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Eye tracking enables the reconstruction of eye movements and thus the analysis of visual information
selection and integration processes during problem solving. In this way, learner-specific difficulties can be
identified and problem-solving process can be adapted accordingly. For such an adaptation, the prediction of
response behavior plays a crucial role. To predict whether a problem is solved correctly or incorrectly, the
segmentation of the visual stimulus into specific areas of interest (AOIs) is particularly crucial for the quality
of a prediction based on eye-tracking data. In the study presented here, the gaze data of N ¼ 115 students
were analyzed while solving the Test of Understanding Graphs in Kinematics (TUG-K), a validated test
instrument whose items include graphs of position, velocity, and acceleration versus time. For selected items,
response accuracy was predicted based on visual attention using multiple logistic regression analysis,
examining the influence of AOI segmentation. The prediction quality could be significantly improved when
the diagram was not considered as contiguous AOI, but when it was divided into solution-relevant and
solution-irrelevant areas. To verify that the AOIs selected by the regression algorithm are indeed relevant to
the solution process, an expert rating was performed, which showed moderate to good agreement between the
AOIs rated by the experts as relevant to the correct solution and the AOIs selected by the algorithm. There are
also pairs of items in the TUG-K that require the same mathematical solution procedure but differ in the
physical context. This opened the possibility to investigate a new approach. Based on response accuracy and
allocation of visual attention to one item, the response accuracy of the other item of the pair was predicted. It
could be shown that the prediction quality based on visual attention was significantly higher than the
prediction based on response accuracy. This demonstrates the added value of collecting process-based data
versus product-based data for prediction and thus for learner-specific adaptation. The results of this study
indicate, first, that only certain areas are crucial for a correct solution when extracting information from
diagrams and, second, that the application of mathematical procedures plays a crucial role in interpreting
graphs of different physics quantities. These findings thus provide insight into the visual strategies involved
in interpreting kinematic diagrams and can also serve as a basis for eye tracking-based adaptation of problem-
solving processes, in which adaptation can occur even before an incorrect answer is given.
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I. INTRODUCTION

Capturing eye movement via eye tracking has become
increasingly important for physics education research [1,2].
The recording of visual attention during learning or
problem solving allows insights into cognitive processes
that remain hidden in strictly product-based data collection
methods [3]. This is particularly valuable when the proc-
esses can provide information about problem-solving
strategies or student difficulties [4–7], or if the meaning
of individual visual stimuli is the special focus of research
interest [8,9]. The relationship between visual attention and
performance is a frequently studied issue in eye tracking in
physics education research [10]. If students eye-tracking
data are used to predict performance, the visual information
extraction processes can be linked to students’ under-
standing [11], and as an extension, the prediction can be
used to provide scaffolding support for students in an
adaptive learning environment [12].
The analysis of eye-tracking data is especially beneficial

when students learn or solve problemswithmultiple external
representations [9,13] or synthesis problems [4], as the
conceptual understanding is closely linked to the visual
information extraction processes. Among external represen-
tations, graphs are a central visualization for learning to
simplify complex concepts and to display measurement data
across the science, technology, engineering, and mathemat-
ics (STEM) fields [14,15].
In the present study, we investigate how eye-tracking data

can be used to predict response behavior regarding selected
items of the Test of Understanding Graphs in Kinematics
(TUG-K) [16], which has become a widely used test instru-
ment to evaluate students’ understanding of graphs. The
items were created based on extensive research on students’
difficulties and address several tasks like determining veloc-
ity, acceleration, displacement, and change in velocity from
graphs of position, velocity, and acceleration versus time.
For a prediction based on eye-tracking data, the test

items must be segmented into specific areas [so-called areas
of interest; (AOIs)], for which the eye-tracking metrics are
calculated. This segmentation can be done at different
levels of granularity, e.g., globally only text and diagram or
blockwise for each step of thought [17]. However, no study
has yet systematically investigated the influence of granu-
larity on prediction performance in this context, which is
surprising since high predictive quality is essential for
adapting test and learning formats. To fill this research gap,
this study investigates which granularity of segmentation
can achieve the highest accuracy in predicting students’
response behavior.
To solve items of the TUG-K, students have to evaluate

and interpret the slope of a curve or the area under a curve
in graphs. Previous studies have shown that these math-
ematical procedures, rather than physics concepts, domi-
nate when students solve problems on kinematic graphs
[18,19]. For example, when students determine the accel-
eration from a time-velocity diagram, they apply the same

mathematical procedure as when they calculate the velocity
from a time-position diagram, which is assumed to be
reflected in similar gaze behavior.
We used such item pairs of the TUG-K to investigate

whether the same underlying mathematical procedure
allows a prediction of the response behavior for one item
by solely analyzing the gaze behavior for the other item.
Such analyses might open up the possibilities to detect
inaccurate solving strategies of students and to offer support
based on these difficulties even before the other item of the
pair was viewed. In an adaptive learning environment,
demotivating failure in solving such items could be avoided
in this way, and a learning process induced instead.
From a methodological perspective, we can draw con-

clusions about the relationships between eye-tracking data
and performance that are relevant for adaptive gaze-based
learning systems, for example. From an educational per-
spective, we learn how students extract relevant information
from kinematic diagrams and identify the underlying math-
ematical solution strategies in different physical contexts.

