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Abstract
Circular data can be found acrossmany areas of science, for instancemeteorology (e.g., wind directions), ecology (e.g., animal
movement directions), ormedicine (e.g., seasonality in disease onset). The special nature of these datameans that conventional
methods for non-periodic data are no longer valid. In this paper, we consider wrapped Gaussian processes and introduce a
spatial model for circular data that allow for non-stationarity in the mean and the covariance structure of Gaussian random
fields. We use the empirical equivalence between Gaussian random fields and Gaussian Markov random fields which allows
us to considerably reduce computational complexity by exploiting the sparseness of the precision matrix of the associated
GaussianMarkov randomfield. Furthermore,we develop tunable priors, inspired by the penalized complexity prior framework,
that shrink the model toward a less flexible base model with stationary mean and covariance function. Posterior estimation
is done via Markov chain Monte Carlo simulation. The performance of the model is evaluated in a simulation study. Finally,
the model is applied to analyzing wind directions in Germany.

Keywords Circular data · Markov chain Monte Carlo · Penalized complexity priors · Spatial statistics · Stochastic partial
differential equation

1 Introduction

Advances in geographical information andglobal positioning
systems have generated a large amount of spatial data and,
as a consequence, have increased the need for spatial mod-
els that accurately describe it (Cressie 1993; Banerjee et al.
2014). In this context, one often aims to develop a statistical
model in continuous space basedon a limited number ofmon-
itoring stations. Gaussian random fields (GRFs) have proven
quite helpful in fulfilling this purpose, but are vulnerable to
“the big-n problem,” i.e., GRFs can become computation-
ally infeasible since the cost of factorizations is in general
cubic in the number of observations n. This renders GRFs
infeasible for larger spatial datasets.

Due to the circular geometry of the sample space, envi-
ronmental and geophysical processes such as surface winds
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or waves require the reassessment of typical spatial models
for non-periodic data. Statistical literature on circular data
spans as far back as the 1970’s (Fisher 1995; Mardia 2014),
but it was only in the early 2010’s that spatial modeling of
circular data really took off. Traditional models for circu-
lar data employ the von Mises distribution, but Jona-Lasinio
et al. (2012) and Wang and Gelfand (2014) highlight the
advantages of the wrapped and projected Gaussian distri-
butions in space and space-time settings. More recent work
has continued exploring these advantages (Nuñez-Antonio
et al. 2015; Mastrantonio et al. 2016a, b; Alegria et al. 2016).
Nonetheless, today circular data models are still behind on
the latest advances in spatial statistics. In particular, models
developed so far typically assume stationarity in the mean
and the covariance of the modeled field.

There is comprehensive literature onhow tomodel the spa-
tial variation in the mean of the response when the response
is non-periodic. The fundamental issue for circular responses
relates to the fact that including a linear covariate in the mean
might induce a circular likelihood for the regression coef-
ficients that has infinitely many maxima, since this model
essentially wraps the line infinitely many times around the
circle (Fisher and Lee 1992). The typical solution is to use a
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link function for fixed effects with co-domain H , where H
is an interval in R of length equal to the circular variable’s
period of 2π . Typically, the inverse tangent link function
atan(·) is recommended, which requires additional shifting
and rescaling.

When it comes to non-stationarity in the covariance, many
spatial data can be well approximated in space by a GRF, but
the covariance structure is distinctly non-stationary, i.e., it
has a spatially varying dependence structure (Fuentes 2001;
Schmidt and O’Hagan 2003). However, non-stationarity in
the covariance function is often not accounted for. This is in
great part due to the substantial increase in computation time
associated with non-stationary covariances, but also because
of issues in prior selection. Concretely, the complex like-
lihood structure induced by the non-stationary covariance
makes it harder to understand how priors affect the physi-
cal properties of the resulting spatial field (Fuglstad et al.
2015; Marques et al. 2020; Bolin and Kirchner 2020). Con-
sequently, in order to take full advantage of the flexibility
that non-stationarity in the covariance allows, there has been
a call for better parameterization and prior elicitation of these
models (e.g., Fuglstad et al. 2018).

Several methods have been proposed to improve the
GRF’s computational bottlenecks. A common approach is
to define an approximation of a GRF on a spatial domain
S through a basis expansion with M nodes. By choos-
ing M < n, one can reduce the computational burden of
GRFs (Banerjee et al. 2008; Cressie and Johannesson 2008),
but such low-rank approximations can remove fine-scale
variations of the process (Banerjee et al. 2008). Conse-
quently, methods that explore the sparsity of the covariance
matrix Σ of the GRF, or its precision matrix Q = Σ−1,
have been favored. For the latter, n can be larger than M ,
since the reduction in computational complexity is achieved
through the sparsity of the precision matrix (Datta et al.
2016; Lindgren et al. 2011). In particular, Lindgren et al.
(2011) focused on the sparsity of Q by exploring the empir-
ical equivalence between a GRF and the computationally
more convenient Gaussian Markov random fields (GMRFs)
via a stochastic partial differential equation (SPDE). Bolin
and Kirchner (2020) extended this work and introduced the
rational SPDE-approach, which additionally allows one to
flexibly estimate the smoothness parameter of theGRF.Com-
pared to covariance-based models, the SPDE-approach can
more easily be generalized to non-stationary GRFs (Inge-
brigtsen et al. 2015; Fuglstad et al. 2015), anisotropic GRFs
(Fuglstad et al. 2015), non-separable covariance functions,
or general domains such as the sphere (Lindgren et al. 2011).

In this paper, we combine the wrapped Gaussian distribu-
tion with the SPDE-approach and create a wrapped Gaussian
spatial model, referred to in short as the wrapped-SPDE
model. The resulting approach allows us to dealwith spatially
observed circular data in a computationally more efficient

way than ordinary kriging and, simultaneously, it grants us a
more approachable way of including non-stationarity in the
covariance of the circular response. To avoid using a link
function for the fixed effects while still guaranteeing a co-
domain for these effects of length equal to 2π , we use a
penalized complexity (PC) prior for the parameters of the
mean (Klein and Kneib 2016; Simpson et al. 2017). These
priors allow for user-defined scaling and at the same time
prevent overfitting. As we are also interested in preventing
overfitting in the covariance, we additionally build a PC-
prior for the non-stationary component of the covariance. The
final prior structure shrinks the relevant parameters toward
a base model with stationary mean and covariance. Fuglstad
et al. (2018) derive a very similar PC-prior to penalize non-
stationarity in the covariance of GRFs. However, they shrink
the model toward a pre-estimated stationary GRF and com-
bine the PC-prior with a g-prior (Zellner 1986). In this paper,
we donot shrink toward a pre-estimatedfield, but estimate the
stationary and non-stationary components simultaneously,
and avoid the additional use of a g-prior. Moreover, there
are currently no in-depth studies on how to set up PC-priors
in this context and, consequently, we also contribute to the lit-
erature by developing general guidelines on how to set these
up.

