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Interplay between topological valley and quantum
Hall edge transport
Fabian R. Geisenhof 1, Felix Winterer 1, Anna M. Seiler1,2, Jakob Lenz1, Ivar Martin 3 &

R. Thomas Weitz 1,2,4,5✉

An established way of realising topologically protected states in a two-dimensional electron

gas is by applying a perpendicular magnetic field thus creating quantum Hall edge channels.

In electrostatically gapped bilayer graphene intriguingly, even in the absence of a magnetic

field, topologically protected electronic states can emerge at naturally occurring stacking

domain walls. While individually both types of topologically protected states have been

investigated, their intriguing interplay remains poorly understood. Here, we focus on the

interplay between topological domain wall states and quantum Hall edge transport within the

eight-fold degenerate zeroth Landau level of high-quality suspended bilayer graphene. We

find that the two-terminal conductance remains approximately constant for low magnetic

fields throughout the distinct quantum Hall states since the conduction channels are traded

between domain wall and device edges. For high magnetic fields, however, we observe

evidence of transport suppression at the domain wall, which can be attributed to the

emergence of spectral minigaps. This indicates that stacking domain walls potentially do not

correspond to a topological domain wall in the order parameter.
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E lectrons near the Fermi surface of two-dimensional hex-
agonal materials typically occupy two or more distinct
electronic valleys. The valley index adds to the carrier’s

charge and spin, enabling additional channels for spontaneous
symmetry breaking at low temperatures, whereby valleys are
polarised independently or in combination with charge and spin
degrees of freedom1,2. The most direct way to induce non-trivial
valley response is by breaking sublattice symmetry. This occurs
naturally in boron nitride, which makes it a quantum valley Hall
insulator3. In Bernal-stacked bilayer graphene, the same effect is
achieved by applying an interlayer bias4. Moreover, by spatially
varying its sign, topological domain walls can be created, which
exhibit one-dimensional (1D) electronic channels with quantised
conductance4, resilient to backscattering5. These electronic
domain-wall states provide a flexible platform to study 1D
transport6–8 and correlated physics9–11. However, creating them
by electrostatic gating is technically challenging. Fortunately,
similar physics transpire at stacking domain walls (DWs) in
bilayer graphene, where the stacking arrangement of graphene
layers changes from AB to BA12. Such domain walls are common
in naturally Bernal-stacked bilayer graphene13–15 and even ubi-
quitous in twisted bilayer graphene16,17, which is known for
hosting superconductivity at a certain twist angle18. When a
uniform electric field is applied to a bilayer graphene flake with a
DW, topologically protected valley-helical states emerge along the
dislocation, surrounded by insulating bulk12,14,19. Critically for
the present work, stacking domain walls can have much richer
interplay with spontaneous symmetry breaking in bilayer
graphene20–27 compared to artificially created ones, as not being
forced by applied bias to have charge imbalance between layers.
The interplay between stacking domain walls and spontaneous
symmetry breaking is of peculiar interest in the presence of a
quantising magnetic field, since bilayer graphene exhibits a very
rich phase diagram owing to the eightfold degeneracy of the zero-
energy Landau levels28–30 (coming from two valleys, two orbital
Landau level indices, and two spins – neglecting Zeeman split-
ting). Interactions lift the degeneracy by generating orderings,
leading to quantum Hall plateaus at all integer filling fractions
between −4 and 424,28–32. This complex and intriguing regime
shows a large variety of ways the internal symmetry can break
spontaneously in the absence of externally induced layer polar-
isation. Within this manifold, the valley, sublattice, and layer
index are rigidly locked. Since at the stacking domain wall the
roles of the layers are exchanged, any ordering that is not a valley
singlet is guaranteed to be affected.

In this work, the goal is to study this interplay by means of
transport measurements. It cannot be fully explored in the arti-
ficial electrostatic domain walls as a matter of principle. We chose
freestanding dually gated bilayer graphene devices as an ideal and
versatile platform, since on the one side—as indicated by our
measurements below—DWs remain stable during processing and
suspension, and, on the other side, suspending enables the
investigation of quantum transport unaffected by surroundings.