II. STATE OF RESEARCH

A. Eye tracking in physics education research

The basic question of whether something as mundane as
the low-level perceptual functions involved in visual
attention can also provide information about performance
on physical tasks was already posed by Rouinfar et al. [10],
since physics problems “are among the most intellectually
and cognitively demanding [processes] that human beings
are capable of engaging in”. The relationship between
visual attention and performance in solving physics tasks is
of particular research interest (see Ref. [2] for an overview,
particularly Table IV). It was repeatedly shown that highly
aggregated measures of visual attention, such as dwell time
on questions, diagrams, or alternatives (in multiple choice
assessment scenarios), were not significantly related to
performance [20–23].
However, if one chooses a finer analysis, for example, by

looking at attention to the correct response option (as
opposed to aggregating time across all alternatives), one
finds correlations with response accuracy [21,23,24], which
is the basis for prediction. This is not surprising in the
context of multiple-choice tasks, since the selected option is
considered longer than unselected options.
On the other hand, if we look at relevant and irrelevant

areas, for example, in diagrams, it has been shown that
successful learners spend more time on relevant areas than
on irrelevant areas, and for unsuccessful learners, it is the
opposite [5,6,10,25–27].
This can be explained by the information reduction

hypothesis of Gegenfurtner et al. [28], which states that
experts are more efficient in identifying relevant areas in a
representation and paying more visual attention to them.
Consequently, it can be assumed that if a task is solved
correctly, areas of the visual stimulus that are relevant (not

SEBASTIAN BECKER et al. PHYS. REV. PHYS. EDUC. RES. 18, 020107 (2022)

020107-2



relevant) to the solution will receive higher (lower) visual
attention. In studies by Madsen et al. [25] and Rouinfar
et al. [10], these relevant areas were identified in prelimi-
nary work through interviews with students.
The issue of granularity in the analysis of eye-tracking

data has been raised in several physics education studies.
Chien et al. [29] speak of global look zones when they
divided their learning material into two sections, and Smith
et al. [17] decompose their worked-out examples into text
and equations at different levels of granularity. In the studies
by Klein et al. [9] and Küchemann et al. [30], it was found
that visual attention to concept-specific AOIs within graphs
distinguishes correctly from incorrectly responding students
as well as confident and unconfident students.
In the context of graphs, Klein et al. [9] observed that

the cumulative visual attention to the entire graph area
does not discriminate between high- and low-performing
students which suggests that the cumulative visual attention
on this AOI is not predictive for students’ performance.
Additionally, the authors found in an exploratory analysis
that students who solve slope problems correctly attribute
more visual attention on areas along the curve in a graph [9].
Specifically, for the TUG-K, it was found that the dwell time
on the options is correlated to the students’ self-confidence
ratings and that the underlying test structure of the TUG-K is
reflected in the students’ gaze transitions between the
question, the graph, and the options [23,31]. Thus, to infer
performance from gaze data, a tailored selection of AOIs as
well as the associated metrics is required.
For various representations, the predictability of student

comprehension based on eye movements has already been
investigated based on different approaches to defining AOIs
[11,32]. Rebello et al. [32] found that the dwell time on
patterns of 192 squarelike tiles that cover the entire area of
representation-based items allows for a high prediction of
student performance. In comparison, Küchemann et al. [11]
found that the dwell time on relevant and irrelevant areas of a
line graph reached a lower prediction accuracy of students’
performance. Here, the authors also observed that the dwell
time along the line graph is predictive for students’ perfor-
mancewhen determining the slope and that the dwell time on
the area underneath contains information about students’
understanding when determining the integral of a graph.
Based on these works, it remains an important open

question to what extent the selection of AOIs in which the
eye movements are evaluated affects the predictability.