The remainder of the paper is organized as follows. Sec-
tion2 introduces the wrapped-SPDE model, as well as the
PC-priors developed. In Sect. 3, posterior estimation is dis-
cussed, with a focus on the sampling scheme for MCMC and
the derivation of full conditionals. The performance of the
wrapped-SPDE model is investigated in a simulation study
in Sect. 4, with a strong focus on the performance of the PC-
priors considered. In Sect. 5, we use our model to estimate
wind directions in Germany, while Sect. 6 presents conclu-
sions and some discussions on potential extensions.

2 Non-stationary wrapped Gaussian spatial
responses

In this section, we present the fundamental components of
the non-stationary wrapped-SPDE model. We start by intro-
ducing Gaussian spatial processes in Sect. 2.1, followed by
a short introduction to wrapped Gaussian spatial processes
in Sect. 2.2. After that, in Sects. 2.3 and 2.4, we introduce
the key components of the non-stationary model for the
mean. In Sect. 2.5, we introduce the computationally efficient
SPDE-approach. Finally, Sects. 2.6 and 2.7 introduce the key
components of the non-stationarity model for the covariance.

2.1 Gaussian spatial processes

Let s denote a spatial index variable representing the location
of an observation Y (s) within a spatial domain S ⊂ R

2.
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Observations that are “close” in space tend to exhibit some
dependence. One of the crucial tasks in spatial statistics is to
account for such dependencies and to identify suitable spatial
dependence structures that allow for spatial interpolation to
sites where no observations are available.

The most common random object for representing con-
tinuously indexed spatial effects are Gaussian random fields
(GRFs). A spatial process {γ (s) : s ∈ S} is a continuously
indexedGRF if all finite-dimensional distributions of the pro-
cess are Gaussian, i.e., for all n ∈ N and all s1, . . . , sn ∈ S,
the vector (γ (s1), . . . , γ (sn))T is multivariate Gaussian dis-
tributed. This GRF is generally described by amean function
μ(s) and a positive definite covariance function C(s, s′),
s, s′ ∈ S.

The spatial covariance function of a GRF is

– Stationary (as opposed to non-stationary), if it is only
a function of the relative position of two locations, i.e.,
C(s, s′) = C(s − s′), s, s′ ∈ S.

– Isotropic (as opposed to anisotropic), if it only depends
on the Euclidean distance between the locations, i.e.,
C(s, s′) = C(||s − s′||), s, s′ ∈ S.

One of the most popular covariance functions in geosta-
tistical modeling is the Matérn covariance

C(s, s′) = σ 2

2ν−1�(ν)
(κ‖s − s′‖)νKν(κ‖s − s′‖). (1)

The parameter σ 2 > 0 is the marginal variance of the spatial
field, and κ > 0 is a scaling parameter related to the range
of spatial dependence ρ. The range is formally defined as
the distance at which the spatial dependency between two
locations falls to 0.05. Furthermore, ν > 0 is the smoothness
parameter of the GRF and Kν is a modified Bessel function
of the second kind and order ν.

It has been argued that the Matérn family of covariance
functions is broad enough to cover the most commonly used
models in spatial statistics (Stein 2012). For example, it
includes the exponential covariance function as a special case
for ν = 1

2 and the Gaussian covariance function as the lim-
iting case for ν → ∞.

2.2 Wrapped Gaussian spatial processes

To construct distributions for circular data, we can rely on
the construction principle of wrapping the distribution of a
random variable Y ∈ R defined on the real line around the
unit circle to make its domain adhere to the interval [0, 2π ]
(Breitenberger 1963). The result is a circular—orwrapped—
random variable X ∈ [0, 2π). The relation between X and
Y can be made more explicit as

X = Y mod 2π ∈ [0, 2π), (2)

i.e., X is the wrapped version of Y of period 2π . This expres-
sion can be inverted by introducing the winding number,
K ∈ Z, measuring the number of “turns” Y has be wrapped
around the unit circle.Let ϑ be the vector of all model param-
eters. Then, the unwrapped variable Y can be expressed as
Y = X +2πK . If we denote by fy(·) the probability density
function of the random linear variable Y ∈ R, the probability
density function of X is given by

fX (x) =
∞∑

k=−∞
fy(x + 2πk|ϑ), (3)

where x ∈ [0, 2π) and k ∈ Z ≡ {0,±1,±2, · · · }. Intu-
itively, expression (3) takes fy(·|ϑ) and wraps it around the
unit circle. If we assume Y is Gaussian distributed, then X is
wrapped Gaussian distributed. Similarly to a Gaussian dis-
tribution, the wrapped Gaussian distribution is unimodal and
symmetric.

We can now rely on the unwrapped variable for building a
regressionmodel for a continuous variable onRwhich is then
transferred to the directional scenarios via (2). Jona-Lasinio
et al. (2012) first showed that, with a few steps, this approach
can be extended to the context of spatial data. Let β0 be the
intercept of the model. For every s ∈ S, a linear GRF model
is of the form Y (s) = β0 + γ (s), where γ (s) is a zero-mean
GRF. For the wrapped GRF, similarly to the beginning of this
section, we introduce a latent vector K (s). We can then write
X(s) = β0 + γ (s) + 2πK (s) with a similar interpretation
for K (s) as before.

In order to account for additional variability in the model
at a small spatial scale (sometimes calledmicroscale, Cressie
1988), we include a nugget effect in our model such that

X(si ) = β0 + γ (si ) + εi + 2πK (si ),

where εi ∼ N (0, σ 2
ε ) are the independently and identi-

cally distributed nugget terms, with i = 1, . . . , n, where
n is the sample size. Some authors interpret the nugget as
a measurement error (e.g., Banerjee et al. 2003), and while
a measurement error could also be captured by the nugget
(Cressie 1988), in the context of our application in Sect. 5,
interpreting it as small scale variation is more appropriate.

