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Abstract
We present a deep learning-based framework for individual tree crown delineation in aerial and satellite images. This is an

important task, e.g., for forest yield or carbon stock estimation. In contrast to earlier work, the presented method creates

irregular polygons instead of bounding boxes and also provides a tree cover mask for areas that are not separable.

Furthermore, it is trainable with low amounts of training data and does not need 3D height information from, e.g., laser

sensors. We tested the approach in two scenarios: (1) with 30 cm WorldView-3 satellite imagery from an urban region in

Bengaluru, India, and (2) with 5 cm aerial imagery of a densely forested area near Gartow, Germany. The intersection over

union between the reference and predicted tree cover mask is 71.2% for the satellite imagery and 81.9% for the aerial

images. On the polygon level, the method reaches an accuracy of 46.3% and a recall of 63.7% in the satellite images and an

accuracy of 52% and recall of 66.2% in the aerial images, which is comparable to previous works that only predicted

bounding boxes. Depending on the image resolution, limitations to separate individual tree crowns occur in situations

where trees are hardly separable even for human image interpreters (e.g., homogeneous canopies, very small trees). The

results indicate that the presented approach can efficiently delineate individual tree crowns in high-resolution optical

images. Given the high availability of such imagery, the framework provides a powerful tool for tree monitoring. The

source code and pretrained weights are publicly available at https://github.com/AWF-GAUG/TreeCrownDelineation.
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1 Introduction

The size and structure of a tree crown determines the pri-

mary production of a tree and is characterized by the

species-specific branching pattern, site conditions, and

resource competition, mainly for light. One of the most

important tree crown characteristics is the crown projection

area (CPA), which can be defined as the parallel vertical

projection of the tree crown onto a horizontal plane.

Delineating tree crowns to derive the CPA can provide

valuable information at the single tree and stand level. In

forest management, the single tree level CPA is used to

predict diameter, volume [1], and growth rates [2] of

individual trees. Tree crown maps generated at the stand

level can be utilized to model stand competition [3] and to

study canopy gap patterns [4].

Producing tree crown maps by manual delineation and

visual interpretation of aerial images has a long history in

forestry and ecology. However, the manual delineation of

tree crowns is laborious and time-consuming and is often

only practical for small areas. Therefore, automatic delin-

eation methods have been developed that have the potential

to map a large number of tree crowns with lower effort.

Methods for individual tree crown delineation (ITD) in

high resolution optical images include watershed segmen-

tation [5], template matching [6], multi-scale segmentation

[7] and region growing approaches [8]—a review is
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provided in [9]. These methods have been successfully

applied at the stand or district level, but it is difficult to

transfer them to larger areas. This is due to their inherent

sensitivity to the image quality (e.g., spatial resolution,

light conditions, phenology), which results in poor per-

formance when applied to heterogeneous large area

mappings.

With the availability of 3D data observed with light

detection and ranging (LiDAR) sensors or created by

photogrammetric image analysis, new approaches based on

either 2.5D surface models or directly working on 3D point

clouds have become available. An overview of these

approaches is presented in [10]. However, such 3D datasets

are costly to collect and thus are often not available for

large areas or regular time intervals, which limits the

possibilities of applying tree crown delineation to larger

regions. In comparison, 2D images with high spatial res-

olution can be collected at much lower costs and higher

frequency using satellites, aircrafts or unmanned aerial

vehicles (UAVs). Consequently, a robust, fast, and auto-

matic method for tree crown delineation based on 2D

optical imagery is needed. To summarize, our study is

motivated by: (1) The need for accurate data for forest

monitoring, (2) the insufficient performance of existing

methods, and (3) the desire to avoid costly LiDAR data.

To meet these challenges, we developed a new deep

learning-based instance segmentation method for auto-

matically delineating tree crown polygons in optical ima-

ges with high spatial resolution. Compared to other

methods, such as Mask-R-CNN [11], our method requires

less training data, which renders it applicable to small

study areas. To test and demonstrate the robustness of the

proposed method, it is applied to two case studies from

different environments (i.e., an urban area in Bangalore,

India, and a forested area in Gartow, Germany) and with

two different sensor types (WorldView-3 satellite and

aerial images).