B. Line graphs in STEM education

Line graphs are typically introduced in middle school and
used throughout education, transferring to a variety of STEM
contexts [33]. Independent of the context, the same math-
ematical procedures, such as determining the slope or area
enclosed by a graph, are applied to evaluate graphs in different
contexts and to communicate scientific concepts [34]. Both
differentiating and integrating follow strict procedures in
which specific regions in the graph must be evaluated. The

mathematics concepts of slope and integral have been in the
scope of research over the past years [e.g., [35–39]], and they
were picked up by other assessment instruments such as the
Kinematics Concept Test (KCT) [18], The Force andMotion
Conceptual Evaluation (FMCE) [40], and the Kinematics
Representational Competence Inventory (KiRC) [41].
Research has shown that mathematical procedures are crucial
for the understanding of graphs in several contexts.
The studies from Lichtenberger et al. [18] as well as

Bektasli and White [19] provided evidence that the math-
ematics concepts of slope and area are central in solving
tasks about graphs in the field of kinematics. Conducting a
structural analysis of student answers to kinematic graphs,
Lichtenberger et al. [18] found that the graphical determi-
nation of slopes and areas were the main separable
dimensions. Only in a finer-grained analysis was it possible
to distinguish between acceleration and velocity as a rate
and between displacement as an area under the curve in a v,
t graph and change of velocity as area under the curve in an
a, t graph. In other words, students who are able to
correctly answer questions about velocity are also likely
to correctly answer mathematically similar questions about
acceleration. Given this result, the authors concluded that
the understanding of the mathematical procedures is crucial
for the interpretation of kinematics graphs. Evaluating a
TUG-K dataset, Bektasli and White [19] also found two
factors explaining the correlations of student answers, one
for determining the slope of a curve and the other one for
finding or interpreting the area under a curve. Physics
concepts like velocity and acceleration were embedded in
this structure and did not separate.
Such underlying mathematical structures should also be

reflected in gaze behavior, which elicits the question of
whether corresponding eye-tracking metrics can be used to
predict response behavior when solving corresponding
items of the TUG-K.

III. RESEARCH QUESTIONS

Based on the current state of research, the way in which
the visual stimulus is segmented into AOIs is crucial for
predicting response behavior based on gaze data. Since there
are different approaches for such segmentation, wewanted to
investigate the influence of the segmentation procedure on
the prediction quality.
We focused on a comparison between a macro-level AOI

segmentation (question text, diagram, response options)
and a microlevel segmentation in which the diagram is
systematically divided into smaller segments according to
the information reduction hypothesis of Gegenfurtner et al.
[28]. A finer segmentation into solution-relevant and
solution-irrelevant segments should contribute to a better
discrimination of visual attention between correct and incor-
rect responders and thus to a better prediction of response
accuracy. Thus, the first research question relates to the
prediction of response accuracy for individual selected items
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based on visual attention allocation with respect to different
AOI segmentations.

RQ 1: When using eye-tracking data to predict the
response accuracy, which AOI segmentation of the test
items results in the best prediction quality?

The TUG-K has pairs of items that require the same
mathematical procedure to solve but differ in the physical
context. For example, in two items the negative slopemust be
determined quantitatively, once as velocity and once as
acceleration. The studies presented above have shown that
students who are able to apply the correct mathematical
procedure are often successful in both contexts. In turn, the
application of the mathematical procedure requires the
selection of certain visual information from the given dia-
grams, which should be reflected in the eye-tracking data.We
therefore assume that students who have successfully applied
the procedure in one contextwill also do so in another context
and thus show similar eye-tracking behavior. The question
arises as towhether the inclusion of eye-trackingmeasures for
one item of a pair can be used to improve the quality of the
prediction of the answer accuracy of the other item. This
approach is new and has not yet been investigated.

RQ 2: For a pair of items involving different physical
contexts but the same mathematical solution pro-
cedure, can the prediction of the response accuracy
of an item be improved based on the eye-tracking data
of the corresponding item?

IV. METHODOLOGY

A. Sample

The data were collected from N ¼ 115 German and
Swiss gymnasium students (58 female, 57 male; all with
normal or correct-to-normal vision). A gymnasium is a
public school that provides higher education and constitutes
the highest level of the educational system in Germany and
Switzerland. Gymnasium students are comparable to U.S.
high school students attending college preparatory classes.

B. Materials

The 26 single-choice items of the latest version of the
TUG-K (version 4.01) were translated into German and
presented to the students in the original order of the test in
two sets of 13 items, with a short break in between (an
example item is shown in Fig. 1). The TUG-K contains the
following three item pairs, which require the same math-
ematical procedure for the quantitative determination of the
physical quantity and to which the analysis in this article is
therefore limited. The corresponding items can be found in
the Supplemental Material [42].

