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Abstract: Understanding published unstructured textual data using traditional text mining ap-
proaches and tools is becoming a challenging issue due to the rapid increase in electronic open-source
publications. The application of data mining techniques in the medical sciences is an emerging trend;
however, traditional text-mining approaches are insufficient to cope with the current upsurge in
the volume of published data. Therefore, artificial intelligence-based text mining tools are being
developed and used to process large volumes of data and to explore the hidden features and corre-
lations in the data. This review provides a clear-cut and insightful understanding of how artificial
intelligence-based data-mining technology is being used to analyze medical data. We also describe
a standard process of data mining based on CRISP-DM (Cross-Industry Standard Process for Data
Mining) and the most common tools/libraries available for each step of medical data mining.
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1. Introduction

With the rapid growth in online available medical literature, it is almost hard for read-
ers to obtain the desired information without an extensive time investment. For example,
in the ongoing COVID-19 pandemic, the number of publications talking about COVID-19
increased very rapidly. In the first 2 years of the pandemic, there were 228,640 articles in
PubMed, 282,883 articles in PMC, and 7551 COVID-19 clinical trials listed in ClinicalTrials.
gov databases (Data accessed on 16 February 2022), and this is increasing at an amazing
speed. Because of the high degree of dimensional heterogeneity, irregularity, and timeliness,
these data are often underutilized. This exponential growth in the scientific literature has
made it difficult for the researchers to (i) obtain relevant information from the literature,
(ii) present information in a concise and structured manner from an unstructured literature
pile, and (iii) fully comprehend the current state and the direction of development in a
research field.

The rapidly increasing literature cannot be managed and/or processed using tradi-
tional technologies and methods within an acceptable period. This massive volume of data
makes it rather difficult for researchers to explore, analyze, visualize, and obtain a concise
outcome. The process of extracting hidden, meaningful, and engrossing patterns from
unstructured text literature is known as text mining [1]. Traditional text mining techniques
are not sufficient to cope with the current large volumes of published literature. Therefore,
a rapid increase in the development of new data mining techniques based on artificial
intelligence can be seen on the horizon for the benefit of patients and physicians. The
inclusion of artificial intelligence (also machine learning (ML), deep learning (DL), and
natural language processing (NLP) as the subsets) empowers the data mining process with
multifold benefits: Gaining new insights into the decision-making process, processing
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large dataset with increased accuracy and efficiency, and the ability to learn and improve
continuously from the new data.

The current review sheds light on the role of different AI-based methods, i.e., NLP and
neural network (NN) in medical text mining, the current data mining processes, different
database sources, and various AI-based tools used in the text mining process along with
various algorithms. We reviewed the latest text mining approaches, highlighted the key
differences between medical and non-medical data mining, and presented a set of tools and
techniques currently being used for each step of medical literature text mining. Additionally,
we described the role of artificial intelligence and machine learning in medical data mining
and pointed out challenges, difficulties, and opportunities along the road.

1.1. Medical vs. Non-Medical Literature Text Mining

Human medical data are unique and may be difficult when it comes to mining and
analysis. First, due to the fact that humans are the most advanced and the most observed
(in-depth) species on the globe, their observation is enriched because humans may provide
their sensory input easily compared to the other species on the earth [2]. However, medical
data mining faces numerous key challenges, mainly due to the heterogeneity and verbosity
of data coming from various non-standardized patient records. Similarly, the insufficient
quality of data is also a known issue in medical science that needs to be handled with
care for data mining. Such challenges can be met by standardization of the process of
selection of patients, collection, storage, annotation, and management of data [3]. However,
sometimes this means that existing data and data acquired at multiple centers without
good coordination and standard operating procedures (SOPs) could not be used. The major
divergence between medical data and non-medical data mining is expected in ethical and
legal aspects. The use of information that can be traced back to individuals involves privacy
risks, which could result in legal issues. More than fifteen Federal US departments with the
US Department of Health and Human Services have issued final revisions to the Federal
Policy for the Protection of Human Subjects “the Common Rule, 45 CFR 46, Subpart A”
(Protection of Human Subjects, 45 CFR 46 (2018). The federal framework for privacy and
security does not apply to the information, which is de-identified or anonymized [4].