2.3 Non-stationarity in themean

Let z(si ) represent a vector of B spatially indexed covariates
evaluated at location si ∈ S with associated coefficient vec-
tor β = (β1, . . . , βB)′. A wrapped Gaussian spatial model
that allows for non-stationary in the mean is given by

X(si ) = β0 + z(si )′β
+ γ (si ) + 2πK (si ) + εi , for i = 1, . . . , n, (4)
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where γ (si ) is a zero-mean GRF, εi is a nugget term, and n
is the sample size.

Unlike suggested in earlier approaches (e.g., Fisher and
Lee 1992; Jona-Lasinio et al. 2012), we do not include a link
function for the fixed effects when using non-periodic covari-
ates. Crucially, in model (4) the periodicity of the response is
accounted for by the winding number K (s). Previously, the
winding number K (s) has been used to govern the behavior
of a non-periodic Gaussian process (e.g., Jona-Lasinio et al.
2012). In the same way, it is also able to govern the behavior
of the combination of GRF and fixed effects. Therefore, the
fixed effects do not require an additional link function.More-
over, in a Bayesian framework, one can use prior information
that enforces the length of the fixed effects— excluding β0—
to be approximately 2π . This avoids the identification issues
identified in Fisher and Lee (1992) and referred to in the
introduction to this paper, and it can achieve by using a PC-
prior for the fixed effects, which we introduce in detail in the
next section.

2.4 Penalized complexity prior for non-stationarity
in themean

In this section, we introduce a prior for the non-stationary
component of the mean, inspired by Klein and Kneib (2016)
and the PC-prior framework from Simpson et al. (2017).
PC-priors conceptualize a model component as a flexible
extension of a base model and construct a prior that penal-
izes deviations from this base model. The less flexible state
is favored until the data provide evidence against it. In our
model, the basemodel assumes a stationarymean, i.e.,β = 0,
and the more complex alternative allows for non-stationarity,
i.e., β 
= 0. An in-depth introduction to PC-priors can be
found in Simpson et al. (2017), and its four guiding princi-
ples are listed in Appendix B.

In the context of circular response data, the prior β0 ∼
N (0, 10) represents a diffuse prior for the intercept. Further-
more, we let β|ξ2 ∼ N (0, ξ2 I). One can show that if the
base model is such that ξ2 → 0 and the prior is constructed
according to the PC-prior principles, then ξ2 has a Weibull
prior with shape 1

2 and scale λ, i.e., ξ2 ∼ Weibull( 12 , λ) (see
Klein and Kneib 2016, for a detailed derivation).

We elicit λ with a user-defined scaling approach based on
the probability statement

P(| z(s)′β |≤ c, ∀ s ∈ S) ≥ 1 − α, (5)

where the parameters α ∈ (0, 1) and c > 0 are chosen by the
user. Then, the marginal density of z(s)′β can be obtained
by integrating ξ2 out. Namely,

p(z(s)′β) =
∫ ∞

0
p(z(s)′β, ξ2)dξ2

=
∫ ∞

0
p(z(s)′β|ξ2)p(ξ2)dξ2,

where z(s)′β|ξ2 ∼ N (0, ξ2 z(s)′z(s)).
Applying the Bonferroni inequality to (5), λ can be chosen

such that

n∑

i=1

(
1 −

∫ c

−c

∫ ∞

0
pz′iβ(u|ξ2)p(ξ2)dξ2du

)
= α (6)

is satisfied and can be solved numerically. Depending on the
number of observations, it can become quite computationally
expensive to compute the double integral n times. Conse-
quently, we instead use a simulation-based method which
finds the λ that satisfies

P
(
maxs∈S | z(s)′β |≤ c

) ≥ 1 − α, (7)

i.e., we model the probability that the maximum norm of the
non-stationary effect in the mean of the response is smaller
than a pre-specified level and determine the distribution of the
maximum based on simulations from the prior p(z(s)′β|ξ2).
Computationally, this option is much cheaper, as it does not
require solving any integrals.

In Fuglstad et al. (2015c), the authors instead consider
β|ξ2 ∼ N (0, ξ2S), where S is the Gram matrix, follow-
ing the idea of g-priors. This is done so that the resulting
prior is invariant to the scaling of covariates and is able
to handle linear dependencies between the covariates in a
reasonable way. However, we argue that our choice of λ

in (7) explicitly takes into account the scale of covariates
and the interactions between them, and using a g-prior for
this purpose is not necessary, as it would instead lead to
z(s)′β|ξ2 ∼ N (0, ξ2 z(s)′(z(s)′z(s))−1z(s)), for g = 1.

By design, the choice of c and α is ad hoc and problem-
specific. These parameters should be chosen according to the
prior knowledge of the user to induce a user-defined amount
of scaling. With a focus on structured additive models, Klein
and Kneib (2016) use c = 3 and argue that with the most
common link functions, such as the log-link, there is nomore
variability in the desired parameter if the predictor exceeds
a range from − 3 to 3. For circular data, adequate values for
the parameter c are also linked to the size of the winding
number since wrapping the latent scale around the unit circle
leads to very different scales of effects. In our data analyses
and simulations, the variability of the responses is not large
enough to make this a problem of practical concern such
that we rely on a bound c that is half of the circular variable
period of 2π , i.e., c = π ≈ 3. In Sect. 4, we investigate the
performance of the PC-prior using this bound.

2.5 The stochastic partial differential equation
approach

In Lindgren et al. (2011), an SPDE provides an explicit link
between a GRF and a GMRF. The approach links discretized
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models to a well-defined continuous domain model—the
Matérn SPDE. At the same time, theMarkov property makes
the precision matrix of the corresponding GMRF sparse.

Concretely, a Matérn GRF γ (s) solves the SPDE

(κ2−Δ)αν/2(τ γ (s)) = W(s), s ∈ R
2, αν = ν+1, ν > 0,

(8)

whereΔ is the Laplacian,W is aGaussian spatial white noise
innovation process, and τ > 0 is a precision parameter. The
stationary solution, γ (s), of the resulting SPDE on R

2 is a
stationary GRF with Matérn covariance function.

The GMRF approximation is obtained by discretizing the
domain of the SPDE using the finite elements method (FEM)
(see Ern and Guermond 2013, for an example). We consider
a triangulated finite elements mesh with M nodes and, based
on this, build piecewise linear basis functions ψm(·), m =
1, . . . , M , which are subsequently used to expand the GRF

γ (s) =
M∑

m=1

ψm(s)γm, (9)

where the joint distribution of the weight vector γ =
(γ1, . . . , γM )′ is normally distributed with mean zero and
sparse precision matrix Q, such that γ ∼ N (0, Q−1).