1. Determination of the positive slope
item 5 Velocity from position-time graph
item 7 Acceleration from velocity-time graph

2. Determination of the negative slope
item 18 Velocity from position-time graph
item 6 Acceleration from velocity-time graph
3. Determination of the area content
item 4 Displacement from velocity-time graph
item 16 Change in velocity from acceleration-time graph

C. Procedure and measures

1. Test procedure

Four identical eye-tracking systems were set up in school
libraries and the students participated voluntarily in data
collection, either in free periods or regular classes (with
permission of their teachers). At the time of the testing
procedure, the subject area kinematics were completed in
all courses. The participants received no credit or gift for
participating. First, the students were introduced to the eye
tracker, and a nine-point calibration process was used for a
fully customized and accurate gaze point calculation prior

FIG. 1. Example item from the TUG-K. The task has been
translated verbatim into German and reads as follows in the
English original: The following figure shows the position versus
time graph of an object. The velocity of the object at t ¼ 2 s is:.
The axis labels are also written in German and mean time (“Zeit”)
and position (“Ort”).

FIG. 2. Segmentation of the diagram of an exemplary item into
different micro-AOIs. The axis labels are written in German and
mean time (Zeit) and position (Ort).

1physport.org/assessments.
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to each set of 13 questions. Subsequently, the items were
presented on a 22-inch computer screen (1920 × 1080;
refresh rate 75 Hz) equipped with a Tobii X3–120 remote
eye-tracking system. The students then solved the items
without interruption from the researcher andhad asmuch time
as needed to solve. After students were ready to give their
answers, they pressed a key to move to the next page where
they entered their answer. They did not receive feedback after
completing an item and could not return to previous tasks.

2. AOI segmentation procedure

Based on the raw gaze points, which have been recorded at
120Hz,we determined fixations based on an I-VTalgorithm.
The I-VTalgorithm determines the speed between each gaze
point, and all consecutive gaze points that are below a
threshold of 30°=s belong to the same fixation. Once this
threshold is exceeded, the fixation ends, and a new fixation
starts when the speed is again below this threshold. The
connection between two consecutive fixations is termed
saccade, which is an rapid eye movement that does not
exceed a duration of 100 ms. To extract the eye-tracking
metric “total visit duration” [(TVD), cumulated times
between first fixation in and first fixation outside an AOI;
AOIs not visited are counted as 0] as a measure for visual
attention allocation, the items presented to the students were
segmented into AOIs on two different levels. At the macro-
scopic level, the question text, the diagram and the options
were assigned an AOI (macro-AOIs).
At the microscopic level, the diagram AOIs were

systematically positioned according to the information
reduction hypothesis of Gegenfurtner et al. [28] described
in the state of research. This means that two physics
education experts identified the information in the graphs
that was relevant and irrelevant to solving the tasks. In the
graph tasks here, there is typically a large irrelevant area,
such as a nonlinear part of the graph and a relevant area of
the graph, in which the slope needs to be determined. In the
first step, we discriminated between these two areas.
Similarly, there are irrelevant areas on the axes (e.g., in
Fig. 2 from 0 to 1 on the x axis and the value 15 on the y
axis), which were also considered separate micro-AOIs.
Furthermore, we also considered the work by Klein et al.

[9], who found that students who correctly determine the
slope of the graph spent more time on regions located along
the graph. Accordingly, we isolated the graph from the
remaining area. Eventually, we isolated the value that is
mentioned in the question text and the associated point
along the graph (in Fig. 2: the value 3 on the x axis and the
associated point on the graph). This value is a surface
feature that is likely to attract the attention of both students
who solve an item correctly and students who solve it
incorrectly. We also isolated the values on the x and y axes
required to solve the item correctly.
To determine the slope, it is necessary to divide the y-

axis interval with the x-axis interval, and to determine the
area underneath the graph, the students are required to
multiply the x-axis interval with the y-axis interval and

calculate the half of this area. This area determination is the
simplified calculation of the integral underneath the graph
for the case where the graph runs linearly through the
origin. Therefore, we considered the end points of each
interval as separate micro-AOIs (in Fig. 2 the values 2 and 5
on the x axis and the values 0 and 10 on the y axis).

3. Prediction of response accuracy

Multiple regression analysis was performed for different
datasets to predict response accuracy based on the eye-
tracking metric TVD. In the resulting models, the standard-
ized TVD on the specific AOIs and their interactions were
included as possible predictors of the dependent variable
response accuracy. For each dataset, a stepwise regression
basedonAkaike’s informationcriterion (AIC)was carried out
using the step function from the R package “stats” (v.3.6.2) to
find the best-fitting model by iteratively removing the least
contributive predictor from the full model. Because response
accuracy is a binary coded variable (0 indicates an incorrect
answer, 1 indicates a correct answer), logistic regression was
chosen (see, e.g., Ref. [43]). The resulting logistic models
were compared using the function compareGLM from the R
package “rcompanion” (v. 2.3.26). In this way, for each AOI
segmentation, one obtains those AOIs that are relevant for
predicting a correct or incorrect solution. Themodels can also
be compared to find the one best suited for the prediction.
To compare the prediction models based on the different

datasets, McFadden’s pseudo R-squared (R2
McFadden) was

obtained as a measure of prediction quality and tested
whether the corresponding prediction models differed
significantly from each other in the explained proportion
of variability. If the models differed significantly, the
amount of deviance reduced (denoted as “Red. Dev.”) by
the better-fitting model was calculated.