2 Related work

Recent advances in the field of deep learning provide new

image analysis methods that are able to solve previously

impossible computer vision tasks. For example, accurate

object detection is possible under challenging conditions

like varying illumination, object size, or viewing angle

[11–13]. Image segmentation (i.e., pixelwise classification)

networks are particularly interesting in the field of remote

sensing, e.g., for wildfire detection [14], change detection

[15] or landcover classification [16]. Numerous works have

applied deep learning for the classification of tree species

in remote sensing data, for example in Sentinel-2 satellite

time series [17], in UAV imagery [18] or a combination of

LiDAR data and satellite images [19].

A number of recent studies present applications of deep

learning methods for individual tree detection, but many of

them focus only on small areas or homogeneous planta-

tions with disjunct tree crowns [20, 21]. A recent study by

Weinstein et al. [22, 23] went further and trained a neural

network for predicting bounding boxes around trees from

aerial imagery with a spatial resolution of 10 cm on large

areas distributed across the USA. They used a RetinaNet

[24] architecture and reached a precision of 61% and a

recall of 69%. The bounding boxes alone already provide

valuable information, e.g., on tree density—but it is

insufficient for many of the described applications where

individual tree crown polygons are needed.

A study by Braga et al. [25] used the Mask-R-CNN [11]

network to delineate tree crowns for a small study area in

Brazil, using WorldView-2 satellite imagery with 0.5 m

spatial resolution. They reported an average bounding box

precision of 91% and a recall of 81%. The drawback of

Mask-R-CNN is the need for large amounts of labeled

training data with individual tree crowns, which are often

not available. To overcome the training data limitation,

they generated synthetic training samples from a limited

number of manually digitized tree crowns. Since they

tested the approach in a single study area only, it remains

unclear how well the method can be transferred to other

areas.

3 Methods

3.1 Model

To delineate the tree crowns, a two-step approach was

applied: First, a neural network predicted a tree cover

mask, crown outlines, and the distance transform for each

tree. Then, in a polygon extraction step, a conventional

watershed transform was applied to a modified distance

transform (see Eq. (1)), thereby extracting individual

crowns. This process was inspired by TernausNetV2 [12]

and DeepWatershed [26]. The key idea was to enhance the

concept of TernausNetV2 (predicting object outlines) by

feeding its output to a simplified DeepWatershed network,

thereby creating a network output that is more suitable to

be processed by conventional watershed algorithms.

Step 1—Tree crown mask generation: We employed a

neural network, which encompassed two subnetworks (see

Fig. 1): The first subnetwork generated a tree cover mask

and a prediction for tree crown outlines based on the input

imagery, analogous to [12]. This output was concatenated

with the original input image and fed into the second
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subnetwork, which in turn output a distance transform. The

distance transform measures how far a given tree crown

pixel (foreground) is from the closest non-tree crown pixel

(background); it is higher at the tree crown center and

lower at the edges. Therefore, local maxima in the distance

transform served as a proxy to the stem position. Finally,

the full model output the tree cover mask, the outline

prediction, and the distance transform.

Subnetwork one is a U-Net [27] with ResNet18 [28]

backbone and five pooling stages, as provided by [29]. The

second subnetwork had the same architecture and back-

bone, but only three pooling stages.

Step 2—Tree crown polygon extraction: Based on the

model outputs, a series of processing steps is conducted to

obtain the final tree crown polygons. Fig. 2 depicts the

procedure. First, the mask, outline, and distance transform

were combined according to the following formula

R ðM;O;DÞ ¼ H ðMa � bOcÞDd ð1Þ

where R is the transformed tree mask, H is the Heaviside

function,M is the tree cover mask output by the network, O

the outlines, and D the distance transform. Alpha, beta, and

gamma are model parameters that were found via a hyper-

parameter tuning process using Hyperopt [30]. We found

a ¼ 2, b ¼ 5, c ¼ 1 and d ¼ 0:5 to be a good choice and

therefore conducted all experiments with this set. The

search procedure is described in Sect. 4. The involved

subtraction, exponentiation, and multiplication were

applied pixel-wise.

The resulting transformed tree mask R was blurred using

a Gaussian filter with standard deviation r, followed by a

local maximum search. The library in use [31] requires a

minimum distance dmin and minimum height of the max-

ima hmin, which can be used to tune the results. These

maxima were finally used as a seed for the morphological

watershed segmentation (implemented in [31]), which we

restricted to areas where R exceeded a certain threshold t,

which was also a hyper-parameter. To remove unrealisti-

cally small tree crowns, the resulting polygons were filtered

by their size using a fixed threshold of 3 m2.

