Current Biology, Volume 30

Supplemental Information

Immune Receptor Signaling and the Mushroom

Body Mediate Post-ingestion Pathogen Avoidance

Johanna M. Kobler, Francisco J. Rodriguez Jimenez, Irina Petcu, and Ilona C. Grunwald Kadow

Figure S1: Analysis of effect of pathogen ingestion on fly activity. Related to Figure 1.

(A) and (B) Activity counts of exemplary single flies after feeding with *Ecc15 evf* or *Ecc15 pOM1* as well as *Pe gacA* or *Pe* WT. (C) Total activity counts in the *Drosophila* activity monitor for two 5h-long periods after *Ecc15* or *Pe* feeding. *Ecc15 evf/pOM1*: n=24/21 (10-17h) and n=24/20 (17-22h); *Pe*: all n = 23. p-values calculated via unpaired t-test with Welch's correction. (D) Burstiness of locomotor activity patterns after bacteria feeding, n=24 (*Ecc15*), n=23 (*Pe*), p-values calculated via unpaired t-test with Welch's correction. (E) Circadian rhythms of infected flies. Chi-square test of independence showed no significant differences for periodicity of flies fed with different bacterial strains (p=0.8676).

Figure S2: Olfactory choices of control and mutant flies in olfactory arena assay. Related to Figure 2.

(A) Preferences of starved, naïve OrR flies for the olfactory choice between pathogenic *Pe* WT or *Ecc15* pOM1 and LB medium, respectively. n=21 (*Pe*), n=16 (*Ecc15*). p-values calculated via one-sample t-test comparing to 0. (B) Preferences of heterozygous ORCO¹/+ and anosmic ORCO¹ null mutant flies for the olfactory choice between harmless *Ecc15 evf* and pathogenic *Ecc15 pOM1*. n=16, p-value calculated via unpaired t-test with Welch's correction.

Figure S3: Feeding induced changes in behavior to pathogenetic bacteria. Related to Figure 3.

(A) *Ecc15* feeding of wild-type OrR flies in the CAFE. Cumulative consumption in µl/fly for the feeding choices sucrose vs. harmless *Ecc15 evf* (n=19), sucrose vs. pathogenic *Ecc15 pOM1* (n=20) and *Ecc15 evf* vs. *Ecc15 pOM1* (n=20). p-values calculated via repeated-measures two-way ANOVA followed by Bonferroni's post hoc test for multiple comparisons. (B-D) Additional parameters for the bacterial feeding preferences of wild-type CS flies in the flyPAD shown in Figure 3F-I, n=132 (*Ecc15*), n=137 (*Pe*). (B) Non-cumulative number of sips for the feeding choice between harmless and pathogenic *Ecc15* or *Pe*, respectively. (C) Number of activity bouts, p-value calculated via the Wilcoxon matched-pairs signed rank test. (D) Number of sips 15 and 30 minutes after feeding of wild-type CS flies and number of sips 15 and 30 minutes after feeding of wild-type CS flies and number of sips 15 and 30 minutes after feeding of wild-type CS flies and number of sips 15 and 30 minutes after feeding of wild-type CS flies and number of sips 15 and 30 minutes after feeding of wild-type CS flies and number of sips 15 and 30 minutes after feeding of wild-type CS flies and number of sips 15 and 30 minutes after feeding of wild-type CS flies and number of sips 15 and 30 minutes after feeding of wild-type CS flies for the choice between 1% and 10% sucrose in the flyPAD, n=126. (F) Cumulative feeding of wild-type CS flies for the choice between pathogenic *Ecc15 pOM1* and LB medium in the flyPAD, n=133. (G), (H) Feeding preferences of wild-type CS flies for the choice between harmless *Ecc15 pOM1* (H). Cumulative feeding and total number of sips after 60 minutes, n=65. (D-H) p-values calculated by comparing feeding ratios to 1 via the Wilcoxon signed rank test.

Figure S4: The mushroom body is involved in adaptive post-ingestion behavior to pathogenic bacteria. Related to Figure 4.

(A) Feeding preferences of control w⁻ flies for the choice between sucrose and harmless *Ecc15 evf* (n=22) as well as between sucrose and pathogenic *Ecc15 pOM1* (n=23), (experiment at 30°C). (B) Feeding preferences of anosmic ORCO¹ and heterozygous ORCO¹/+ control flies for the choices sucrose vs. *Ecc15 evf* and sucrose vs. *Ecc15 pOM1* (all n=17). (C) Preferences of rutabaga²⁰⁸⁰ learning mutant flies (n=17) and of heterozygous rutabaga²⁰⁸⁰/+ control flies (n=16/17) for the feeding choice between sucrose and harmless *Ecc15 evf* and between sucrose and pathogenic *Ecc15 pOM1*. (D) GAL4-driver controls for MB10B and MB11B Split-GAL4 lines. Feeding preferences of MB10B > + (n=21) and MB11B > + (n=19) flies for the choice between harmless *Ecc15 evf* and pathogenic *Ecc15 pOM1*. (A-D) cumulative consumption in µl/fly in the CAFE, p-values calculated via repeated-measures two-way ANOVA followed by Bonferroni's post hoc test for multiple comparisons.