For interpretation purposes, the marginal variance σ 2 and
the range parameter ρ can be derived from τ and κ . Specifi-
cally,

σ 2 = �(ν)

�(αν)4πκ2ντ 2
, (10)

and, by defining the range as the distance at which the spatial
correlation falls to 0.05 (Lindgren et al. 2011), we get the
expression

ρ =
√
8ν

κ
. (11)

Thus, κ affects both the marginal variance and the range of
the GRF. This often leads to difficulties when eliciting priors.
We return to this issue in Sect. 2.7.

The SPDE-approach was originally limited to the case
αν ∈ N. This made the approach less flexible than traditional
models for two dimensional spatial data where αν ∈ [1,∞).
However, recent work by Bolin and Kirchner (2020) extends
the SPDE-approach to allow for any fractional power satis-
fying αν > 1. For fractional values of below 1, one can use
Markov approximations based on spectral densities, but these
are thus far only derived for stationary GRFs. Nonetheless,
the precision of the GMRF only has an explicit expression
as a function of κ and τ for ν = 1 (αν = 2) and, therefore,

unless stated otherwise, we assume ν = 1. More details are
provided in Appendix A.

2.6 Wrapped Gaussian spatial processes with
non-stationary covariance

Typically, spatial regression models assume the GRF to be
stationary. However, in most settings, the intricacy of the
spatial structure justifies the use of amoreflexiblemodel. The
SPDE-approach allows us to easily model non-stationarity in
the second-order structure of the GRF. One way to achieve
this is by letting the parameters of the SPDE be spatially
varying functions. This can be done, e.g., through spatially
varying covariate information.

To introduce non-stationarity in the marginal variance and
range of the GRF, we only need to make κ dependent on
covariates (see (10) and (11); for the sake of simplicity, in
this paper τ is kept constant). Concretely, we consider

log(τ ) = θτ
0 and log(κ(s)) = θκ

0 + zκ(s)′θκ
z , (12)

where θκ = (θκ
0 , θκ

z
′)′ and θτ

0 are the model’s hyperparam-
eters and zκ(s) is a matrix of Bκ relevant covariates. For
conciseness of notation, when needed we use θ = (θτ

0 , θκ ′)′.
The parameters θκ

0 and θτ
0 represent the stationary covariance

specification of the model. We do not solve the parame-
terization issue that leads κ(s) to affect both the marginal
variance and range of the GRF, but instead try to improve
predictions by having more adequate prior elicitation in the
non-stationary components of the covariance function.

We assume κ(s) to be smooth over the domain of interest
since, with slowly varying κ(s), the appealing local interpre-
tation of the SPDE as a Matérn GRF remains unchanged,
whereas the actual form of the non-stationary correlation
function achieved is unknown. In this context, it is still possi-
ble to obtain a specification of κ(s) as a function of the range
ρ(s) and marginal variance σ 2(s) via the nominal approxi-
mations

ρ(s) ≈
√
8ν

κ(s)
(13)

and

σ 2(s) ≈ �(ν)

�(αν)4πκ(s)2ντ 2
. (14)

These approximations are valid for a < κ < b, a, b ∈ R,
where the range is large enough compared to mesh resolu-
tion and small enough to avoid boundary effects. We use
the above described method to include non-stationarity in
the covariance of our model. Concretely, we combine (4)
with the spatially varying specification of κ(s) in (12). Mas-
trantonio et al. (2016b) account for non-stationarity in the
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covariance function of a GRF by using categorical vari-
ables in an ANOVA-type model. Here, we are more flexible
and only restrict covariates in the covariance function to be
smooth.

2.7 Penalized complexity prior for non-stationarity
in the covariance

In this section, we show how to use PC-priors to penalize
non-stationarity in the covariance of the circular response.
We will favor a model with a stationary covariance function
unless the data indicate that there is non-stationarity that can
be expressed by the covariates included in Equation (12).

Consider uniform priors for θτ
0 and θκ

0 that guarantee the
marginal variance is between [0.01, (2π)2] and the spatial
range is between [0.01, 1] forS ⊆ [0, 1]×[0, 1]. Concretely,

θτ
0 ∼ U (−10, 3) and θκ

0 ∼ U (1, 6).

Let θκ
z |ζ 2 ∼ N (0, ζ 2 I). Similarly to Sect. 2.4, ζ 2 ∼

Weibull( 12 , λ) (Klein and Kneib 2016; Simpson et al. 2017).
We elicit λ with a user-defined scaling approach based on

the probability statement

P(| zκ(s)′θκ
z |≤ c, ∀ s ∈ S) ≥ 1 − α, (15)

where the parameters α ∈ (0, 1) and c > 0 are chosen by the
user.

The derivation is identical to the one for the PC-prior
for fixed effects elicited in Sect. 2.4, and thus, we present
only the main steps. Essentially, we get zκ(s)′θκ

z |ζ 2 ∼
N (0, ζ 2 zκ(s)′zκ(s)) and, once again, use a simulation-based
method to obtain the λ that satisfies

P
(
maxs∈S | zκ(s)′θκ

z |≤ c
) ≥ 1 − α, (16)

i.e., we model the probability that the maximum norm of
the non-stationary effect is smaller than a pre-specified level
and determine the distribution of the maximum based on
simulations from the prior p(zκ(s)′θκ

z |ζ 2).
In practical terms, if we consider (13) and a spatial domain

S ⊆ [0, 1] × [0, 1]—by equivalently re-sizing the domain,
it is possible to restrict the values κ(s) can take. Throughout
this paper, we consider ρ(s) ∈ [0.01, 1] and, based on (13),
we set a bound

c =
⌊
0.5

∣∣∣∣∣log(
√
8ν) − log

(√
8ν

0.01

)∣∣∣∣∣

⌋
and a given α. (17)

In Sect. 4, we investigate the performance of these settings
for the PC-prior.