3.2 Loss functions

The loss function for training the mask and outline detec-

tion network was a combination of binary cross-entropy

(BCE) loss with the negative log of the intersection over

union (IoU, for a definition see 3.3).

Lmask/outlineðyp; ytÞ ¼
1

N

XN

i¼1

BCE ðyp;i; yt;iÞ

� logðIoUðyp; ytÞÞ
ð2Þ

Where yp and yt are the predicted and ground truth masks/

outlines and N is the number of pixels in the image, and i is

the pixel index. For individual pretraining of the first

Fig. 1 The crown mask generation model in step 1 consisted of two

subnetworks; a deep and a shallow U-Net with ResNet18 backbone

(displayed only schematically), having five and three pooling stages,

respectively. The first generated a tree mask and outlines, and the

second predicted the distance transform. Mask, outlines, and distance

transform were then used to obtain the final tree crown polygons in a

subsequent polygon extraction step via watershed transform

mask

outlines

distance
transform

non-linear
combination

Gaussian blur &
maximum search

morphological
watershed

polygon
extraction

Fig. 2 In step 2, the tree crown

polygons were extracted in four

stages
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subnetwork, the loss was calculated separately for masks

and outlines and then summed up.

The second subnetwork was trained using the mean

squared error between the predicted and ground truth dis-

tance transform.

Ldist ðyp; ytÞ ¼
1

N

XN

i¼1

ðyp;i � yt;iÞ2 ð3Þ

The reference data for the distance transform were gener-

ated on a per-object basis and then normalized; the point in

an object with the highest distance to the background had a

value of one, linearly falling off to zero at the object edges.

The classification into distance classes as performed in [26]

was neglected, and the final loss function L for end-to-end

training of the model was simply the sum of all three

auxiliary losses:

L ¼ Lmask þ Loutline þ Ldist ð4Þ

3.3 Performance metrics and evaluation

We calculate accuracy, precision, and recall for the poly-

gon predictions based on the counts of true-positive, false-

positive, and false-negative polygons (see Appendix).

Furthermore, the intersection over union (IoU) of the tree

cover mask is reported. The intersection over union can be

best described using a ground truth vector y~t and prediction

vector y~p, which can be obtained by simply stacking the

columns of the target/prediction matrix. Polygons with an

IoU greater than 0.5 were counted as true positives.

ð5Þ

y~: Vector containing the ground truth or prediction

k ::: k: Sum of all vector elements

In addition to the above metrics, which are based on true

and false polygon counts, we report the pixel-wise preci-

sion, recall and IoU averaged over all pairs of correctly

detected polygons and corresponding references.

To analyze whether our method tends to over-segment,

we define the over-segmentation ratio O as follows:

Oðt; pÞ ¼ 1

Nt

X

i;j

H
kti \ pjk
kpjk

� 0:5

� �
ð6Þ

t; p: List containing true or predicted polygons, Nt: Number

of ground truth polygons, k ::: k: Polygon area

The over-segmentation ratio counts the average number

of predicted polygons which overlap with more than 50%

of their area with a ground truth polygon. It makes no

statement regarding segmentation quality.

4 Experimental setup

The performance of the new tree crown delineation method

was assessed under varying site conditions and with dif-

ferent image sources. To test the robustness, we selected

two contrasting scenarios: (1) delineation of urban trees

located in the megacity of Bengaluru, India, using satellite

images, and (2) delineation of trees in a forest area in

Lower Saxony, Germany, for which aerial imagery was

used.

4.1 Scenario 1: satellite Imagery

Image data: In the first experiment, urban trees in Ben-

galuru, India, were delineated using satellite imagery with

30 cm spatial resolution (after pan-sharpening) and eight

VNIR bands. The Bengaluru image dataset covers an area

of 5�50 km (� 12.94� N 77.56� E to 13.39� N 77.61� E)

and was acquired on 2016-11-16 by WorldView-3 (Digi-

talGlobe r) under cloud-free conditions. For all images,

we added the normalized difference vegetation index

(NDVI) to the image stack. Pansharpening was performed

using the algorithm implemented in PCI Geomatica 2020

with default settings. The imagery underwent no atmo-

spheric correction.

