive olfactory

learning in Drosophila. Neuron. 2015; 88(5):985–98. https://doi.org/10.1016/j.neuron.2015.11.003

PMID: 26637800

48. Cohn R, Morantte I, Ruta V. Coordinated and compartmentalized neuromodulation shapes sensory pro-

cessing in Drosophila. Cell. 2015; 163(7): 1742–55. https://doi.org/10.1016/j.cell.2015.11.019 PMID:

26687359

49. Aso Y, Sitaraman D, Ichinose T, Kaun KR, Vogt K, Belliart-Guerin G, et al. Mushroom body output neu-

rons encode valence and guide memory-based action selection in Drosophila. eLife. 2014; 3: e04580.

https://doi.org/10.7554/eLife.04580 PMID: 25535794

50. Owald D, Felsenberg J, Talbot CB, Das G, Perisse E, Huetteroth W, et al. Activity of defined mushroom

body output neurons underlies learned olfactory behavior in Drosophila. Neuron. 2015; 86(2): 417–27.

https://doi.org/10.1016/j.neuron.2015.03.025 PMID: 25864636

Modulations of microbehaviour by associative memory strength

PLOS ONE | https://doi.org/10.1371/journal.pone.0224154 October 21, 2019 15 / 15

https://doi.org/10.7554/eLife.04577
https://doi.org/10.7554/eLife.04577
http://www.ncbi.nlm.nih.gov/pubmed/25535793
https://doi.org/10.1038/nn.2846
http://www.ncbi.nlm.nih.gov/pubmed/21685917
https://doi.org/10.1016/j.celrep.2013.09.032
http://www.ncbi.nlm.nih.gov/pubmed/24209748
https://doi.org/10.1016/j.neuron.2015.11.003
http://www.ncbi.nlm.nih.gov/pubmed/26637800
https://doi.org/10.1016/j.cell.2015.11.019
http://www.ncbi.nlm.nih.gov/pubmed/26687359
https://doi.org/10.7554/eLife.04580
http://www.ncbi.nlm.nih.gov/pubmed/25535794
https://doi.org/10.1016/j.neuron.2015.03.025
http://www.ncbi.nlm.nih.gov/pubmed/25864636
https://doi.org/10.1371/journal.pone.0224154