Results and discussion
Topological valley transport in the presence of an electric field
induced gap. At first, suitable bilayer graphene flakes were pre-
selected using optical microscopy and subsequently investigated
with scattering scanning near-field optical microscopy14,15,33.
Even though flakes show a smooth surface in the topography
(Fig. 1a), the corresponding near-field amplitude image (Fig. 1b)
can reveal stacking domain walls. Second, contacts were designed
in two different configurations, as schematically illustrated in
Fig. 1c. Either a DW was contacted on both ends (i.e. the DW
goes along the channel separating two distinct domains, one with

AB and one with BA stacking), or, alternatively, no domain wall
was within the channel. Two devices are discussed exemplarily in
the following: D1-DW of the former and D2 (which has been also
investigated in ref. 27.) of the latter type. Data from additional
domain-wall containing devices are shown in the Supplementary
Information.

Using the dual-gate structure and sweeping the top Vt and
bottom gate voltage Vb while tracking the resistance for the two
configurations reveals differences in their signatures (Fig. 1d, e).
Device D2 (Fig. 1e) shows, consistent with previous measurements,
the spontaneously gapped state at the charge neutrality point20–24

and a phase transition to the insulating fully layer polarised state for
increasing electric field23,24. The resistance in device D1-DW
(Fig. 1d) shows an overall similar behaviour, but with very different
values. This becomes more apparent when examining line traces (see
Fig. 1f, g). Although the resistance in both devices behaves non-
monotonically as a function of increasing Vt , which indicates the
emergence of the layer antiferromagnetic (LAF) ground state with
opposite spins in two layers1,34,35 at charge neutrality and zero
electric field (at Vt � Vb � 0), it remains low in device D1-DW.
As discussed below, this is caused by additional charge channels,
which mask the insulating phase. Moreover, consistent with
previous measurements7,14, the resistance saturates for an increasing
electric field (here at R � 8:5 kΩ), which unambiguously demon-
strates the presence of zero-energy line modes4,12,19. In other words,
although the perpendicular applied electric field induces a bandgap
within the system36, topologically-protected states at the K/K0 valleys
persist, giving rise to helical valley transport (see the insets of Fig. 1d,
e). The length-dependent conductance follows the Landau-Büttiker

formula14 σ ¼ σ0 1 þ L
λm

� ��1
, which yields a mean free path of

λm � 2:2 μm with a channel length of L ¼ 0:7 μm and the
theoretical conductance of the domain wall of σ0 ¼ 4 e2 h�1 (where
e is the electronic charge and h Planck’s constant). With λm > L,
ballistic charge transport supported by the domain wall is confirmed,
highlighting the high quality of the device8,14. Worth to note, away
from charge neutrality both devices show low resistance. In this
regime, which is dominated by contact resistance, we expect no
influence of the domain wall.

Behaviour of the kink states in the presence of broken-
symmetry phases at low magnetic field. Whereas artificially
constructed domain walls can only be investigated in the presence
of a perpendicular electric field4,7,8 in a limited range of electric
fields and densities, quantum transport along stacking domain
walls have mostly been studied in zero magnetic field14. Hence,
we focus here on the interplay of topological domain walls and
quantum Hall edge transport. Figure 2a, b shows the conductance
in the devices D1-DW and D2 as a function of charge carrier
density n and electric field E at a magnetic field of B ¼ 3 T. In
both devices, the broken-symmetry states within the lowest
Landau level octet24,28–31 appear, however, with very different
conductance values (see Fig. 2c). The emerging quantum Hall
states in device D1-DW, although exhibiting unusual con-
ductance values, can unambiguously be identified by examining
their slope in fan diagrams (see Supplementary Fig. 1). Thus, the
stacking domain wall in device D1-DW contributes additional
charge transport channels in parallel to the quantum Hall edge
states altering the overall conductance of the device. In fact,
tracking the conductance of both devices as a function of density
(Fig. 2c) reveals a conductance offset for most of the appearing
states. In device D1-DW, the ν ¼ 0 state at zero electric field,
which has previously been identified as an insulating canted
antiferromagnetic (CAF) state37,38, shows a rather high con-
ductance of σ � 2:9 e2 h�1 (see Fig. 2d). CAF states have been
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observed to have low edge conductance, attributed to the opening
of a spectral minigap at the sample edges2,37,38. The observed
high conductance is thus consistent with the maximum possible
—four—kink states at the DW contributing to the charge trans-
port (with a finite λm � 1:9 μm), as is also the case in the layer
polarised (LP) ν ¼ 0 phase (see Supplementary Fig. 2 for more
details) at high E. For an increasing filling factor, the conductance
changes to σ � 3:5; 4:0 and 3:9 e2 h�1 for the ν ¼ �1;�2, and
�4 states (see Fig. 2d), respectively. This near constancy of
conductance can be naturally explained: In the simplest model
(see Fig. 2e), ignoring spin and orbital index for clarity, changing
the Fermi level for an applied electrical field leads to the topo-
logical domain-wall channels being traded for quantum Hall edge
channels. Changing the filling factor from the electron to the hole
side, exchanges the positions of the valley polarised channels.
More precisely (see Fig. 2f), when increasing the filling factor, a
domain-wall channel disappears whereas an additional quantum
Hall edge channel emerges. Hence, the conductance follows σ ¼
ð4 � νj jÞσDW þ νj jσQH for νj j ≤ 4, where σDW is the con-
ductance supported by a single kink state, and σQH ¼ e2 h�1 is
the conductance of a quantum Hall edge channel. A linear fit to
the data further supports this hypothesis (see Fig. 2d): for D2, it
shows the expected slope of 1.0 e2 h�1 per filling factor as there