The ownership of medical data is another critical issue, as the data are acquired
by different entities where the individuals may have been during their treatment or for
diagnostic purposes. These entities can gather and store the data as per the authorization
of the individual at the time of data acquisition. However, this permission on consent can
be withdrawn by the patient at any time, and/or the consent is only valid for a limited
period and data must be erased after this time [5]. Most of the clinical text is produced in a
telegraphic way and the information is highly enriched. Additionally, it is written for the
clinical staff and colleagues, therefore is full of incomplete sentences and abbreviations.
Special tools are required to read, understand, and process this text [6]. Electronic patient
records, also known as clinical text, have a unique problem in that they are written in a
highly specialized language that can only be processed with a few available tools. Secondly,
patient records are sometimes written in a telegraphic and information-dense style for
clinician-to-clinician communication, and there exists no developed dictionary for such
communications to check grammar and spelling mistakes. In addition, doctors and medical
staff frequently use rudimentary sentences and frequently fail to mention the object, such
as the patient, because the patient is implied in the text. “Arrived with 38.3 fever and a
pulse of 132”, for example, could be written or simply mentioned.

1.2. Use of Artificial Intelligence and Machine Learning in Medical Literature Data Mining

The digital era has shown immense trust and growing confidence in machine learning
techniques to increase the quality of life in almost every field of life. This is the case in health
care and precision medicine, where a continuous feed of medical data from heterogeneous
sources becomes a key enabler for AI/ML-assisted treatments and diagnosis. For instance,
AI today can help doctors to bring better patient outcomes with early diagnosis and
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treatment plans as well as increased quality of life. Similarly, health organizations and
authorities also aim for the timely execution of AI routines for the prognosis of outbreaks
and pandemics at the national and international levels. Healthcare today is also witnessing
the use of AI-aided procedures for operational management in the form of automated
documentation, appointment scheduling, and virtual assistance for patients. In this section,
we will see some real-life references of AI\ML tools and technologies currently used in
various areas of medical sciences (Table 1).

Table 1. AI\ML products and research prototypes from some leading organizations in healthcare.

Products/Research
Prototypes

Treatment/Field
of Study Company/Institution Reference

MergePACS™ Clinical Radiology
Imaging IBM Watson Merge PACS—Overview|IBM

BiometryAssist™ Diagnostic Ultrasound Samsung Medison https://www.intel.com/content/www/us/en/developer/
tools/oneapi/application-catalog/full-catalog/diagnostic-

ultrasound.html (accessed on 17 February 2022)LaborAssist™ Diagnostic Ultrasound Samsung Medison

Breast Cancer
Detection Solution

Ultrasound,
mammography, MRI Huiying’s solution https://builders.intel.com/ai/solutionscatalog/breast-

cancer-detection-solution-657 (accessed on 17 February 2022)

CT solution Early detection
of COVID-19 Huiying’s solution

https://builders.intel.com/ai/solutionscatalog/ct-solution-
for-early-detection-of-covid-19-704 (accessed on

17 February 2022)

Dr. Pecker CT Pneumonia
CAD System

Classification and
quantification of

COVID-19
Jianpei Technology

https://www.intel.com/content/www/us/en/developer/
tools/oneapi/application-catalog/full-catalog/dr-pecker-

ct-pneumonia-cad-system.html (accessed on
17 February 2022)

Before going into further detail, it is worth mentioning that data mining and machine
learning concepts go hand in hand and overlap each other to an extent but with a clear
distinction of the overall outcome of both technologies. Data mining is the process of dis-
covering correlations, anomalies, and new patterns in a large set of data from an experiment
or event to forecast results [7]. The basis of data mining is statistical modeling techniques
to represent data in some well-defined mathematical model and then use this model to
create relationships and patterns among the data variables. Machine learning, on the other
hand, is a one-step-ahead approach to data mining, where machine learning algorithms
let the computer machine understand the data (with the help of statistical models) and
make predictions of its own. That said, data mining techniques always require human
interaction to find interesting patterns from a given dataset, whereas machine learning is a
relatively modernized technique that enables computer programs to learn from the data
automatically and provide predictions without any human interaction.