Reference data preparation: For training and validation

of urban trees within the Bengaluru image dataset, we

manually delineated all trees on screen in 35 tiles of 9 ha

each by means of visual interpretation. These tiles were

randomly split into 28 images for training and 7 images for

validation. The tile locations were manually chosen to

cover the landscape variety and number of trees within it.

As not all trees were visually separable (e.g., in closed,

homogeneous canopies), we labeled non-separable crown

covered areas with contiguous polygons as tree groups. To

perform independent tests, 23 additional one-hectare plots

were used, for which the outline of a tree crown was drawn

on-site using printed plot maps and in a second step digi-

tized as a polygon. The in situ reference polygons were

rasterized to match the extent and resolution of the satellite

imagery. The outlines of these polygons were rasterized as

well and dilated (widened) by two pixels to provide a

stronger training signal. To obtain the in situ reference data

for the distance transform, each tree crown polygon was

rasterized, i.e., being one within the polygon and zero in

the background. Then, each polygon was distance trans-

formed; each pixel then represented the distance to the

closest background pixel. Lastly, we normalized the dis-

tance transform to its maximum on a per-polygon basis, so

that for all polygons, independent of size, the point farthest

from the background obtains a value of one, linearly falling

off to the edges.
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Before we commenced training on the aforementioned

data, we pretrained the neural network using an additional,

separate pretraining dataset containing 330 one-hectare

tiles with tree cover labels but without individual tree

annotation.

Training procedure: In the pretraining step, we trained

the first subnetwork on 264 tiles of one ha each for 200

epochs with an initial learning rate of 3 � 10�4 and a batch

size of 16. For validation, the remaining 66 images (20%)

were used. The learning rate was periodically decreased

according to a cosine annealing learning rate schedule [32]

with a period length of 30, which was doubled after each

period. As a loss function, the segmentation loss described

in Eq. (2) was used. The pretraining aimed at achieving

good tree/non-tree separation before learning individual

tree separation.

In a second step, we trained the full model. For this task,

we first determined the number of training epochs, maxi-

mizing model performance while avoiding overfitting, on

28 randomly selected tiles out of the 35, for which we had

delineated individual trees. Then, we carried out training

on the whole training dataset for the determined number of

89 epochs with the same learning rate schedule and settings

as the pretraining. In addition to the segmentation loss, we

penalized the mean squared error of the distance transform

prediction, according to eq. (4). During training, the input

images were augmented using fixed size random crops of

256� 256 pixels, random vertical flips and 90� rotations.

Polygon extraction: Table 1 lists all polygon extraction

parameters. Following [33], we set a minimum area of

3 m2 to suppress polygons that were too small. The other

parameters were optimized in a parameter search procedure

on the validation dataset using [30]. We utilized the overall

accuracy as an optimization goal and sampled the variables

from uniform distributions using the ‘‘Tree of Parzen

Estimators’’ (TPE). The distribution ranges are given in

Table 1. Optimization was carried out for 200 iterations.

Evaluation: We applied the model to our test set of 23

images of 1 ha each and calculated the intersection over

union between predicted and ground truth polygons. Pre-

dicted polygons with an IoU of more than 50% with any

ground truth polygon were counted as true positives and all

others as false positives. Ground truth polygons that had no

matching prediction were consequently false negatives.

False positives and negatives could occur even if the net-

work correctly detects pixels as ‘‘tree’’ but failed to parti-

tion them correctly into their respective tree crowns or

crown groups.

4.2 Scenario 2: aerial imagery

Image data: In the second experiment, we delineated trees

in a dense forest area in Gartow, Germany, located near

52.98� N 11.42� E. The site covers an area of ca. 142 km2

and the forest is mainly composed of Scots Pine (Pinus

sylvestris) as the dominating species and other species like

spruce (Picea abies), larch (Larix spp.), beech (Fagus

sylvatica), and oak (Quercus spp.) are interspersed. The

aerial images used were collected in 2018 using an Ultra

Cam Falcon f100 digital camera and a LiteMapper 700

Laser Scanner with a nominal point density of[10 pts=m2.