are only quantum Hall edge states present. On the contrary, it
yields a slope of 0.23 e2 h�1 per filling factor for device D1-DW.
Although in all νj j ≤ 4 states four quantised channels contribute
in total to the charge transport, the non-zero slope corresponds to
the difference in conductance of the kink and edge states and
shows that for increasing filling factor kink states with a con-
ductance of σDW � 0:77 e2 h�1 are traded for higher-quality
quantum Hall edge states with σQH ¼ e2 h�1. Discrepancies from
the linear behaviour of the conductance in device D1-DW could
indicate a distinct magnetic dependency of the conductance
within the νj j ≤ 4 states, as shown below. The ν ¼ ±4 states
seem to be free of the influence of the domain wall (see Fig. 2f). A
more detailed consideration of the band structure reveals that
stacking domain walls can affect even the higher Landau levels,
albeit more weakly (see Supplementary Fig. 3). In our free-
standing devices, these states are at higher magnetic field outside
the accessible density regime needed to observe the quantum Hall
states.

Emergence of a spectral minigap for high magnetic fields. A
more in-depth understanding of the intricate interplay between
the quantum Hall edge modes and domain walls can be gained by
investigating the charge transport at varying magnetic fields (see

Fig. 1 Topologically-protected states in bilayer graphene. a, b Atomic force microscopy image (a) and scattering-type scanning near-field microscopy
image (b) of a bilayer graphene flake, with high-resolution zoom-in scans on the right. The scale bars are 0.5 μm. c Freestanding dually gated bilayer
graphene devices schematically shown with (left) and without domain wall (right) connecting the contacts. Topological valley transport along the domain
wall is shown in blue and red in the K- and K0-valley, respectively. d, e Resistance map as a function of top and bottom gate voltage for device D1-DW
(d with domain wall) and D2 (e without domain wall). Insets: Electronic band structure of bilayer graphene with (d) and without a domain wall (e) for an
applied electric field. Δ is the electric field induced bandgap, EF the Fermi level and the blue (red) lines indicate topologically protected, doubly spin
degenerate chiral states in the K(K0)-valley. f, g Trace of the resistance as a function of Vb for various Vt with steps of 1 V shown for device D1-DW (f) and
D2 (g). The dashed lines indicate the envelope of the resistance and are a guide to the eye.
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Fig. 3 and Supplementary Fig. 4 for more data). Line traces of the
conductance as a function of filling factor measured in device D1-
DW at zero and finite electric field show the ν ¼ 0; ± 1; ± 2
states (see Fig. 3a). In addition, we plot the conductance as a
function of magnetic field for the individual states shown in
Fig. 3b. Note that the conductance was averaged over the electric
field range at which the respective state emerges, i.e. for the ν ¼
0 CAF phase around zero electric fields, for the ν ¼ �1 and �2
at Ej j ≥ 10 mV nm−1 and Ej j ≥ 15 mV nm−1, respectively, and
for the ν ¼ �4 state at all electric fields.