Natural Language Processing

Natural Language Processing (NLP) is an artificial intelligence (AI) discipline that
converts human language into machine language. With the increased usage of computer
technology over the last 20 years, this sector has grown significantly [8]. Clinical docu-
mentation, speech recognition, computer-assisted coding, data mining research, automated
registry reporting, clinical decision support, clinical trial matching, prior authorization, AI
chatbots and virtual scribes, risk adjustment models, computational phenotyping, review
management and sentiment analysis, dictation and EMR implementations, and root cause
analysis are some of the most popular applications of NLP in healthcare [9]. In the literature,
a wide range of applications of NLP have been illustrated.

Liu et al. [10] used clinical text for entity recognition using word embedding (WE)-
skipgram and long short-term memory (LSTM) techniques and achieved an accuracy of
94.37 percent, 92.29 percent, and 85.81 percent for de-identification, event detection, and
concept extraction, respectively, based on the micro-average F1-score. Deng et al. [11]
used concept embedding (CE)–continuous bag of words (CBOW), skip-gram, and random
projection to generate code and semantic representations from clinical text. Afzal et al. [12]
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have developed a pipeline for question generation, evidence quality recognition, ranking,
and summarization of evidence from biomedical literature and presented an accuracy of
90.97 percent. Besides these examples, Pandey et al. [13] listed 57 papers published between
2017 and 2019 that used NLP techniques and various text sources, such as clinical text,
EHR inputs, Chinese medical text, cancer pathology reports, biomedical text, randomized
controlled trial (RCT) articles, clinical notes, and EMR text-radiology reports, among others.

2. Standard Process for Data Mining

In response to the demand for a standard data mining method, industry leaders collab-
orated with a diverse group of practitioners (service providers, management consultants,
data mining users, data warehouse vendors) and data mining experts to develop a free,
well-documented, and non-proprietary data mining model [14]. Numerous methods are
available for data mining, such as ASUM (Analytics Solutions Unified Method), CRISP-
DM (Cross-Industry Standard Process for Data Mining), KDD (Knowledge discovery in
databases), SEMMA (Sampling, Exploring, Modifying, Modelling, and Assessing), and
POST-DS (Process Organization and Scheduling electing Tools for Data Science) [15]. In
this study, we employ the CRISP-DM model for data mining because it is a complete and
comprehensive data mining approach. In 1997, the CRISP-DM consortium developed a
generic process model for data mining to establish guidelines for data mining beginners, the
community, and experts, which can be modified for any particular need [14]. For example,
to deal with the problem of multidimensional time-series data in a neonatal intensive care
unit (NICU), the CRISP-DM model was modified to support and accommodate temporal
data mining (TDM), which is named CRISP-TDM [16]. In the lifecycle of a data mining
process, the CRISP-DM reference model has six phases (Figure 1): Business understanding,
data understanding, data preparation, modeling, evaluation, and deployment. The details
of the available tools and technologies for each phase are described in the rest of this article.

2.1. Business Understanding

The first and most critical part of data mining is business understanding, which
includes setting project objectives, and targets, assessing the situation, execution plans, and
risk assessments [14]. Setting project objectives requires a complete grasp of the project’s
genuine goal to define the associated variables. The steps in the data understanding phase
according to CRISP-DM are to (1) determine the business objectives (to fully comprehend
the project’s goal, identify the key players, and establish business success criteria), (2) assess
the situation (to identify resource availability (especially data), identify project risks and
potential solutions to those risks, and calculate the cost–benefit ratio), (3) clarify the data
mining goals (to establish project goals and success criteria), (4) produce a project plan (to
develop detailed plans for each project segment, including a timeline and technology and
tool selection).