2.8 The full hierarchical model

Consider the linear predictor η(s) = β0 + z(s)′β + γ (s).
The resulting mean and covariance non-stationary wrapped
Gaussian spatial response model has the following hierarchi-
cal structure:

X(si ) = η(si ) + 2πK (si ) + εi = β0 + z(si )′β
+ γ (si ) + 2πK (si ) + εi , for i = 1, . . . , n

β0 ∼ N (0, 10), β|ξ2 ∼ N (0, ξ2 I), γ |θ ∼ N (0, Q−1(θ))

θτ
0 ∼ U (−10, 3), θκ

0 ∼ U (1, 6), θκ
z |ζ 2 ∼ N (0, ζ 2 I)

ξ2 ∼ PC (c = π, α) , ζ 2 ∼ PC (c = 2, α)

ε|σ 2
ε ∼ N (0, σ 2

ε I), σ
2
ε ∼ IG(0.001, 0.001)

p(K (s)) =
{ 1

3 , if K (s) ∈ {−1, 0, 1}
0, otherwise

For σ 2
ε , we specify an inverse gamma distribution with shape

a and scale b such that IG(a = 0.001, b = 0.001). Cases
a = b with this value approaching zero are widely used
as a weakly informative choice for σ 2

ε (see Section 4.4 of
Fahrmeir et al. 2013). Alternative settings, such as strong
shrinkage toward zero with a = 1 and b = 0.005, were also
tested, leading to no improvement in the simulation study
results in Sect. 4.

Clearly,
∑∞

k=−∞ p(K (s) = k) = 1. However, imple-
menting this prior is challenging because k has an infinite
domain and a non-standard prior. However, while it is diffi-
cult to sample over all integers Z in (3), Mardia et al. (2000)
showed that the density can bewell approximated by restrict-
ing each K (s) to the support {−1, 0, 1}. This explains our
choice of prior for K (s), which is identical to the one in Jona
Lasinio et al. (2020).

The bound c = 2 in PC (c = 2, α) results from (17) for
ν = 1 (see Sect. 2.5).

3 Posterior evaluation

We develop a fully Bayesian approach using Markov Chain
Monte Carlo (MCMC) simulations for estimating the full
vector of model parameters, which is denoted
ϑ = (β0,β

′, γ ′, σ 2
ε , θ ′, ξ2, ζ 2, K ′)′ where K=(K (s1), . . . ,

K (sn))′. Compared to integrated nested Laplace approxima-
tions (INLA, Rue et al. 2009), the method typically used for
the SPDE-approach, our approach allows us to flexibly work
with posteriors of hyperparameters that are typically far from
Gaussian. This is particularly relevant when the covariance
function is non-stationary (Fuglstad et al. 2015c).

To perform posterior estimation for the full vector of
model parameters ϑ , we separate ϑ into smaller blocks.
Of particular relevance is the separation between vari-
ables for which we know the corresponding full conditional
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distributions, and those for which the full conditional dis-
tribution is not analytically available. We will use a Gibbs
sampler (Gelfand 2000) for the former and derive the cor-
responding posterior distributions in Sect. 3.1. For the latter,
we use Metropolis Hastings (MH, Metropolis et al. 1953)
steps, which are explained in more detail in Sect. 3.2. In
Appendix C, a summary of the sampler’s structure can be
found.

3.1 Posterior distributions for Gibbs sampler

The full conditionals for β0, β, γ , and σ 2
ε are available in

closed-form, and we use a Gibbs sampler to sample them. In
what follows, recall the hierarchical model structure and all
model parameters introduced in Sect. 2.8.

For all parameters that have Gaussian distributed priors,
we can use the properties of the product of two Gaussian
densities to derive their posterior distribution, since the like-
lihood is also Gaussian (see Supplement A of Fahrmeir et al.
2013).

Consider the matrix of covariate evaluations Z = (z(s1),
. . . , z(sn)) and the matrix Z̃ = (1, Z′)′, as well as the
normally distributed priors β0 ∼ N (μβ0 , σ

2
β0

) and β ∼
N (μβ , σ 2

β I). Recall the basis functions in Equation (9).
Here, we further define ψ(s) = (ψ1(s), . . . , ψM (s))′ and
ψ = (ψ(s1), . . . ,ψ(sn))′. Recall also the linear predic-
tor η = (η(s1), . . . , η(sn))′, which was first introduced in
Sect. 2.8.

According to the rules of the product of two normal dis-
tributions, the posterior distribution of (β0,β

′)′ is

(β0,β
′)′|· ∼ N

(
(E + F)−1(Ee + F f ), (E + F)−1

)
(18)

with (B + 1) × (B + 1) matrices E = 1
σ 2

ε
Z̃ Z̃

′
and

F = diag
(
σ 2

β0
, σ 2

β

′)−1
, where diag denotes a diagonal

matrix. Moreover, we have (B + 1)-dimensional vectors
e = Z̃(Z̃

′
Z̃)−1(X−2πK−ψγ ) and f = (μβ0 ,μβ

′)′, where
X − 2πK = (X(s1) + 2πK (s1), . . . , X(sn) + 2πK (sn))′
and X(·) and K (·) are as defined in Sect. 2.2.

The posterior γ |· follows the same structure as (18)

γ |· ∼ N
(
(Ẽ + F̃)−1(Ẽẽ + F̃ f̃ ), (Ẽ + F̃)−1

)
. (19)

with M × M matrices Ẽ = 1
σ 2

ε
ψ ′ψ and F̃ = Q−1

γ and

M−dimensional vectors ẽ = ψ ′(ψψ ′)−1(X−2πK−β01−
Z′β) and f̃ = 0.

In the case of σ 2
ε , the prior is inverse gamma distributed

IG(0.001, 0.001) (see Sect. 2.8), which combined with the
normally distributed response leads to the posterior distribu-

tion (see p. 229 of Fahrmeir et al. 2013)

σ 2
ε |· ∼ IG

(
0.001 + n

2
, 0.001 + 1

2
(X − 2πK − η)′(X − 2πK − η)

)
.

3.2 Posterior estimation for MH steps

We now turn to parameters θ , ξ2, ζ 2, and K (s), which are
sampled with MH steps.

To sample θ , ξ2, ζ 2, we use the robust adaptive MH
method from Vihola (2012) with Student’s t-distributed pro-
posal densities. This algorithm estimates the shape of the
target distribution and simultaneously coerces the acceptance
rate.We target an acceptance rate of 23.4%,which is the stan-
dard for multidimensional domains (Gelman et al. 1997).
More details are provided in Appendix C.

The identification issues associated with the covariance
parameters of GRFs are well-known (Zhang 2004; Tang
2019). This is no exception here, and since the parameters in
θ are highly correlated, we sample them in one MH block.