Most prominently, we see a sharp dip to very low conductance
around zero charge carrier density within the ν ¼ 0 phase at
high magnetic fields of B ≥ 8 T (marked with a cross in Fig. 3a),
which can also be tracked as function of magnetic field (see
Fig. 3b). The feature is reproducible upon repeated sweeps and
persists between different cooldowns of the device (see Supple-
mentary Fig. 5). Towards B ¼ 0, the ν ¼ 0 state corresponds to
the layer antiferromagnetic phase with spin and valley indices
locked1,34,35. In general, we find high conductance in this regime,
suggesting the presence of zero-energy line modes at the kink.
This observation would be consistent with the LAF order
parameter experiencing an order parameter reversal as illustrated
in Fig. 3c. The 1D modes persist within the gap because
counterpropagating states in the same valley have opposite spin,

and hence scattering is suppressed. However, as the magnetic
field is increased, spins cant and the LAF phase evolves into the
canted antiferromagnetic phase37,38. Then, the counterpropagat-
ing modes in the same valley become partially spin aligned and
can hybridise causing the emergence of a minigap. This is similar
to the effect at the device edge. However, in the latter case the
termination and backscattering off atomic scale defects can also
couple opposite valleys5, leading to further suppression of
conductance. Our experimental data are indeed consistent with
the opening of a gap and—when the Fermi level is located in this
gap—a decrease in conductance. Outside of the gap, we expect a
finite conductance, with a value determined by a sequence of the
crossing bands and gap openings (see Fig. 3c). Since canting of
spins gets stronger with magnetic field, one can expect the size of
the minigap to grow with increasing B. This is consistent with our
experimental observations of decreasing conductance (see Fig. 3a,
b and Supplementary Fig. 4) and could be the reason why we can
only resolve the minigap at B ≥ 8 T. Eventually, for an infinite
perpendicular or a finite in-plane magnetic field the CAF phase is
expected to evolve into the ferromagnetic phase37,38, in which the
stacking domain wall has little or no effect on the Landau level
energy (see Fig. 3c), making the stacking domain wall effectively
invisible (this regime was not investigated experimentally in this
study).

Fig. 2 Interplay between topological valley and quantum Hall edge transport at low magnetic fields. a, b Maps of the conductance in units of e2 h�1 as a
function of applied electric field E and charge carrier density n at a magnetic field of B= 3 T for devices D1-DW (a) and D2 (b). The dashed lines indicate
the position of the data shown in c. Certain filling factors are indicated. c Line traces of the conductance as a function of n taken at constant E in device D1-
DW (black) and D2 (red). d Conductance of quantum Hall states as a function of filling factor for device D1-DW (black) and D2 (red). The values are
averaged over the electric field range at which the individual states emerge. The solid lines are linear fits to the corresponding data. e Schematic band
structure (spin and orbital index omitted) in bilayer graphene in the presence of a stacking domain wall as a function of position. The dashed lines indicate
distinct positions of the Fermi level and the corresponding encircled pictures schematically demonstrate the evolution of directions and locations of the
one-dimensional channels within the device. f Schematic band structure as a function of position across the device with a domain wall shown for the ν ¼ 2
(top) and ν ¼ 4 (bottom) QH state in the presence of an interlayer electric field (spin and orbital flavours have been reinstated).
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Notably, the conductance of the ν ¼ ± 1; ± 2 states also
decrease with increasing B (Fig. 3a, b), whereas device D2 shows
the expected constant values as a function of B for each QH state
(see Fig. 3b). These quantum Hall states occur in sufficiently large
electric field, and thus the valley polarisation is expected to
change sign across the domain wall. In contrast, the spin
polarisation remains constant across domain walls, pinned to the
direction of magnetic field (see Fig. 2f). Therefore, the counter-
propagating states at the domain wall belong to opposite valleys
but same spin and can only be destroyed by local defects that can
provide large momentum scattering. That is in contrast to the
CAF state at ν ¼ 0 and E ¼ 0, where a minigap can open owing
to the hybridisation of states within the same valley and without
the need for short range scattering. The measurements indicate
that increasing the magnetic field increases the intervalley
scattering, although the exact mechanism at this point remains
unclear. One possible explanation could be the change in relative
spatial arrangement of the counterpropagating channels as a
function of magnetic field (see Fig. 3d). Clearly, increasing the
channel separation should suppress backscattering, and vice
versa. An effect of this type has already been observed at domain
walls, where application of magnetic field or change of the
chemical potential was found to affect the domain-wall
conductance7,39. Another possibility could be the that increasing
magnetic field pushes the system towards other broken-symmetry
states40,41, which would change the order parameter and hence