Martins et al. [18] used a data mining approach to predict cardiovascular diseases
(while using RapidMiner and Weka software). The main question addressed by the project
is how to detect cardiovascular disease at an early stage in a person who is at a high risk
of developing the disease and thus avoid premature death. As a result, the primary set of
goals is to create a solution for predicting cardiovascular diseases in patients using patient
data, to shorten the time required for disease diagnosis, and to provide the patients with
immediate and adequate treatment.
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of the Data Science Process Alliance [17] (www.datascience-pm.com/crisp-dm-2/, accessed on
16 April 2022). The circular nature of the data mining process is symbolized by the outer circle, while
the arrows that connect the phases show the most essential and common dependencies.

2.2. Data Understanding

The emphasis in this phase (second phase), according to CRISP-DM, is on data source
identification, data acquisition, initial data collection, familiarization with the data, and
identifying problems in the acquired data. The steps in the data understanding phase are
(1) acquire the initial data (to gather the data from various sources, insert it into the analysis
program, and integrate it), (2) explain the data (to study and report on the acquired data’s
surface properties such as field identities, data format, data quantity, and the number of
records, etc.), (3) explore the data (to delve deeper into the data by querying, visualizing,
and identifying relationships between data points, as well as to generate an exploration
report), and (4) verify data quality (to inspect and document the data quality and any
quality-related issues) [14]. In this phase, one focuses on identifying data sources for
various types of data, the process of acquisition of the data, and handling access restrictions
in data acquisition. A tremendous amount of data is generated by the health care industry

www.datascience-pm.com/crisp-dm-2/
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and medical institutions every day from medical imaging, patient monitoring, and medical
records [7]. Some of the most common types of medical data are experimental data, medical
literature, clinical textual data, medical records, images/videos (e.g., MRI), and omics
data (e.g., genomics, proteomics). For example, Martins et al. [18] used a data mining
approach to predict cardiovascular diseases. For data understanding, the dataset for
cardiovascular disease prediction came from the Kaggle data repository and focused on
detecting cases of cardiovascular disease. The dataset included 70,000 registered patients
with 12 disease-related attributes collected during the patients’ medical examinations.

2.2.1. Literature Extraction/Data Gathering

The first task in the data understanding phase is to identify data sources, acquire data
from these sources, identify problems during data acquisition, such as data restrictions and
data privacy policies, and document the solutions [14]. Text/data mining frequently uses
public Internet-based sources such as the World Wide Web. The retrieval of content from
public sources is referred to as “web scraping” or “web crawling”. Web scraping can be
performed manually, but it can also be performed automatically with the help of a web
crawler. Manual scraping a large database such as PubMed, which contains millions of peer-
reviewed publications, requires a lot of time and effort. Only automated processing can
provide the necessary quality, response time, and homogeneity for their analysis with such
a large database. As a result, there is always a high demand for web scraping techniques
and tools tailored to customer requirements. PubMed, for example, is a massive database
of biomedical literature that contains 34 million citations (as of 11 May 2022) collected
from online books, life science journals, and MEDLINE, and a massive number of new
publications are added every year [19]. Web crawlers are used to search for and harvest the
necessary data from it. Guo et al. [20], for example, collected COVID-19 data published by
local health authorities using a web crawler (developed using the Python language and
connected with a MySQL database).

Although web scraping and web crawling may seem to be identical, they have several
distinctions (Figure 2). While the terms “web scraping” and “web crawling” are sometimes
interchanged, they refer to two distinct processes [21,22]. Web crawling is a broad term that
refers to the process of downloading information from a website, extracting the hyperlinks
included within, and following them (Figure 2). Typically, downloaded information is
saved in a database or indexed to enable searching. Essentially, search engines are crawlers.
All that is required is to see a page in its entirety and indexing it. When a bot crawls a
website, it scans each page and link, all the way to the website’s last line, looking for any
information. Web crawlers are primarily used by major search engines such as Google,
Bing, and Yahoo, as well as statistics organizations and online aggregators. Typically, a
web crawler collects general information, while scrapers collect particular datasets [23,24].
On the other hand, web scraping is the process of obtaining data from a web page and
extracting specific information that can be saved almost anywhere (database, file, etc.) as
shown in Figure 2. An online scraper, also known as a web data extractor, is similar to a
web crawler in that it detects and locates website content. In contrast to a web crawler,
which uses pseudo-random IDs, web scraping uses specific identifiers, such as the HTML
structure of the web pages from which data must be collected. Web scraping refers to
the use of robots to extract specific datasets from the internet. The obtained data can be
compared, checked, and analyzed in accordance with the demands and objectives of a
specific organization [25].

