

Supplementary Material

1 Lysimeter design

Supplementary Figure 1. Zero-tension lysimeter design. (A) lysimeter for the litter and Oe/Oa horizon, (B) lysimeter for the mineral topsoil, (C) lysimeter for the mineral topsoil: filling with different grained quartz sand.

2 Data from Mitterfels (MIT)

	Mitterfels				
Location	N: 48.976008°				
	E: 12.879879°				
Elevation (m a.s.l.)	1023				
Mean annual temperature (°C)	4.5				
Mean annual precipitation (mm)	1299				
Forest stand	Beech				
Parent material	Paragneis				
Soil type	Dystric Cambisol				
pH (CaCl ₂) at 0-5 cm	2.9				
Humus layer	Moder				
Horizon depth (litter - Oe/Oa -A(e)h)	4/8/6				

Supplementary Table 1: Characteristics of the study site Mitterfels (MIT), for more detailed information please see Lang et al. (2017).

Supplementary Figure 2. Phosphorus (P) forms in soil solutions from the litter and the A horizon at Mitterfels (MIT) in Winter 2013/2014 and Summer 2014, as revealed by enzyme addition assays with phosphomonoesterase addition; DIP: dissolved inorganic P, DOP = dissolved organic P.

frontiers

Supplementary Table 2: Results of enzyme addition assays conducted with phosphomonoesterase addition in 2013/2014 on soil solutions from the site Mitterfels (MIT), and results from enzyme addition assays from literature with soil solutions and soil extracts.

Study	Phosph labile D	Phosphomonoesterase- labile DOP [% of DOP]*			drolyzabl	e DOP	Medium	Ecosystem
	min	max	mean	min	max	mean		
This study MIT- Litter layer	17	40	29	60	83	72	leachate	forest soil
This study MIT- Mineral topsoil	0	1	0	99	100	100	leachate	forest soil

* hydrolyzable by phosphomonoesterase, or classified as simple or labile monoesters/monoester-like

** = enzyme-stable, depends on how many different enzymes were added/were naturally in the solution

DOP: dissolved organic phosphorus

Supplementary Table 3: Back-estimated initial distribution of phosphorus (P) forms in soil solutions based on the organic P hydrolysis model and the P forms measured 22 hours after sampling for the site Mitterfels (MIT) beneath the organic layers (litter and Oe/Oa horizon and the mineral soil (30 cm depth). total P = total phosphorus. *: non-hydrolyzable by phosphomonoesterase, **: no back-estimation possible because of lack of presence of monoester-labile organic P at time of measurement.

Site	Soil depth	Season	Hours	Total P	Inorganic P	Monoester- labile DOP	Non-hydr. org. P at 22 hours*	Monoester- labile DOP
	cm		after sampling	μmol L ⁻¹	% of total P	% of total P	% of total P	% of DOP
MIT	0	Winter 13/14	0 (estimated)	3.76	58	23	19	56
MIT	0	Winter 13/14	22 (measured)	1.46	68	13	19	40
MIT	0	Summer 14	0 (estimated)	3.76	58	23	19	56
MIT	0	Summer 14	22 (measured)	3.76	77	4.0	19	17
MIT	30	Winter 13/14	0 (estimated)	0.06	89	0.0**	11**	0**
MIT	30	Winter 13/14	22 (measured)	0.06	89	0.0	11	0
MIT	30	Summer 14	0 (estimated)	0.12	95	0.3	5.2	4.7
MIT	30	Summer 14	22 (measured)	0.12	95	0.0	5.2	0.8

3 Estimations of phosphomonoesterase activity fluxes in soil solutions and soil extracts

Supplementary Figure 3. Sampling design for leachate samples: 1-hour irrigation with 20 L of artificial rain water. Samples were taken in several leachate volume steps of 100 mL (first two steps), and 250 mL (all following steps). For this study the sample of step 3 was used. Analysis of other parameters done on all samples show an exponential decrease with progressing irrigation and wash out towards a steady state. We assume that this is similar for enzyme activity. Therefore, the rate of step 3 represents a reasonable value for the enzyme activity rate of 1 Liter of leachate.

4 Derivation of DOP hydrolysis model

Solution by Michaelis-Menten (MM) model:

The equation of MM model governing the reaction kinetics is a differential equation

$$v = V_{max} \frac{[S]}{K_m + [S]}$$

where 'v' is the instantaneous speed of reaction, [S] is the instantaneous concentration of substrate, while V_{max} and K_M are constants. At any instant of time, speed 'v' of the reaction is the rate of generation of product P, i.e.