Values of the variance parameters ξ2 and ζ 2 smaller
than zero will cause invalid proposals—this is possible here
since we use Student’s t-distributed proposal densities. We
overcome this problem, in the specific case of ξ2 and ζ 2,
by approximating the log-full conditional log(p(log(ξ2)|·))
and log(p(log(ζ 2)|·)), rather than the log-full conditional
log(p(ξ2|·)) and log(p(ζ 2|·)), respectively. The detailed
derivation is provided in Appendix C.

The latent variable K (s) is updated on each iteration,
for each location, with a MH step. On each MCMC step
t , given the current value Kt (s), t = 1, . . . , T , the proposal
is selected from the set {Kt (s)−1, Kt (s), Kt (s)+1}, where
each element has probability of 1

3 of being selected.Given the
prior for K (s) chosen in Sect. 2.8, one should set a starting
value K0(s) = 0, for all s.

4 Simulation study

The main objective of this simulation study is to investigate
the performance of the priors for the non-stationary compo-
nents of themean and the covariance of the circular response.
Concretely, we compare different priors for ξ2 and ζ 2, intro-
duced in Sect. 2.4 and Sect. 2.7, respectively.

4.1 Scenarios

We consider 4 scenarios:

Scenario 1: The data have a non-stationary mean and sta-
tionary covariance. The estimated model fol-
lows the same assumptions.
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Scenario 2: The data have a non-stationary mean and sta-
tionary covariance. The estimated model allows
for non-stationarity in the covariance, i.e., we
test for overfitting.

Scenario 3: The data have a non-stationarymean and covari-
ance. The estimated model follows the same
assumptions.

Scenario 4: The data have a non-stationarymean and covari-
ance. The estimated model allows for non-
stationarity in the mean, but not the covariance.

4.2 General settings

Let S ⊆ [0, 1]×[0, 1] and ν = 1. We consider the wrapped-
SPDE model with

X(si ) = β0 + z(si )′β + γ (si ) + 2πK (si ) + εi , (20)

with si ∈ S, i = 1, . . . , n, and where non-stationarity in the
covariance follows

log(τ ) = θτ
0 and log(κ(si )) = θκ

0 + zκ(si )′θκ
z . (21)

The datasets are generated with (β0, β) = (1.05π, 0.6),
σ 2

ε = 0.1, K (s) = 0 ∀s, and z(s) = 2 sin(2πs1) sin(4πs2).
Moreover, θτ

0 = −3.08, θκ
0 = 2.17. When the covariance is

stationary θκ
z = 0, and when it is non-stationary θκ

z = 1 and
zκ(s) = 0.5 + cos(4πs2) sin(2πs1).

We consider samples sizes n ∈ {200, 600, 1000}. The
finite elements mesh used throughout this section has M =
866 mesh nodes, and it can be found in Appendix E.

Inference is performed with MCMC (see Sects. 2.8 and
3). We use one chain with 15,000 samples, burn-in of 7,000,
and thinning factor of 8. Starting values for all parameters are
random realizations of a standard normal distribution, except
for β and θκ

z , which start at 0.01 (close to zero following an
assumption of stationarity), and K (s)which starts at 0 for all
s.

For each scenario, N = 100 replications are used to com-
pute the logarithm of the mean squared errors (log-MSEs) of
the considered parameters.

Themodel is implemented in R (R Core Team 2019) using
key functions from R-INLA for mesh generation and con-
struction of precisionmatrices (Lindgren andRue 2015). The
code is available in the supplementary material to this paper.

4.3 Prior competitors

The first three principles of PC-priors, shown in Appendix B,
give rise to the Weibull prior for the variance parameter (see
Klein et al. 2015). The fourth—and final—principle of user-
defined scaling can also be applied to other prior structures,

such as inverse gamma priors and proper uniform priors for
standard deviations (Gelman 2005, 2006; Hodges 2019).

For an inverse gamma prior with shape parameter a = 1
and scale b small, z(s)′β and zκ(s)′θκ

z marginally follow a
t-distribution and user-defined scaling is possible (Klein and
Kneib 2016). Fixinga = 1 implies heavy tails in themarginal
t-distribution (Klein and Kneib 2016) while the correspond-
ing value for b is then determined from the scaling criterion.
We refer to this prior as IG(α), where α is then defined sim-
ilarly to the PC-prior (see Sect. 2.4 and Sect. 2.7).

However, user-defined scaling is not generally possible
for the inverse gamma distribution. Concretely, in the case of
an inverse gamma prior IG(a, b)with a = b small, there are
certain ranges of the threshold c and the probability levelα for
which there is no solution to (6) with respect to b (similarly
for ζ 2). Indeed, by enforcing a small shape parameter a, we
implicitly reduce the prior’s ability to shrink toward zero,
as we no longer can concentrate as much probability mass
close to zero, compared to higher values of a. This can also
be observed in Fig. 1 where, for essentially the same scale
parameter, a higher shape parameter concentrates most of
the mass at zero.

The principle of user-defined scaling can also be applied
to the half-Cauchy distribution. The half-Cauchy distribution
is usually applied to the standard deviation. The half-Cauchy
prior ξ ∼ HC(0, λ2) (similarly for ζ ) with location param-
eter 0, scale parameter λ, and density proportional to (1 +
(ξ/λ)2)−1, implies a generalized beta prime distributionwith
density

p(ξ2) = 1

πλ2

(
1 + ξ2

λ2

)−1 (
ξ2

λ2

)−1/2

where the three shape parameters are given by 1/2, 1/2, and
1, while the scale parameter corresponds to λ2. This prior
is referred to as HC(α). By using a simulation-based tech-
nique to choose λ in (7) (or (16)), we avoid some of the
numerical issues typically experienced for large numbers of
observations or small values of α.