All images were georeferenced using the Global Navia-

gation Satellite System (GNSS) and Inertial Measurement

Unit (IMU) sensor data of the platform, as well as ground

control points (GCP) collected in the study area. The

images were radiometrically calibrated and comprise the

red, green, blue and near infrared bands. Again, we

appended the NDVI to the image stack. For the orthorec-

tification, a digital surface model was derived from the

filtered LiDAR point cloud, which resulted in a true

orthomosaic with a spatial resolution of 5 cm. Ortho-image

generation was done using the photogrammetry tools of the

PCI Geomatica software. Additionaly, we used the LiDAR

data to create a canopy height model (CHM) with a spatial

resolution of 0.25 m. The latter was only used to support

the visual delineation of tree crowns for the reference data.

Reference data preparation: In total, 3674 trees of

various species were labeled in 39 plots of 50 x 50 m.

Within these plots, all separable tree crowns were delin-

eated and checked against a canopy height model. Non-

separable tree crowns were labeled as well and included in

the tree cover mask, but no outlines or distance transforms

Table 1 Polygon extraction

parameters used in the two

scenarios of the experiment

Satellite Aerial

Param Description value Search space value Search space

dmin Minimum distance 3 m 1–10 m 2 m 1–5 m

amin Minimum area 3 m2 – 3 m2 –

hmin Peak min. height 0.5 0.01–0.99 0.1 0.01–0.99

t Mask threshold 0.1 0.01–0.99 0.1 0.01–0.99

r Gauss filter std. dev. 2 px 0–5 px 6 px 0–20 px
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were calculated. The vector data were rasterized analogous

to the procedure for case study one—with one exception:

The outlines were dilated by four instead of two pixels due

to the higher spatial resolution of the images. Table 2 gives

an overview of the dataset properties.

Training procedure: In absence of an independent test

dataset, a tenfold cross-validation on the 39 training plots

was performed. Thirty-two images were used for training

and seven for validation. In each cross-validation run, the

network was trained for 89 epochs with the same settings

as in the first case study but an initial learning rate of

5 � 10�4.

Polygon extraction: To account for the higher spatial

resolution and smaller size of the trees, the search space of

the parameter optimization was adjusted; we decreased the

minimum tree distance as the trees in Gartow tend to be

smaller and increased the standard deviation of the Gaus-

sian filter, as the resolution was higher. Since we used

cross-validation on this dataset, the optimization was car-

ried out on the training data for 200 steps.

Evaluation: For each cross-validation run, we calculated

true and false positives as well as false negatives by

thresholding the IoU. Then the average and standard

deviation of the resulting metrics were calculated. As only

13 polygons out of 3674 (0.35%) were labeled as group and

they covered only small areas, we treated them as nonex-

istent during evaluation.

5 Results

5.1 Satellite imagery

In the first scenario on urban trees using satellite imagery,

we achieved an accuracy of 46.3%, a precision of 62.8%,

and a recall of 63.7% on the test dataset. The IoU of the

tree cover mask and its prediction was 71.2%. Considering

single trees only, the model found 64.8% of them correctly.

In absolute values, the test dataset contained 799 trees and

tree groups, of which our method detected 502 correctly,

297 were false positives, and 286 were false negatives. On

average, the correctly detected polygons had an intersec-

tion over union with their corresponding reference polygon

of 71.2%, a precision of 84.6% and a recall of 83.4%. The

prediction for the entire study area of 250 km2 yielded

approximately 0.55 million tree and tree group polygons.

Inference took 35 minutes on a workstation with two

Nvidia GTX1080Ti, 96 GB RAM and a solid-state hard

drive. Figure 3 shows three examples: an urban context

from the test set and two from outside our training data but

with similar structure.

The reference dataset distinguished single trees and tree

groups, which could not be separated visually in the

satellite image. Figure 4 depicts the relationship between

the size of single tree crowns (or groups) and the recall,

answering how many of the in situ measured tree crowns

were found correctly. The results show that the method

performs poorly for trees with crown areas below 10 m2

with a recall of only 7.4%. Larger trees, however, were

detected with much higher reliability, with a recall of more

than 80% for single trees and between 67 and 86% for tree

groups. The decreasing recall for large tree groups indi-

cates that the model failed to partition the groups correctly.

Note that the uncertainty grows with decreasing tree count

for the corresponding size class.