the behaviour of the kink states. However, these states have been
observed only at very high magnetic fields and since we see no
evidence of phase transitions in sample D2 for the same
parameters, this possibility appears unlikely. Given that the
measurements were performed in a two-terminal configuration,
one should also make sure that the effect that we observe is not a
consequence of a magnetic field dependent contact resistance of
the kink states. However, we do not observe this behaviour for
quantum Hall edge states (see Fig. 3b), and it is likely that the
contact resistance of both types of one-dimensional channels
behaves similarly. Additional devices revealed similar behaviours
of the domain-wall conductance with increasing magnetic field
(see Supplementary Fig. 6).

Temperature dependence of the domain-wall states. As final
investigation to establish the interplay between edge and domain
walls, we have conducted temperature dependent measurements.
In Fig. 4, the conductance is shown as a function of temperature
measured in different phases: in the layer antiferromagnetic, the
canted antiferromagnetic as well as the layer polarised ν ¼ 0
phases and in the ν ¼ �4 phase. In contrast to device D2, which
shows an activated temperature dependence of the conductance
in all phases, D1-DW exhibits a much weaker temperature
dependence and, most importantly, a finite conductance at low
temperatures for the insulating LAF, CAF, and LP phases (see

Fig. 3 Behaviour of the kink states for varying magnetic field. a Conductance as a function of filling factor shown for various magnetic fields at E= 0 (top)
and E= 25mV nm−1 (bottom) measured in device D1-DW. The cross indicates the sharp conductance dip caused by the opening of a minigap. Note, that
the state emerging around zero density is the LAF/CAF state, only at E= 25mV nm−1 the data curve for B= 1.5 T shows the transition between LAF/CAF
and LP phase, see also Supplementary Fig. 2. b Conductance of the ν ¼ 0;�1;�2;�4 quantum Hall states as well as within the minigap as a function of
magnetic field. The data for device D1-DW (D2) is shown in black (red). c Schematic band structure around the domain wall shown for the LAF, CAF and
FM ν ¼ 0 phases. The blue (red) lines indicate the chiral states in the K(K0)-valley. The cross indicates the spectral minigap emerging in the CAF phase.
d Schematic band structure for ν ¼ 2 (orbital index is implicit) in the presence of layer-polarising bias. The domain wall retains only two pairs of valley
helical (spin polarised) states, indicated by black circles with in-plane and out-of-plane directions. Their backscattering rate at the chemical potential (thin
horizontal line) depends on their spatial separation and width. Both are generally expected to change as a function of magnetic field, leading to a change in
DW conductance. The influence of the magnetic field is indicated by grey arrows. A similar effect was observed in artificial domain walls7.
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Fig. 4a–c, respectively). As the charge channels induced by the
stacking domain wall contribute in parallel to any edge channels,
we can subtract the data measured in both devices to reveal the
underlying temperature dependence of the domain-wall
σDWðTÞ � σdiff ðTÞ ¼ σD1�DWðTÞ � σD2ðTÞ, assuming that the
activated charge transport behaves similarly in both devices.
Notably, in all three ν ¼ 0 phases the difference σdiff ðTÞ shows
an approximately constant behaviour at low temperatures with
σdiff � 2:5� 3:5 e2 h�1 and only a slight increase in the LAF and
CAF phases for T ≥ 3K. Overall, this weak temperature depen-
dence is expected for 1D charge transport and suggests weakly
localised metallic behaviour42. On the contrary, the ν ¼ �4
phase (see Fig. 4d) shows the same activated temperature
dependence and very similar conductance values in both devices,
indicating that the domain wall has negligible influence on the
quantum transport in this phase.