V. RESULTS

First, with reference to RQ1, the results on the influence of
the two different levels of AOI segmentation (macroscopic
and microscopic) on prediction quality for individual items
are presented below. We call this intra-item prediction,
because here the data regarding one item are used to predict
the correctness of the same item (Sec. A). Moreover, in the
process, we also tested whether adding the correct response
option as an AOI leads to further improvement in prediction
quality.
We then report the results for the inter-item prediction.

Here, we use the data with respect to one item to predict the
correctness of another item (Sec. B). In addition to the gaze
data, we can also use the correctness of the base item here.

A. Intra-item prediction

1. Comparison of the datasets

The three datasets used to estimate response accuracy for
each item are defined as follows:
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• Dataset 1: We use TVD on the macro-AOIs (i.e.,
question text, diagram, and options). The macro-AOIs
were defined a priori due to the surface features of
the items.

• Dataset 2: We use TVD on the micro-AOIs resulting
from a finer segmentation of the diagram.

• Dataset 3: We use TVD on the micro-AOIs of the
diagram (as in dataset 2) and on the correct option.

By definition, the information level increases from dataset
1 to 3, and the degree of aggregation decreases. The results
of the model comparison for the three datasets are shown in
Table I for each of the examined items. For a clear
representation, the pseudo-R2 values are shown in Fig. 3.
In the graphical comparison of the pseudo R-square

measure, it can be observed that for each item, the R-square
measure increases from dataset 1 to 3. Thus, the increase in
prediction quality with AOI segmentation at the microlevel
(datasets 2 and 3) compared to segmentation at the macro
level (dataset 1) can be identified pretty clearly. The limit
for a sufficiently good fit of the model to the data, which is
usually set at a value for McFadden’s pseudo R2 of 0.2, is
reached for segmentation on the macro level (dataset 1)
only for one item and otherwise remains far below. A

prediction based on a finer segmentation of the diagram
(dataset 2), on the other hand, leads to a good prediction
quality being achieved for all items except item 7. If the
TVD regarding the correct answer option is included in the
model (dataset 3), the goodness of fit is increased for all
items and thus the limit for a sufficiently good prediction
quality is exceeded for each item.

2. Relevant and irrelevant micro-AOIs for prediction

Based on the micro-AOIs selected by the algorithm
(dataset 2), we examined whether the gaze data in each
micro-AOI is helpful to discriminate between visual strat-
egies that are associated with correct and incorrect solutions
(i.e., we studied which of these task-relevant and irrelevant

FIG. 3. Comparison of McFadden’s pseudo R2 for intra-item
prediction based on the different datasets. The limit from which
good prediction quality can be assumed is shown as a dashed line.

TABLE I. Results of the intra-item prediction: McFadden’s
pseudo R squared (R2

McFadden), reduced deviance compared with
the previous model (Red. Dev.) and p value (p).

Dataset R2
McFadden Red. Dev. p

Item 4
1 0.066 � � � � � �
2 0.256 28.8 2.4 × 10−06

3 0.396 21.3 2.8 × 10−04

Item 5
1 0.069 � � � � � �
2 0.255 29.4 6.6 × 10−06

3 0.440 29.3 2.1 × 10−05

Item 6
1 0.000 � � � � � �
2 0.322 49.0 6.4 × 10−08

3 0.679 54.3 6.5 × 10−10

Item 7
1 0.224 � � � � � �
2 0.260 5.7 0.678
3 0.329 10.9 9.8 × 10−04

Item 16
1 0.044 � � � � � �
2 0.129 12.8 3.5 × 10−04

3 0.234 15.8 1.3 × 10−03

Item 18
1 0.000 � � � � � �
2 0.179 28.1 3.4 × 10−05

3 0.441 41.2 1.1 × 10−09

FIG. 4. PredictiveAOIs of item18 (red: longerTVDwith incorrect
answer, green: longer TVD with correct answer). The axis labels
are written in German and mean time (Zeit) and position (Ort).
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micro-AOIs are prediction relevant). The results for item 18
are shown in Fig. 4; the results for the other items are attached
to the Supplemental Material [42]. The AOIs highlighted in
red were viewed longer if the item was solved incorrectly,
while the AOIs marked in green were viewed longer if the
item was solved correctly. The remaining AOIs (with no
highlights) were not relevant for distinguishing gaze behav-
ior in correct and incorrect responses.
Since the regression procedure selects AOIs relevant for

prediction based on eye-tracking data alone, an expert
rating with eight experts from physics education research
was conducted to verify whether the AOIs selected by the
algorithm are indeed relevant for the solution process.