So,
$$v = \frac{dP(t)}{dt}$$
$$\frac{dP(t)}{dt} = V_{max} \frac{[S]}{K_m + [S]}$$

At any instant of time 't', concentration of substrate [S] is equal to its concentration at t = 0 (i.e. beginning) minus concentration of product. At time 't = 0', the concentration of substrate is S₀.

$$[S] = S_{@t=0} - P(t) = S_0 - P(t)$$
$$\frac{dP(t)}{dt} = V_{max} \frac{S_0 - P(t)}{K_m + S_0 - P(t)}$$

Leading to:

Here, P(t) is product concentration at time 't', while S_0 , V_{max} and K_M are constants. This equation can be solved with any computation program (here done with MATLAB and R), with desired time spans and time steps. Here, it was applied as following:

$$DIP_{t} = \int_{t'=0}^{t'=t} V_{max} * \frac{labileDOP_{0} - DIP_{t'}}{K_{M} + labileDOP_{0} - DIP_{t'}} d_{t'}$$

The equation yields the product concentration P(t) alias DIP_t as a function of time, and can be used to calculate the relevant substrate concentrations (labileDOP_t).

$$labileDOP_t = labileDOP_0 - DIP_t$$

[3]

5 Michaelis-Menten parameters V_{max} and K_M: Data and statistics

Supplementary Table 4: Michaelis-Menten parameters V_{max} and K_M for phosphomonoesterase in soil solutions. SE = standard error, n = 12.

	Treatment	Horizon	V _{max} leachate		SE	K _M leachate		SE	V _{max} soil		SE	K _M soil		SE
			[µmol/L	/h]		[μmc	[µmol/L]		[µmol	[µmol/g/h]		[μm	[µmol/L]	
BBR	Control	Litter	4.10	±	0.6	17.3	±	3.9	61.7	±	11	142	±	32
BBR	Control	Oe/Oa	2.80	±	0.2	9.75	±	1.4	15.3	±	1.4	37.8	±	7.1
BBR	Control	А	2.87	±	0.1	4.14	±	0.7	16.4	±	5.2	33.4	±	7.6
BBR	+N	Litter	2.35	±	0.3	11.5	±	4.3	41.5	±	10	130	±	14
BBR	+N	Oe/Oa	3.71	±	0.7	20.0	±	5.2	19.6	±	3.3	66.1	±	22
BBR	+N	А	2.56	±	0.3	3.07	±	0.4	12.3	±	1.3	17.2	±	3.5
BBR	+P	Litter	4.95	±	1.6	24.9	±	14	52.1	±	2.3	137	±	7.4
BBR	+P	Oe/Oa	2.94	±	0.5	10.8	±	1.8	22.6	±	3.6	67.6	±	3.6
BBR	+P	А	2.47	±	0.2	3.15	±	1.5	12.4	±	2.5	16.4	±	1.6
BBR	+NxP	Litter	4.97	±	1.3	16.1	±	4.0	41.6	±	1.0	125	±	3.5
BBR	+NxP	Oe/Oa	2.28	±	0.4	8.22	±	1.4	14.6	±	1.6	71.0	±	15
BBR	+NxP	А	3.07	±	0.3	4.86	±	0.8	7.90	±	0.9	22.0	±	8.2
LUE	Control	Litter	3 74	+	03	97 9	+	лл	128	+	14	106	+	21
LUE	Control	Oe/Oa	5.84	+	0.0	63.9	+	0.0	23 1	+	38	61 5	+	5.0
LUE	Control	Δ	2 56	+	0.0	38.9	+	14	13.0	+	6.4	67.3	+	22
LUE	+N	Litter	4 57	+	1.0	34.2	+	71	108	+	28	90.0	+	8.2
LUE	+N	Oe/Oa	1.89	+	0.3	37.6	+	18	37.7	+	14	110	+	50
LUE	+N	A	5.17	+	1.9	68.1	+	25	14.6	+	4.2	58.7	+	15
LUE	+P	Litter	2.45	+	0.4	43.1	+	11	101	+	6.3	90.9	+	16
LUE	+P	Oe/Oa	2.18	+	0.3	84.6	±	30	27.8	+	5.5	98.7	±	25
LUE	+P	A	4.57	- +	1.3	204	- +	123	5.74	- +	1.0	20.7	- +	4.9
LUE	+NxP	Litter	8.09	+	1.3	161	±	86	86.4	+	8.6	68.5	±	3.4
LUE	+NxP	Oe/Oa	2.38	±	0.3	197	±	7.9	21.9	±	1.7	60.9	±	5.6
LUE	+NxP	А	6.18	±	1.3	132	±	28	9.90	±	1.6	53.9	±	5.4