In conclusion, we have investigated the impact of stacking
domain walls on the eightfold degenerate zero-energy Landau
level in bilayer graphene. For future measurements, high in-plane
magnetic fields would be beneficial to explore the behaviour of
domain walls within the ν ¼ 0 ferromagnetic phase38. Moreover,
the usage of encapsulated devices is essential to investigate the
behaviour of domain walls in heterostructures43 and their impact
on the energy landscape of correlated states in higher
Landau levels. Furthermore, having established that in the lowest
Landau level the edge states and domain-wall channels co-exist,
one can imagine investigating their mutual interaction44 in
narrow samples. Lastly, a direct imaging39 of topological valley
and quantum Hall edge channels would be very illuminating.

Methods
Bilayer graphene was exfoliated from a highly ordered pyrolytic graphite (HOPG)
block onto Si/SiO2 substrates and suitable flakes were preselected using optical
microscopy. Afterwards, infrared nano-imaging45 was performed in a scattering-
type scanning near-field microscope (s-SNOM, neaspec GmbH) in tapping mode
to detect any stacking domain walls. Hereby, an infrared CO2 laser beam (with a
wavelength of 10.5 μm) was focused onto a metal-coated atomic force microscopy
tips (Pt/Ir, Arrow NCPT-50, Nanoworld), which was oscillating with a frequency
and amplitude of 250–270 kHz and 50–80 nm, respectively. With this method, we
were able to obtain topographic and infrared nano-images simultaneously. Elec-
trodes (Cr/Au, 5/100 nm) in two distinct configurations, a top gate (Cr/Au, 5/
160 nm) as well as a spacer (SiO2, 140 nm) were fabricated using several steps of
standard lithography techniques and electron beam evaporation. Subsequently, the
devices were submersed in hydrofluoric acid to etch about 150–200 nm of the SiO2

and consequently suspend both the top gates and bilayer graphene flakes. After
loading the freestanding dually gated bilayer graphene devices into a dilution
refrigerator current annealing was performed at 1.6 K. In devices without domain
wall best results were obtained when using a current of about 0.35 mA μm−1 per
layer. In devices with domain wall 150–250% more current was needed to achieve a
current saturation due to their lower resistance and shorter channels. All quantum
transport measurements were conducted at the base temperature of the cryostat
(T < 10mK), if not noted differently. Moreover, an excitation a.c. bias current of
0.1–10 nA at 78 Hz and Stanford Research Systems SR865A and SR830 lock-in
amplifiers were used for the measurements, as well as Keithley 2450 SourceMeters
to apply the gate voltages. Low-pass filters were used in series to reduce high
frequency noise.

Data availability
All data supporting the findings of this study are available within the article, as well as the
Supplementary Information file, or available from the corresponding authors on request.

Received: 1 November 2021; Accepted: 21 June 2022;

Fig. 4 Temperature dependence of the conductance in various broken-symmetry phases. a–d Temperature dependence of the conductance measured
for the LAF phase at n= E= B= 0 (a), the CAF phase for n= E= 0 and B= 0.5 T (b), the LP phase at n= B= 0 and E= 43mV nm−1 (c) and the ν ¼ �4
phase at E= 0 and B= 0.5 T (d). The data corresponding to device D1-DW (D2) is shown in black (red). Moreover, in a–c, the difference of conductance
between the two devices σdiff Tð Þ ¼ σD1�DW Tð Þ � σD2ðTÞ is shown as a function of temperature in blue. Note that the temperature dependence was
measured in a different loading and annealing cycle than the measurements shown in Figs. 1–3 leading to small disparities in the conductance.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31680-y

6 NATURE COMMUNICATIONS |         (2022) 13:4187 | https://doi.org/10.1038/s41467-022-31680-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


References
1. Zhang, F., Jung, J., Fiete, G. A., Niu, Q. & MacDonald, A. H. Spontaneous

quantum Hall states in chirally stacked few-layer graphene systems. Phys. Rev.
Lett. 106, 156801 (2011).

2. Kharitonov, M. Canted antiferromagnetic phase of the ν = 0 quantum Hall
state in bilayer graphene. Phys. Rev. Lett. 109, 46803 (2012).