3. Expert rating

We present the results for item 18 in Table II, and the
results for all other items can be found in the Supplemental
Material [42]. The AOI numbers (column 1) refer to the
labels in Fig. 4, and in the second column the direction of
the correlation between longer TVD and answer accuracy is
given. In the last columns, the number of experts who judge
the AOI as relevant or not relevant is shown. For example,
AOI III (corresponding to the area around the highest point
in the graph) was judged as irrelevant by all experts, and a
longer TVD on this AOI was associated with incorrect
answers. Thus, there is a consistency between the data and
the expert rating in this case. In the following section, we
quantify this consistency by determining the agreement
coefficient κ between the expert rating and the algorithmic
classification of the AOIs via

κ ¼ 1

N

XN

i¼1

p0;i − pc

1 − pc
: ð1Þ

In Eq. (1), N ¼ 8 is the number of raters, p0;i ¼
ðNi;rel þ Ni;irrelÞ=ðNtot;rel þ Ni;irrelÞ, where Ni;rel is the num-
ber of AOIs that have been rated as task relevant by the ith
rater and that have received a significantly higher TVD by
students who solved the item correctly,Ni;irrel is the number
of AOIs that have been rated as task irrelevant by the ith
rater and that have received a significantly higher TVD by
students who solved the item incorrectly, Ntot;rel is the total
number of AOIs that have received a significantly higher
TVD by students who solved the item correctly, Ntot;irrel is

the total number of AOIs that have received a significantly
higher TVD by students who solved the item incorrectly,
and pc is the probability of having an agreement between
TVD and expert rating by chance.
Table III shows the agreement coefficient for all items. It

is noticeable that the expert ratings and the classification
shows a total moderate agreement of 0.53, ranging from
0.01 (item 5), which means that there is a slight agreement,
to 0.88 (item 16), which implies almost perfect agreement
(according to Landis and Koch [44]).

B. Inter-item prediction

In the following, the results of the prediction for item
pairs of the TUG-K are presented, which require the same
mathematical solution procedure, but associated with a
different physical context. Predicted is the response accu-
racy for one item of the pair based on data (response
accuracy, eye-tracking data) of the other item of the pair
(inter-item prediction). By comparing different datasets,
we address RQ2 (i.e., whether the prediction quality can be
improved by adding eye-tracking data for such a predic-
tion). Finally, we added the TVD with respect to the correct
response option as AOI to the model to supposedly increase
the prediction quality.
The quality of inter-item prediction was compared for

the following datasets.
• Dataset 1: We use only accuracy data (correct or
incorrect) of the base item.

• Dataset 2: We use TVD based on the micro-AOIs.
• Dataset 3: We combine the information from above
(i.e., we use accuracy and TVD based on the micro-
AOIs).

• Dataset 4: We additionally use TVD on the correct
option. Thus, we use accuracy and TVD based on the
micro-AOIs and TVD on the correct option.

While datasets 1 and 2 are clearly separated (product
data vs process data), datasets 3 and 4 contain information
from the previous datasets and thus are richer in informa-
tion. The characteristic parameters of the corresponding
models are shown in Table IV and graphically illustrated
in Fig. 5.
For the first pair of items (4 and 16), the prediction

quality increases steadily from dataset 1 to dataset 4 (i.e.,
the AIC value decreases and McFadden’s pseudo R2

increases [cf. Table IV]). By adding the TVD, the deviance
is reduced, and the prediction model becomes significantly
better. The highest prediction quality is achieved when the
accuracy, the TVD regarding the micro-AOIs, and the

TABLE II. Expert rating regarding the solution relevance for
AOIs of item 18.

AOI Response for longer TVD Relevant Irrelevant

I incorrect 3 5
II correct 8 0
III incorrect 0 8
IV correct 7 1
V correct 7 1

TABLE III. Agreement coefficient κ between the expert rating
and the algorithmic classification of the AOIs.

Item 4 Item 5 Item 6 Item 7 Item 16 Item 18 Mean

0.31 0.01 0.77 0.50 0.88 0.73 0.53
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correct option are used for the prediction. Including TVD
on micro-AOIs also improves the prediction performance
for the second (items 5 and 7) and third (items 18 and 6)
pairs of items considered in our analysis. However, in these
cases, the additional inclusion of the TVD regarding
the correct option does not lead to a significantly better
prediction model.
It is striking that the limit for a sufficiently good

prediction quality (McFadden’s pseudo R2 > 0.2) is not
reached if only the answer correctness (i.e., the product-
based measure) is used as a data basis, which clearly
demonstrates the added value of including process-based
eye-tracking data to predict response behavior for intra-
item prediction.