Finally, we consider a proper uniform priorU (0, b) for ξ2

where b should be chosen by the user.
The complete list of priors used is presented in Table 1.
In the case of the half-Cauchy prior, we only evaluate

its performance for θκ
z , and not for β. The reason for this

becomes clear in the sections that follow, where β is gen-
erally quite robust to different prior specifications. Finally,
one could also consider other priors for which user-defined
scaling is available, such as the half-normal. However, these
results do not add additional information, andwe refrain from
presenting them.
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Fig. 1 Densities for PC-priors
and inverse gamma priors for
different shape parameters

Table 1 Prior competitors in the
simulation study. The same
priors are used for ξ2 and ζ 2.
The table is based on Table 1
from Klein and Kneib (2016)

Name Density Interpretation

PC (α) p
(
ξ2

) ∝ (
ξ2/λ

)−1/2
exp

(
− (

ξ2/λ
)1/2)

PC-prior for ξ2

HC (α) p
(
ξ2

) ∝ (
1 + ξ2/λ2

)−1 (
ξ2/λ2

)−1/2
Generalized beta prime prior

for ξ2/half-Cauchy prior for ξ

IG (α) p
(
ξ2

) ∝ (
ξ2

)−2
exp

(−λ/ξ2
)

Flat prior for 1/ξ2 for θ → 0

IG (a, a) p
(
ξ2

) ∝ (
ξ2

)−a−1
exp

(−a/ξ2
)

“Jeffreys prior”/flat prior on

log-scale for a → 0

UN (0, b) p
(
ξ2

) ∝ constant Proper uniform prior on ξ2

4.4 Results

Scenario 1: The results in Fig. 2 show that all priors perform
reasonably and similarly well. Thus, there is no
evidence that a PC-prior that allows the fixed
effects to be in an interval of length no larger
than 2π improves results.

Scenario 2: In Fig. 3, the results for β are identical to
the ones in Scenario 1, where using a PC-
prior for covariate effects in the mean does
not improve results. However, in Fig. 4, when
considering non-stationarity in the covariance
function, the log-MSE changes noticeably for
different prior elicitations. The inverse gamma
prior with strong shrinkage toward zero, i.e.,
IG(a = 1, b = 0.005), has the best perfor-
mance, followed by the scaled inverse gamma
and PC-priors with α = 0.01. Less informative
priors allow for less shrinkage, thus are also less
able to prevent overfitting.

Scenario 3: Once more, the PC-prior for the fixed effects
does not seem to accrue any improvements in
terms of the log-MSE compared to its com-
petitors. However, compared to the previous

scenarios, the log-MSE of β increases consid-
erably, indicating that there is more difficulty
identifying fixed effects when the covariance is
also non-stationary. This is a known fact for sin-
gle replicate GRFmodels (Fuglstad et al. 2015).
When it comes to the priors for non-stationarity
in the covariance function, we get quite dis-
tinct behaviors between priors. In comparison
with Scenario 2, the inverse gamma prior with
strong shrinkage now performs the worst by not
being able to capture the positive θκ

z . The uni-
form prior performs distinctively well, despite
the high variance for small sample sizes. Finally,
the PC-prior also demonstrates its flexibility, by
having its best performance for α = 0.5 and
reaching a plateau after that (Figs. 5, 6).

Scenario 4: As it can be observed in Fig. 7, when it comes
to mean, none of the priors stands out. How-
ever, this scenario has the highest values for the
log-MSE out of all the models considered. This
is not surprising, as this is the only model for
which the estimated model is less flexible than
what the data generation process.
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Fig. 2 Log-MSE of β in Scenario 1. The columns represent different samples sizes n

Fig. 3 Log-MSE of β in Scenario 2. The columns represent different samples sizes n, and the rows represent different priors for ξ2

123



Statistics and Computing (2022) 32 :73 Page 11 of 18 73

Fig. 4 Log-MSE of θκ
z in Scenario 2. The columns represent different samples sizes n, and the rows represent different priors for ζ 2

4.5 Main conclusions

When it comes to non-stationarity in the mean, all priors
lead to satisfying, nearly identical, results. Thus, there is no
evidence to believe that a PC-prior for the fixed effects in a
wrapped-SPDE model, i.e., restricting the fixed effects to an
interval of length of about 2π , is beneficial.

When it comes to non-stationarity in the covariance,
results from Scenario 2 and Scenario 3 demonstrate that a
PC-prior with α = 0.3 is able to both control for overfitting
and capture nonzero values of the non-stationary components
of the covariance function.

The log-MSE for θκ
z is always considerably higher than

for β. Thus, the fixed effects are considerably easier to
estimate—even for circular responses, than the covariance
effects. However, fixed effects becomemore difficult to iden-
tify when there is also non-stationarity in the covariance.

5 Application to wind directions in Germany

Wind directions are measured in radians in the interval
[0, 2π) and indicate where the wind blows from at a given
location. In Germany, wind directions are characterized

by predominant westerly winds, coming from the Atlantic
Ocean. On the eastern side, wind is generated in the Cau-
casus, entering Germany through Poland and the Czech
Republic. The two wind currents typically clash in northern
Germany.

Given the periodic nature of these data, in this section
we evaluate the performance of the wrapped-SPDE model
when studying wind directions in Germany. We compare the
ability of a fully stationary spatial model—stationary mean
and covariance, to describe wind directions, in comparison
with the fully non-stationary spatial model we developed in
this paper, non-stationary mean and covariance.

5.1 Data

German wind data are publicly available on the website of
the German weather serviceDeustcher Wetterdienst (DWD).
These data are collected every 10min at the 263 DWD
weather stations. Other weather variables, such as wind
speed, air humidity, temperature, and altitude, can be found
on the DWD website.

The wrapped Gaussian distribution is unimodal, and con-
sequently, we need to avoid situations in which over a large
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Fig. 5 Log-MSE of β in Scenario 3. The columns represent different samples sizes n, and the rows represent different priors for ξ2

region, at a given time, a storm is rotating or two different
weather systems are meeting (Jona-Lasinio et al. 2012; Mas-
trantonio et al. 2016b). Given this, and in order to cover a
wide range of behavior of wind directions in Germany, we
study two different periods of 10 days and calculate the corre-
sponding (circular) average wind direction for each location
based on the 10-minute data. The two periods are:

– Stormy weather period: from September 23 to October
2, 2019.

– Calm weather period: from April 1 to April 10, 2019.

The two full datasets are represented in Figs. 8 and 9. Dur-
ing a storm, wind directions are quite similar throughout the
domain. During a calm weather period, one should expect
more “flips” in the direction of the wind. This matches our
examples, where in Fig. 8 an easterly wind storm covers the
whole domain, while in Fig. 9 wind currents seem to clash in
the south, creating many changes in direction.