3. Volovik, G. E. The Universe in a HeliumDroplet (Oxford University Press, 2009).
4. Martin, I., Blanter, Y. M. & Morpurgo, A. F. Topological confinement in

bilayer graphene. Phys. Rev. Lett. 100, 36804 (2008).
5. Qiao, Z., Jung, J., Niu, Q. & MacDonald, A. H. Electronic highways in bilayer

graphene. Nano Lett. 11, 3453–3459 (2011).
6. Chen, H. et al. Gate controlled valley polarizer in bilayer graphene. Nat.

Commun. 11, 1202 (2020).
7. Li, J. et al. Gate-controlled topological conducting channels in bilayer

graphene. Nat. Nanotechnol. 11, 1060–1065 (2016).
8. Li, J. et al. A valley valve and electron beam splitter. Science 362, 1149–1152

(2018).
9. Killi, M., Wu, S. & Paramekanti, A. Graphene: kinks, superlattices, Landau

levels and magnetotransport. Int. J. Mod. Phys. B 26, 1242007 (2012).
10. Killi, M., Wei, T.-C., Affleck, I. & Paramekanti, A. Tunable Luttinger liquid

physics in biased bilayer graphene. Phys. Rev. Lett. 104, 216406 (2010).
11. Mazo, V., Shimshoni, E., Huang, C.-W., Carr, S. T. & Fertig, H. A. Helical

quantum Hall edge modes in bilayer graphene: a realization of quantum spin-
ladders. Phys. Scr. T165, 14019 (2015).

12. Vaezi, A., Liang, Y., Ngai, D. H., Yang, L. & Kim, E.-A. Topological edge states
at a tilt boundary in gated multilayer graphene. Phys. Rev. X 3, 021018 (2013).

13. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene.
Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

14. Ju, L. et al. Topological valley transport at bilayer graphene domain walls.
Nature 520, 650–655 (2015).

15. Jiang, L. et al. Soliton-dependent plasmon reflection at bilayer graphene
domain walls. Nat. Mater. 15, 840–844 (2016).

16. Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene
superlattices. Science 362, 1153–1156 (2018).

17. Huang, S. et al. Topologically protected helical states in minimally twisted
bilayer graphene. Phys. Rev. Lett. 121, 37702 (2018).

18. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene
superlattices. Nature 556, 43–50 (2018).

19. Zhang, F., MacDonald, A. H. & Mele, E. J. Valley Chern numbers and
boundary modes in gapped bilayer graphene. Proc. Natl Acad. Sci. USA 110,
10546–10551 (2013).

20. Bao, W. et al. Evidence for a spontaneous gapped state in ultraclean bilayer
graphene. Proc. Natl Acad. Sci. USA 109, 10802–10805 (2012).

21. Freitag, F., Trbovic, J., Weiss, M. & Schönenberger, C. Spontaneously gapped
ground state in suspended bilayer graphene. Phys. Rev. Lett. 108, 76602 (2012).

22. Nam, Y., Ki, D.-K., Soler-Delgado, D. & Morpurgo, A. F. A family of finite-
temperature electronic phase transitions in graphene multilayers. Science 362,
324–328 (2018).

23. Velasco, J. et al. Transport spectroscopy of symmetry-broken insulating states
in bilayer graphene. Nat. Nanotechnol. 7, 156–160 (2012).

24. Weitz, R. T., Allen, M. T., Feldman, B. E., Martin, J. & Yacoby, A. Broken-
symmetry states in doubly gated suspended bilayer graphene. Science 330,
812–816 (2010).

25. Zhang, F. Spontaneous chiral symmetry breaking in bilayer graphene. Synth.
Met. 210, 9–18 (2015).

26. Nandkishore, R. & Levitov, L. Quantum anomalous Hall state in bilayer
graphene. Phys. Rev. B 82, 115124 (2010).

27. Geisenhof, F. R. et al. Quantum anomalous Hall octet driven by orbital
magnetism in bilayer graphene. Nature 598, 53–58 (2021).

28. Hunt, B. M. et al. Direct measurement of discrete valley and orbital quantum
numbers in bilayer graphene. Nat. Commun. 8, 948 (2017).

29. Li, J., Tupikov, Y., Watanabe, K., Taniguchi, T. & Zhu, J. Effective Landau
level diagram of bilayer graphene. Phys. Rev. Lett. 120, 47701 (2018).