VI. DISCUSSION

A. Intra-item prediction

The aim of our analysis was to identify which AOI
segmentation is best suited for predicting the correctness of
items with graphs. In all items, it is noticeable that the
prediction improves from the macro level to the micro level.
The results also show that for only one of six items did the
prediction of the correct answer using the TVD on macro-
level AOIs reach a value of R2 > 0.2, which corresponds to
a good prediction. For a segmentation on the micro level,
on the contrary, the prediction of the correct answer reaches
a value R2 > 0.2 in four out of six items.

It should be noted here that we only use a finer
segmentation of the diagram area as AOIs that is guided
and confirmed by experts; the amount of eye-tracking data
is identical. Therefore, it is reasonable to assume that this
finer division allows for a better distinction between the
strategies of students with correct and incorrect answers.
This implies that the graph exhibits an essential role in the
problem-solving process and that the inclusion of eye-
tracking data does not lead per se to the best prediction of
the answer correctness.
A further increase in prediction quality can be achieved if

the correct response option is included as an additional
AOI. Inclusion of the TVD with respect to this AOI in the
prediction model leads to an increase in predictive validity
for all items. This is in agreement with previous studies that
have already demonstrated the predictivity of the correct
answer option in multiple choice tests for answer correct-
ness [21,23].
To provide relevance and meaning to the AOIs, we

included expert ratings of the relevance of the AOIs for
the solution process. We found moderate agreement which
implies a relation between the statistical difference in the
predictability to the inherent structure of the tasks. For
example, only slight agreement was found in item 5. In this
case, theAOI at an xvalue of t ¼ 2 s is highly relevant for the
solution process (eight of eight experts consider this AOI as
relevant) to determine the slope, but it received a higher TVD
by students with an incorrect answer. The reason for this
might be that the value of t ¼ 2was alreadymentioned in the
question text. This means that students do not need to
understand the concept of the slope to focus on this AOI,
but rather follow the cue in the question text. Apart from this
low value, there is one item that shows an almost perfect
agreement (item 16) and two items with a substantial
agreement (item 6 and item 18). These results imply that
the areas in a graph that are relevant for the solution receive
more attention from students with a correct answer.

B. Inter-item prediction

The basis for inter-item prediction is item pairs of
TUG-K, which require the same mathematical procedure
to solve, but differ in terms of the physical quantity that

FIG. 5. Comparison of McFadden’s pseudo R2 for inter-item
prediction based on the different datasets.

TABLE IV. Results from inter-item prediction: McFadden’s
pseudo R squared (R2

McFadden), reduced deviance compared with
the previous model (Red. Dev.) and p value (p).

Dataset R2
McFadden Red. Dev. p

Prediction from item 4 to item 16
1 0.158 � � � � � �
2 0.246 14.9 5.0 × 10−03

3 0.416 24.3 < 2.2 × 10−16

4 0.522 16.1 3.1 × 10−04

Prediction from item 5 to item 7
1 0.156 � � � � � �
2 0.213 9.0 2.5 × 10−01

3 0.321 17.0 3.9 × 10−05

4 0.321 � � � � � �
Prediction from item 18 to item 6
1 0.056 � � � � � �
2 0.343 39.4 2.2 × 10−05

3 0.354 5.9 < 2.2 × 10−16

4 0.354 � � � � � �
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must be determined. The intention of inter-item prediction
for these item pairs is to predict the response patterns of
one item using data with respect to the other item. By
comparing the underlying logistic regression models, it was
demonstrated for all three item pairs that the model based
on eye-tracking data is significantly better at predicting
response patterns than the model based only on product-
based response accuracy.
The pseudo R-square measure for the prediction based on

the eye-tracking dataset is above the threshold of 0.2 for all
three pairs of items, in contrast to the prediction based on
response accuracy, which indicates a particularly good fit of
the model in. Although the number of possible predictors is
larger with the eye-tracking dataset compared to the single
predictor variable response accuracy, the model comparison
nevertheless proves the added value of the process-based
eye-tracking data in predicting response accuracy.
Thus, the gaze behavior during the solution process of an

item is of greater importance for the response behavior of the
other item of an item pair than the knowledge about the
correct or incorrect answer after completion of the solution
process alone. This indicates that problem-solving strategies
are manifested in the gaze behavior, which is used again in
the same or similar way for an item that requires the same
mathematical procedure. For example, if the velocity or
acceleration is to be determined from a given linear graph,
this task can be solved in both cases by applying a slope
triangle, which is reflected in the gaze data. This supports the
study results of Bektasli and White [19] and also
Lichtenberger et al. [18] who both conclude that under-
standing the mathematical procedures is essential in inter-
preting kinematic graphs.
The prediction quality can be further improved by combin-

ing eye-tracking data and answer correctness. For all three
items, the model based on the combined dataset is also
significantly better. However, adding the TVD for the correct
response option leads to a significantly better-fitting model
only for item pair 4 and 5. For the other two item pairs, the
TVD for the correct response option is not a significant
predictor.