5.2 Aerial imagery

In the second scenario, we analyzed the model performance

in aerial images, focusing on single trees only. Tenfold

cross-validation was performed, so all following metrics

and values were averaged over these runs. We reached a

maximum average accuracy of 52:0� 3:8%, with an

average precision and recall of 70:9� 3:1% and

66:2� 5:3%, respectively. The intersection over union of

the tree cover mask reached 81:9� 2:2%, which indicates

that tree / non-tree areas are well separated. Looking at the

quality of correctly predicted polygons in comparison to

their reference polygon counterpart, the average IoU was

72:6� 1:2%, the precision was 90:6� 1:2% and the recall

a 79:6� 1:8%. Inference on the whole dataset of 142 km2

took 7.5 hours and resulted in approximately 3.7 million

tree crown polygons. Figure 5 depicts the results obtained

on the validation set of one cross-validation run and for two

scenarios outside of our training and validation sets:

The outputs for medium-sized (20–60 m2) deciduous

trees agreed well with visual perception. The same was

observed for most coniferous trees that were visually well

separable in the images. Figure 6 shows that the model

performance again depended on the tree crown size. Forty

percent of the trees smaller than 10 m2 were detected

Table 2 Reference datasets used for the two experiments

Satellite Aerial

Tree count 9660 3674

Training images 28/35 32

Validation images 7 7

Test images 23 –

Training image size 300 � 300 m 50 � 50 m

Resolution 30 cm 5 cm

Cross-validation – 10-fold
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correctly and the maximum recall of 85% was reached for

tree crowns between 20 and 40 m2 in size. Between 10 and

60 m2, the recall was higher than 75%.

However, the results show that large tree crowns tend to

be over-segmented. To quantify this effect, we calculated

the over-segmentation ratio (see Eq. (6)) depending on the

crown size. Figure 7 supports our findings and shows that

for tree crowns larger than 60m2, there are on average 2.4

polygons per tree. By choosing a larger minimum distance

of 3 m instead of 2 m, this can be reduced to about 1.6

polygons on average, while increasing the recall from 48 to

68% at the same time. However, simultaneously the

accuracy is reduced and smaller trees are no longer

detected.

Fig. 3 Results from scenario 1: a An urban region from the test set. True positives are green, false positives red, and false negatives blue.

Reference data are shown in yellow. b Heterogeneous canopy cover and c a mango plantation

Fig. 4 The recall for different tree and tree group sizes. At the given

resolution of 30 cm, the model performed poorly for trees smaller

than 10 m2. For trees between 20 and 160 m2, the model correctly

delineated 67–86% of the tree groups and 67–91% of the single trees.

For even larger trees, the recall dropped. Note that the uncertainty

increases with decreasing tree count

Fig. 5 Method output for three scenarios: a Generated tree crown

polygons from the validation set of one k-fold run. True positives are

green, false positives are red, false negatives are blue, and reference

data are yellow. b The results in mixed, closed-canopy deciduous

forests agreed well with visual perception and c spruce were separated
well
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6 Discussion

The presented method delineates tree crowns under dif-

ferent environmental conditions and with different sensors.

The average precision (70.9%) and recall (66.2%) reached

in our aerial image dataset, are comparable to those

obtained by [22], who worked with aerial imagery (10 cm

spatial resolution) of various locations. Braga et al. [25]

reached an overall detection accuracy of 91% within

satellite imagery (50 cm spatial resolution), compared to

46.3% accuracy we reached with our satellite data. How-

ever, both references used the intersection over union of

tree crown bounding boxes as evaluation criterion. In

contrast, we used the IoU of irregularly shaped tree crown

polygons, which is a stricter criterion.

We analyzed two case studies and achieved a compa-

rable accuracy with both datasets, although the spatial

resolution of the imagery differed (30 cm vs 5 cm) and one

might expect higher accuracy from higher resolution. In the

following we show that, depending on the dataset, there are

different factors affecting accuracy and explain the limi-

tations of our method.

Satellite imagery: In the satellite imagery dataset, three

main shortcomings of the model itself and the labels are

apparent: (1) Small trees were sometimes missed, (2) the

network was not able to separate homogeneous closed

canopy cover, and (3) labeling contiguous crowns as tree

groups induced ambiguities.