log K_M soil log V_{max} soil log K_M leachate log V_{max} leachate F value F value p value Sign. F value F value p value p value Sign. p value Sign. Sign. Litter < 0.01 *** 16.90 0.01 ** < 0.01 *** 0.40 0.55 Site 12.5 14.20 0.9 4.80 * 1.00 Ν 0.35 0.05 0.00 0.83 0.33 Р 0.7 0.42 0.50 0.48 0.50 0.49 1.30 0.28 0.2 0.67 0.10 0.71 0.58 6.10 0.03 ** Site:N 0.30 0.7 0.30 0.40 Site:P 0.41 0.59 0.00 0.85 0.53 0.1 N:P 0.73 0.40 0.53 2.00 0.18 4.30 0.06 * Site:N:P 0 0.88 0.00 0.86 0.80 0.39 0.50 0.49 Oe/Oa *** Site 1.50 0.24 1.60 0.27 40.50 < 0.01 0.10 0.83 Ν 0.20 0.67 0.00 0.94 0.62 0.11 0.30 3.20 0.90 0.08 Р 0.35 0.00 0.83 1.70 0.22 4.10 * Site:N 0.40 0.55 0.60 0.46 0.00 0.83 3.00 0.12 Site:P 0.70 0.40 0.40 0.56 7.70 0.02 0.20 0.66 N:P 1.80 0.20 6.00 0.03 ** 0.70 0.42 1.50 0.25 Site:N:P 0.00 0.83 0.10 0.80 6.80 0.03 8.20 0.02 ** A horizon *** 0.04 ** 12.90 < 0.01 0.50 16.90 0.13 Site 0.50 2.70 Ν 0.20 0.10 0.71 1.30 0.31 1.40 0.26 0.63 Р 3.80 0.07 3.70 0.08 * 2.10 0.20 1.10 0.33 3.00 0.10 3.70 0.08 * 0.50 0.50 1.10 0.33 Site:N

Supplementary Table 5: Statistical results from linear mixed model, where the log transformed independent kinetic parameters KM and Vmax in soil solutions and soil extracts were modelled. In the model, site, nitrogen addition (+N), and phosphorus (+P) addition are fitted as fixed effects with an interaction between site, +N, and +P for the N×P treatment; Blocks are fitted as random effects. Presented are the F value (ratio of variance within and between the groups), and the p value with significance, where * indicates $p \le 0.1$, ** $p \le 0.05$, and *** $p \le 0.01$. Data was analysis as subsetted to horizons; previous model without subsets showed horizons significant with p < 0.01.

Site:P	0.50	0.50		0.00	0.88	3.30	0.12	0.90	0.37
N:P	4.50	0.05	*	0.00	0.99	0.80	0.40	0.00	1.00
Site:N:P	0.20	0.66		0.50	0.50	0.20	0.66	0.60	0.47

Supplementary Table 6: Statistical results from linear mixed model, where the phosphorus (P) forms total P (Ptot), dissolved inorganic P (PO₄.P), and dissolved organic P (DOP) in soil solutions are modelled. Ptot and PO₄.P were log transformed due to non-normal distribution of the residuals. In the model, site, event, nitrogen addition (+N), and phosphorus (+P) addition are fitted as fixed effects with an interaction between site, +N, and +P for the N×P treatment; Blocks are fitted as random effects. Presented are the F value (ratio of variance within and between the groups), and the p value with significance, where * indicates $p \le 0.1$, ** $p \le 0.05$, and *** $p \le 0.01$. Data was analysis as subsetted to horizons; previous model without subsets showed horizons significant with p < 0.01.

	log Ptot				log PO ₄ .P			DOP			
	F value	p value	Sign.	F value	p value	Sign.	F value	p value	Sign.		
Litter											
Site	1.4	0.31		0.5	0.54		13.7	0.02	**		
Ν	0.1	0.82		0.2	0.68		0.5	0.48			
Р	4	0.05	*	4.5	0.04	**	0	0.83			
Event	151.7	< 0.01	***	125.2	< 0.01	***	19.8	< 0.01	***		
Site:N	7.7	< 0.01	***	9.7	< 0.01	***	1.1	0.30			
Site:P	0.3	0.59		0	0.83		0.3	0.56			
N:P	2.1	0.16		1	0.33		0.2	0.70			
Site:N:P	16.7	< 0.01	***	11.2	< 0.01	***	1.6	0.22			
Oe/Oa											
Site	0.9	0.39		0.5	0.53		11.3	< 0.01	***		
Ν	2.1	0.15		2	0.17		3.9	0.06	*		
Р	1	0.32		0.7	0.41		0.6	0.43			
Event	37.3	< 0.01	***	38.2	< 0.01	***	15	< 0.01	***		
Site:N	1.4	0.25		2.6	0.12		0.1	0.73			
Site:P	0.1	0.72		0.7	0.42		0.2	0.64			