VII. CONCLUSION AND OUTLOOK

Our paper focuses on the investigation of the prediction of
response accuracy based on visual attention for selected
items from the TUG-K, which is a well-established test
instrument for understanding kinematic diagrams in educa-
tional research. We were able to show that segmenting the
diagram AOIs on the micro level leads to an increase in
prediction quality, which could even be increased by adding
the correct answer option as an additional AOI. The
segmentation was based on a partitioning of the diagram
into areas that are relevant or not relevant for the solution
process and which, according to Gegenfurtner’s information
reduction hypothesis, should receive more or less visual
attention if the solution is correct.

This indicates that a certain visual strategy underlies a
correct interpretation of kinematic diagrams. Successful
students pay more attention to relevant areas of the diagram
in order to extract information for the problem-solving
process. We infer that deficits occur at the beginning of the
problem-solving process, in that students do not correctly
identify the relevant information from the diagram. In
physics instruction, this should be taken into account by
teaching the students in which areas of a diagram they can
find which information and how they can extract it from the
diagram, which can be generalized to diagrams in different
contexts.
Considering the data analysis process, the results clearly

show the dependence of the prediction quality on the
specification of the AOIs before the actual regression
analysis. In order to achieve a good prediction quality
based on eye-tracking data, a segmentation of the diagram
is essential for the items investigated here, which divides
the diagram area into relevant and nonrelevant areas for the
solution. It should be noted that this requires knowledge
about solution processes of such diagrams (i.e., expertise in
subject didactics), that should be considered, especially
with regard to an automated analysis of eye-tracking data.
In this context, a promising research perspective arises

from the possibility of having the AOI segmentation
performed by an objective system rather than on the basis
of a subjective expert assessment. In this case, an algorithm
could (automatically) identify AOIs on the basis of the
collected gaze data, which could contribute to an increase
in the quality of prediction.
The TUG-K has item pairs whose items require the same

mathematical solution procedure but have different physi-
cal target quantities. This allowed us to investigate the
prediction of answer correctness of one item based on data
on the other item of the pair. Compared to product-based
answer correctness, which can only be determined after the
solution process, a higher prediction quality could be
achieved using eye-tracking data, which is already deter-
mined during the solution process.
Such a process-based prediction of response behavior

opens up the possibility of automatically supporting the
problem-solving process even before the task is solved
incorrectly, for example, by providing additional explan-
ations or visual cues, which would avoid a demotivating
failure in problem solving for the learner. In addition, gaze
behavior could be used to identify erroneous strategies and
offer (automated) support measures tailored to the task.
This could be implemented in intelligent tutoring systems
to use student gaze data to continuously adapt learning
environments and thus personalize the learning process.
However, this would require real-time processing of eye
movement data that includes fixation filtering and deter-
mination of eye movement metrics in predefined AOIs.
Future research must therefore address the question of

whether and at what point in the problem-solving process
eye-tracking data allow evidence-based predictions about
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the probability of a correct or incorrect solution even before
the answer is given. This opens a promising research
perspective from our point of view and we encourage
other research groups in this field to investigate time-
resolved prediction based on gaze data in follow-up studies
based on the results of this study.
In summary, the results demonstrate that collecting eye-

tracking data during the problem-solving process is useful
for gaining insight into the visual strategies used in
interpreting kinematic diagrams and predicting the correct-
ness of responses based on this data. These findings
can be used to sensitize teachers to the problems students
face in extracting information from diagrams and distin-
guishing them into relevant and nonrelevant information, as
well as to give more attention to this issue in teacher
education. Furthermore, these are important results in
terms of adapting learning environments in general and

problem-solving processes in particular, since high pre-
dictive quality is essential for successful adaptation.
However, the validity is limited to selected item pairs of a

specific test instrument, which are based on the same
mathematical solution procedure and further research is
needed to enable such an automatized support. For exam-
ple, it would have to be investigated at what point in the
solution process sufficient eye-tracking data are available to
enable a prediction of the answer behavior with sufficient
quality. Machine learning methods could also be used,
which could offer advantages over the classical regression
analyses used in this contribution, both in terms of the
quality of the prediction and the amount of data required. In
the future, intelligent tutoring systems could use such data
analysis methods to identify hurdles in the problem-solving
process in real time and automatically initiate precisely
tailored assistance actions without any time delay.
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