Figure 4 shows that the recall for tree crowns with sizes

between 3 and 10 m2 is below 10% which is confirmed by

Figure 8a where many small trees were not detected. Such

small trees cover only approximately 10 by 10 pixels and

were therefore hard to detect in the satellite images. Fig-

ure 8b shows homogeneous, closed canopy cover, which

was not correctly delineated. However, this is only partly a

deficiency of the model, as delineating such areas is

extremely difficult for humans, too. Even with in situ data

from ground measurements, it is in some cases impossible

to separate individual crowns, due to them growing into

each other. At this point, the concept of individual crown

delineation stops being applicable. As consequence, we

labeled adjacent tree crowns as a group if they were

indistinguishable from the ground and on screen. However,

this made it difficult to infer the actual accuracy because,

for example, the network has not labeled the center tree

group in Figure 8c correctly—it has split the group into

several tree crowns, which is actually closer to reality than

our labels. Therefore the network over-segments from the

label-perspective but under-segments the real situation on

the ground.

Aerial imagery: In our aerial imagery, ambiguous tree

group labels were less of an issue compared to the first case

study. Small trees (3–10 m2) were detected with higher

recall, as trees were better separable due to the higher

image resolution. Instead, the most prominent issue was the

over-segmentation of very large tree crowns. The model

recall decreased for large ([ 60 m2) deciduous trees and

damaged or leafless deciduous trees (see Figs. 7 & 9). We

attribute the over-segmentation to three causes: (1) a lack

of training data for large trees, as they are quite rare, (2) the

watershed segmentation itself is prone to over-segmenta-

tion [34], and (3) the inherent difficulty of the task; seg-

menting e.g., large, disjunct oak crowns is also hard for

humans and often ambiguous, which becomes even harder

when the tree crown is damaged. However, our method can

be adapted to stands with homogeneously sized trees by

adjusting the polygon extraction parameters to mitigate

over-segmentation and maximize performance for certain

tree crown sizes.

Fig. 6 Recall depending on tree size. At this resolution, our method

works best for trees between 10 and 60 m2

Fig. 7 Large trees tend to be over-segmented, which is remedied by

increasing the minimum tree distance—at the cost of decreased

overall accuracy
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7 Conclusion

We presented a method for delineating individual tree

crowns or groups of tree crowns without taking 3D data

(LiDAR) into account. The method was tested in two

scenarios: (1) In WorldView-3 satellite imagery of a

250 km2 large area around Bengaluru, India. In this case,

the imagery had 30 cm spatial resolution and 8 spectral

bands ranging from blue to infrared. (2) In aerial imagery

of a 142 km2 large forested area near Gartow, Germany.

Here, the imagery had red, green, blue and near infrared

color channels and 5 cm spatial resolution. The approach

reached satisfying results in both experimental setups and

has three major advantages: (1) it requires only a small

training dataset, (2) it is fast when predicting, which ren-

ders it applicable to entire regions or even countries, and

(3) it is applicable to different data sources (satellite/aerial)

and environments (urban trees/dense forests). Due to the

low training data requirements, it can be a valid option for

smaller scale studies with limited access to training data or

labeling capacities. As future extension, we plan to

implement simultaneous classification and delineation, as

well as to improve the neural network performance by

pretraining with training data generated from LiDAR

canopy height models—the inference will still be able to

run on optical imagery alone. Altogether, the developed

method can be an important contribution to not only

improve detailed forest monitoring (e.g., enabling the

detection of selective logging), but also to provide eco-

nomical value to forest owners who could use this tool for

better yield estimation.

Fig. 8 Three situations where tree crowns were not correctly

delineated: a very small trees, b homogeneous canopy cover with

no visible crowns, and c comparison of field measured tree stem

positions (white boxes) with crown segments. Green lines indicate

true positives, blue false negatives, and red false positives. Reference

data are shown in yellow

Fig. 9 Examples of over-

segmentation of large deciduous

trees: a large oak crowns, split

into many polygons b incorrect

delineation of damaged trees
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Appendix 1 Metrics

These equations describe the metrics used for evaluating

the model performance:

accuracy ðtp; fp; fnÞ ¼ tp

tpþ fpþ fn
ð7Þ

precision ðtp; fpÞ ¼ tp

tpþ fp
ð8Þ

recall ðtp; fnÞ ¼ tp

tpþ fn
ð9Þ

tp: number of true positive polygons, fp: false positives, fn:

false negatives
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