N:P	5.5	0.03	**	5.7	0.02	**	0.5	0.48	
Site:N:P	1.7	0.21		2.1	0.16		0	0.89	
A horizon									
Site	1.4	0.30		1.2	0.33		10.3	0.03	**
Ν	0.1	0.80		0.1	0.73		0.2	0.70	
Р	0.5	0.50		2.2	0.15		0.1	0.72	
Event	28.3	< 0.01	***	19.2	< 0.01	***	14.1	< 0.01	***
Site:N	0.6	0.43		0.3	0.59		2.8	0.10	
Site:P	0	0.95		0	0.92		2	0.16	
N:P	0.7	0.42		0	0.94		0.2	0.65	
Site:N:P	0.7	0.42		0.6	0.45		0.1	0.76	

6 Relation total P to Michaelis-Menten parameters and soil parameters

A: V_{max} in soil solution (top) B: K_M in soil solution (top)

and soil extract (bottom)

and soil extract (bottom)

Supplementary Figure 4. V_{max} and K_M for phosphomonoesterases in soil solutions and soil extracts versus total phosphorus (P) concentration in soil solutions. A: V_{max} in soil solutions (top) and soil extracts (bottom), B: K_M value in soil solutions (top), and soil extracts (bottom); K_M in μ mol/L, V_{max} in μ mol/L/h for soil solutions and μ mol/g/h for soil extracts.

A: V_{max} in soil solution (top) and soil extract (bottom)

B: K_M in soil solution (top), and soil extract (bottom)

A: V_{max} in soil solution (top) and soil extract (bottom)

B: K_M in soil solution (top) and soil extract (bottom)

Supplementary Figure 5. V_{max} and K_M for phosphomonoesterases in soil solutions and soil extracts versus dissolved organic phosphorus (DOP) and phosphate (PO4.P) concentration in soil solutions. A: V_{max} in soil solutions (top) and soil extracts (bottom), B: K_M value in soil solutions (top), and soil extracts (bottom); K_M in µmol/L, V_{max} in µmol/L/h for soil solutions and µmol/g/h for soil extracts.

7 Back-estimation of initial labile DOP values – graphical

Supplementary Figure 6: Scheme of back-estimation of initial labile DOP values.

8 Volumetric water content at BBR and LUE at 5 cm soil depth

BBR (n=27)

Supplementary Figure 7: Volumetric water content (VWC), measured with Decagon EC5 sensors at 5 cm soil depth.

9 Sensitivity analysis of parameter of the organic P hydrolysis model

9.1 Influence of Q₁₀ value

Supplementary Table 7: Literature overview on Q₁₀ values for phosphomonoesterases.

Source	Enzyme	Q ₁₀ mean	Q ₁₀ min	Q ₁₀ max	Comment
(Menichetti et al., 2015)	Acid phosphomono- esterase	1.07	0.79	1.32	Tropical soils, 0-20cm depth
(Hui et al., 2013)	Acid phosphatase	1.77	-	-	very different origins
(Min et al., 2019)	Acid phosphatase	2.27	±0.25	±0.25	soils along a latitudinal boreal forest transect at 5, 15, and 25°C
(Trasar-Cepeda and Gil-Sotres, 1988)	Acid phosphatase	1.25	1.1	1.38	Ranker and Cambisols, surface horizons
(Kroehler and Linkins, 1988)	Acid phosphatase	2.2	-	-	Brooks Range Alaska, tundra, Eriophorum plant roots
Average		1.7			

Supplementary Figure 8: Influence of Q₁₀ value on hydrolysis rate of labile DOP.

9.2 Influence of Michalis-Menten parameters

Calculated were the hours needed to reach a labile DOP (S: in μ mol L⁻¹) concentration of 0.00 μ mol L⁻¹ as dependent on a range of K_M and V_{max} values.

Ecosystem-relevant ranges of values									
	based on literature research and own data								
Variable	Unit	Average	MIN	MAX					
V _{max}	µmol/L/h	3	0.5	10					
$K_{\rm M}$ (constant) μ mol/L 20 1 200									

Influence of P concentration and fraction of dissolved organic P 9.3

Calculated were the hours needed to reach a labile DOP (S: in µmol L⁻¹) concentration of 0.00 µmol L⁻¹ as dependent on a range of P concentrations.

	Ecosystem-relevant ranges of values									
	based on literature research and own data									
Variable	Unit	Average	MIN	MAX						
total P	μmol L ⁻¹	50	0	97						
Share DOP of total P at $t = 0$	%	0.1	0.00001	0.2						
Share non-labile P of DOP % 0.5 0.05 1										

Share of non-labile DOP/DOP

9.4 Influence of P concentration and fraction of dissolved organic P

We calculated the ratios of all consecutive steps for both, time (hours) and variables.

A doubling of P concentration or P fractions did almost not change the hydrolysis rate (same time span until labile DOP is hydrolyzed). In contrast, a doubling of K_M lead to a doubling of the hydrolysis rate, and a doubling of V_{max} lead to a decrease of the hydrolysis rate by 0.5.