5.2 Model specifications and selection criterion

The data are analyzed as follows.We randomly select a hold-
out set of data consisting of 20% of the locations and use the
remaining 80%as training data.Wefit the training datawith a

1. Fully stationary model: z(s) = zκ (s) = 0.
2. Fully non-stationary model: z(s) 
= 0 and zκ(s) 
= 0.

Model performance is evaluated using the circular contin-
uous ranked probability score (Grimit et al. 2006),

CRPS(P, X) = EF {αCRPS(x, X)} − 1

2
EF {αCRPS(x, x

∗)},

where αCRPS represents the cosine distance, P is a forecast
distribution on the circle, x and x∗ are independent copies
of a circular random variable with distribution P and X
is the verifying direction. This criterion is negatively ori-
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Fig. 6 Log-MSE of θκ
z in Scenario 3. The columns represent different samples sizes n, and the rows represent different priors for ζ 2

Fig. 7 Log-MSE of β in Scenario 4. The columns represent different samples sizes n, and the rows represent different priors for ξ2
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Fig. 8 Stormyweather period. On the left: circular average of the 10-minute data over 10 days. On the right: circular histogram of the corresponding
observed wind directions

Fig. 9 Calm weather period. On the left: circular average of the 10-minute data over 10 days. On the right: circular histogram of the corresponding
observed wind directions

ented, and it is expressed in units of angular distance, with
a maximum allowed of π . We use the implementation from
R-CircSpaceTime (Jona Lasinio et al. 2020) and evalu-
ate it for the test data.

The covariates considered for z(s) are maximum wind
speed, average air humidity, and temperature at 10ms height.
For zκ (s), we consider altitude and latitude. We additionally
applied a tensor-product spline to the altitude covariate to
ensure a smoothed density surface. It is important to avoid
having the same set of covariates in themean and covariance,

in order to reduce potential confounding between the first-
and the second-order structure. The covariates are chosen
according to the overall model fit, measured by CRPS. The
mesh used can be found in Appendix E.

We use the prior hierarchy from Sect. 2.8. We let each
model run long enough such that the potential reduction fac-
tor, R̂, for all parameters is stable and below1.2 (Gelman et al.
1992). We use 30,000 samples, with a burn-in of 10,000, and
thinning factor of 10.
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5.3 Results

Table 2 shows the CRPS for the test data in both periods.
Wind directions are easy to predict during the stormyweather
period, as these are quite systematic throughout the domain.
Thus, both the fully stationary and non-stationary models
perform quite well and achieve a CRPS of 0.03. All the
parameters in β are significant, while the parameters in θκ

z
are all insignificant. This suggests that the PC-prior for the
mean could potentially have lower α such that it provides
more shrinkage.

In a period of calmweather, in which there are shifts in the
direction of the wind, the CRPS is generally higher than for a
stormy weather period. By including covariates in mean and
covariance, we are more able to account for these shifts in the
direction of wind. All parameters in β and θκ

z are significant.
The CRPS for the fully non-stationary model is consider-
ably lower than for the fully stationary model. As shown in
Table 2, the largest improvements in CRPS occur in south-
ernGermany (northing smaller than 0.5). Figure10 shows the
posterior predictive circular mean and standard deviation of
the response on the test locations. The fully stationary model
is able to capture the behavior in the north of Germany, but in
the area where both wind currents clash in the south, adding
covariate information considerably improves mean predic-

Table 2 CRPS of the test data during the storm and calm weather
periods and for the two models considered

Model Weather

Stormy Calm Calm (south) Calm (north)

Fully stationary 0.03 0.20 0.43 0.02

Fully non-stationary 0.03 0.10 0.22 0.01

tions. Moreover, in the north the prediction uncertainty is
lower under the non-stationarymodel and in the south the pre-
diction uncertainty is similar for both models.. The implied
non-stationarity in the mean and covariance during the calm
weather period is shown in Fig. 11. The figure shows the
average range and fixed effects β0 + z(s)′β. The former is
evaluated on the mesh nodes inside the domain (Germany),
while the later on the training data locations. Details on the
posterior distribution of K (s) are provided in Appendix F.

5.4 Implications and relevance

Considering orographic and meteorological factors when
modeling wind directions can considerably facilitate the pre-
diction of wind shifts and wind behavior in general. By
building a model that flexibly allows the user to include
covariates in the mean and the covariance of the response
model,we are able to considerably improve predictions. Such

Fig. 10 Posterior predictive mean (left) and standard deviation (right) for each test location during a calm weather period for the fully stationary
and non-stationary models. The black arrows represent the true wind directions (left) and the corresponding standard deviation of zero (right)
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Fig. 11 Average spatial range and fixed effects β0+ z(s)′β based on training data for the calm weather period. For the range, the locations represent
the mesh nodes inside the domain (Germany)

interpolation properties for wind directions could serve as
an input for other modeling tasks in the analysis of climate
variables, which, in combination with the use of sparse spa-
tial precision matrices, would have great potential in the
generation of efficient models for large-scale datasets for
meteorological data.

6 Discussion

The derivation of spatial models for circular data can present
several challenges. In this paper, we cover an important
gap in the literature of spatial wrapped Gaussian models by
developing a method that allows for the flexible inclusion of
covariates in the mean and covariance, while only restricting
the covariates in the covariance to be a smooth function of
space.

In order to prevent overfitting, as well as to crucially
improve the estimation of parameters associated with the
non-stationary component of the covariance, we develop PC-
priors for the mean and covariance of the wrapped-SPDE
model. The PC-prior for the mean allows the fixed effects to
be in an interval of length no larger than 2π , i.e., the period
of the circular response. Finally, by exploring the Markov
property in GMRFs, the wrapped-SPDE model is feasible
for large spatial datasets, as well as for large-scale simula-
tion studies.

In a simulation study, we show that a PC-prior penalizing
non-stationarity in the covariance function prevents over-
fitting and, in general, improves estimation. However, the

non-stationary component of the mean is not sensitive to
prior elicitation and, thus, does not seem to benefit from the
developed PC-prior.

The model introduced can be improved in several ways.
The wrapped Gaussian distribution is symmetric and uni-
modal.Moreflexible distributions should be considered. Pos-
sible alternatives are the wrapped skewGaussian distribution
(Mastrantonio et al. 2016a), mixture models (Ameijeiras-
Alonso et al. 2019; Ranalli et al. 2018), or the projected
Gaussian distribution (Wang and Gelfand 2013; Wikle et al.
2001). Furthermore, the winding number K (s) is an essen-
tial key to our model and it is reasonable to assume that it is
spatially correlated. However, the fact that K (s) should be
an integer complicates the modeling. To add to this, having
two spatial fields in the model potentially additively might
lead to identification issues. Nonetheless, results showed
that once we allow enough flexibility/non-stationarity in the
unwrapped model, the current version of K (s) performs well
enough. Finally, in future work, the present model should be
extended to space-time settings.
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