Figure S5. Analysis of immune signalling components in feeding assay. Related to Figure 5.

(A) Feeding preferences of isogenized control w⁻ flies for the choices sucrose vs. harmless *Ecc15 evf* (n=15), sucrose vs. pathogenic *Ecc15 pOM1* (n=14) and *Ecc15 evf* vs. *Ecc15 pOM1* (n=16). (B) Feeding preferences of flies lacking the NF-kB transcription factor Relish for the choices sucrose vs. *Ecc15 evf*, sucrose vs. *Ecc15 pOM1* and *Ecc15 evf* vs. *Ecc15 pOM1* (all n=16). (C) Feeding preferences of flies deficient for all AMPs except for cecropins for the choice between sucrose and *Ecc15 evf*, sucrose and *Ecc15 evf* and *Ecc15 pOM1* (all n=16). (D) Preferences of starved, naïve PGRP-LC^{AE} and PGRP-LE¹¹² mutant flies as well as of corresponding heterozygous controls for the odor of pathogenic *Ecc15 pOM1* over the odor of harmless *Ecc15 evf* in the 4-field arena (all n=16). p-values calculated via one-sample t-test with Welch's correction are indicated in black. (A-C) cumulative consumption in µl/fly in the CAFE and box plots of total consumption at the end of the experiment (9h). p-values calculated via repeated-measures two-way ANOVA followed by Bonferroni's post hoc test for multiple comparisons.

Figure S6: Imd signaling components are involved in pathogen feeding choice. Related to Figure 6.

(A) Feeding preferences of Act > PGRP-LC^{RNAi} flies that similarly to PGRP-LC^{ΔE} mutant flies lack PGRP-LC in the whole body for the choice between sucrose and harmless *Ecc15 evf*, sucrose and pathogenic *Ecc15 pOM1* or between harmless and pathogenic *Ecc15* (all n=16). (B) Feeding preferences of Act > + control flies for the choices sucrose vs. *Ecc15 evf* (n=19), sucrose vs. *Ecc15 pOM1* (n=20) and *Ecc15 evf* vs. *Ecc15 pOM1* (n=20). (C) Feeding preferences upon downregulation of PGRP-LC specifically in the fat body using Lpp > PGRP-LC^{RNAi} flies for the choices sucrose vs. *Ecc15 evf* (n=20), sucrose vs. *Ecc15 pOM1* (n=19) and *Ecc15 evf* vs. *Ecc15 pOM1* (n=20). (D) Preferences of Lpp > PGRP-LE^{RNAi} flies that lack PGRP-LE specifically in the fat body for the feeding choices between sucrose and *Ecc15 evf* (n=14), sucrose and *Ecc15 pOM1* (n=17) and between *Ecc15 evf* and *Ecc15 pOM1* (n=16). (A-D) cumulative consumption in µl/fly in the CAFE and box plots of total consumption at the end of the experiment (9h). p-values calculated via repeated-measures two-way ANOVA followed by Bonferroni's post hoc test for multiple comparisons.

Figure S7: Dopamine is not essential for pathogenic bacteria feeding suppression. Related to Figure 7.

(A) Preferences for the feeding choice between sucrose and harmless *Ecc15 evf* (n=21), sucrose and pathogenic *Ecc15 pOM1* (n=21) and between *Ecc15 evf* and *Ecc15 pOM1* (n=23) upon inactivation of broad clusters of dopaminergic neurons using TH58E02 > shibire^{ts1} flies. (B) Feeding preferences of TH58E02 > + control flies for the choices sucrose vs. *Ecc15 evf* (n=22), sucrose vs. *Ecc15 pOM1* (n=21) and *Ecc15 evf* vs. *Ecc15 pOM1* (n=21). (C) Feeding preferences of mex > PGRP-LC^{RNAi} flies that lack PGRP-LC specifically in midgut enterocytes for the choices between sucrose and harmless *Ecc15 evf*, sucrose and pathogenic *Ecc15 pOM1* and between *Ecc15 evf* and *Ecc15 pOM1* (all n=16). (D) Feeding preferences of MB10B > PGRP-LC^{RNAi} flies that are deficient for PGRP-LC in all KCs of the MB for the choices sucrose vs. *Ecc15 evf* (n=18), sucrose vs. *Ecc15 pOM1* (n=16) and *Ecc15 evf* vs. *Ecc15 pOM1* (n=20). However, note the overall low consumption. (A-D) cumulative consumption in µl/fly in the CAFE and box plots of total consumption at the end of the experiment (9h). p-values calculated via repeated-measures two-way ANOVA followed by Bonferroni's post hoc test for multiple comparisons.