30. Zhao, Y., Cadden-Zimansky, P., Jiang, Z. & Kim, P. Symmetry breaking in the
zero-energy Landau level in bilayer graphene. Phys. Rev. Lett. 104, 66801
(2010).

31. Lee, K. et al. Bilayer graphene. Chemical potential and quantum Hall
ferromagnetism in bilayer graphene. Science 345, 58–61 (2014).

32. Nomura, K. & MacDonald, A. H. Quantum Hall ferromagnetism in graphene.
Phys. Rev. Lett. 96, 256602 (2006).

33. Geisenhof, F. R. et al. Anisotropic strain-induced soliton movement changes
stacking order and band structure of graphene multilayers. implications for
charge transport. ACS Appl. Nano Mater. 2, 6067–6075 (2019).

34. Freitag, F., Weiss, M., Maurand, R., Trbovic, J. & Schönenberger, C. Spin
symmetry of the bilayer graphene ground state. Phys. Rev. B 87, 161402
(2013).

35. Veligura, A. et al. Transport gap in suspended bilayer graphene at zero
magnetic field. Phys. Rev. B 85, 1–8 (2012).

36. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer
graphene. Nature 459, 820–823 (2009).

37. Kharitonov, M. Edge excitations of the canted antiferromagnetic phase of the
ν = 0 quantum Hall state in graphene: a simplified analysis. Phys. Rev. B 86,
075450 (2012).

38. Maher, P. et al. Evidence for a spin phase transition at charge neutrality in
bilayer graphene. Nat. Phys. 9, 154–158 (2013).

39. Yin, L.-J., Jiang, H., Qiao, J.-B. & He, L. Direct imaging of topological edge
states at a bilayer graphene domain wall. Nat. Commun. 7, 11760 (2016).

40. Shi, Y. et al. Energy gaps and layer polarization of integer and fractional
Quantum Hall States in bilayer graphene. Phys. Rev. Lett. 116, 56601 (2016).

41. Velasco, J. et al. Competing ordered states with filling factor two in bilayer
graphene. Nat. Commun. 5, 4550 (2014).

42. Gogolin, A. Electron localization in quasi-one-dimensional organic
conductors. Phys. Rep. 166, 269–351 (1988).

43. Sunku, S. S. et al. Dual-gated graphene devices for near-field nano-imaging.
Nano Lett. 21, 1688–1693 (2021).

44. Kang, W., Stormer, H. L., Pfeiffer, L. N., Baldwin, K. W. & West, K. W.
Tunnelling between the edges of two lateral quantum Hall systems. Nature
403, 59–61 (2000).

45. Keilmann, F. & Hillenbrand, R. In Nano-optics and Near-field Optical
Microscopy (eds Zayats, A. V. & Richards, D.) pp. 235–265 (Artech House,
2009).

Acknowledgements
R.T.W. and F.R.G. acknowledge funding from the Centre for Nanoscience (CeNS) and by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy-EXC-2111-390814868 (MCQST). I.M. was supported by
the Materials Sciences and Engineering Division, Basic Energy Sciences, Office of Science,
U.S. Dept. of Energy. We also thank Y.C. Durmaz and F. Keilmann for experimental
assistance with the near-field optical microscopy.

Author contributions
F.R.G. fabricated the devices and conducted the measurements and data analysis. I.M
contributed the theoretical part. F.R.G., F.W, A.M.S, J.L, I.M., and R.T.W. discussed and
interpreted the data. R.T.W. supervised the experiments and the analysis. The paper was
prepared by F.R.G., I.M., and R.T.W with input from all authors.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-31680-y.

Correspondence and requests for materials should be addressed to R. Thomas Weitz.

Peer review information Nature Communications thanks the other, anonymous
reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports
are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31680-y ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:4187 | https://doi.org/10.1038/s41467-022-31680-y | www.nature.com/naturecommunications 7

https://doi.org/10.1038/s41467-022-31680-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Interplay between topological valley and quantum Hall edge transport
	Results and discussion
	Topological valley transport in the presence of an electric field induced gap
	Behaviour of the kink states in the presence of broken-symmetry phases at low magnetic field
	Emergence of a spectral minigap for high magnetic fields
	Temperature dependence of the domain-wall states

	Methods
	Data availability
	References
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