Several text mining tools are now available. Kaur and Chopra [26] compared
55 popular text mining tools and their features and discovered three categories: (1) Pro-
prietary (company-owned—39 tools); (2) open source (free—13 tools); and (3) online text
mining tools (run directly from a website—3 tools). Four tools that were not examined
in the prior review but are now on the list of well-liked text mining tools are contrasted
in Table 2. All of these Python-based tools serve the same purpose, but with different
goals and objectives. ‘’Requests” has an advantage over other tools in that it is easy to use,
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making it an excellent choice for any simple web scraping task. Scrapy is best suited for
large-scale web scraping projects, as opposed to the other three tools (requests, beautiful
soup, and selenium), which are best suited for small-scale scraping tasks. The “Beautiful
Soup” tool has advantages such as being simple to understand, learn, and use, and it can
extract information from a disorganized website. Selenium has a significant advantage over
the other scraping tools described because it can scrape websites with heavy JavaScript.
Table 2 provides descriptions of more hierarchical comparisons.
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Table 2. Comparison between four text mining tools.

Requests Scrapy Beautiful Soup Selenium

What is it? HTTP library for Python
Open-source web
framework written
in Python

python library
Open-source application
framework tool and
python library

Goal Sending HTTP/1.1
requests using Python

• Can crawl or scrape
websites and extract
the structured data
and saves it

• Can also be used for
a wide range of
tasks, monitoring,
and
automated testing

• Can parse the data
and scrape the
web pages

• Extract information
from XML and
HTML documents

• Useful for web
scraping websites
that are JavaScript
heavy

Ideal usage
Used for simple and
low-level complex web
scraping tasks

• Framework used for
complex web
scraping or web
crawling tasks.

• Used for large-scale
projects

• Used for smaller
web scraping tasks

• Toolkit for
searching through a
document (XML or
HTML) and
extracting
important
information

• Developed for web
testing

• Used for test
automation of web
applications

• Scraping
JavaScript-heavy
websites

• Used for small-scale
and low-level
complex projects
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Table 2. Cont.

Requests Scrapy Beautiful Soup Selenium

Advantage

• A simple way to
retrieve data
from URL

• Scraping data
from web

• Allows to read,
write, post, delete,
and update the data
for the given URL

• Extremely easy to
deal with cookies
and sessions

• Portable library
• Runs on Linux,

Windows, and Mac
• One of the faster

scraping libraries
• Can extract

websites much
faster than
other tools

• Consumes less
memory and
CPU usage

• Building a robust,
and flexible
application with
different functions

• Learning and
mastering it is easy

• Community
support is readily
available to
resolve issues.

• Deals with the Core
JavaScript-heavy
website

• Can handle AJAX
and PJAX requests

Selectors None JCSS and XPath CSS CSS and Xpath

Documentation Detailed and simple to
understand

Detailed and simple to
understand

Detailed and simple to
understand

Detailed and very
complex

GitHub stars 46.8 k 42.7 k - 22.7 k

Reference Chandra and
Varanasi [27] Kouzis-Loukas [28] Richardson [29] Sharma [30]

Access Restriction

When a web crawler visits a website, some pages or the entire website possess access
restrictions. These restrictions are implemented mainly by the site owners due to data
confidentiality, data integrity, and data quality, as well as legal concerns. A crawler usually
performs multiple requests per second and downloads large files to obtain the data in a
short time, which can cause a website server to crash. To tackle this problem, numerous
methods are available. Canonical tag, robots.txt, x-robots-tag, the metarobots tag, and
others are files provided by the website owners to follow the instructions for scraping the
website without creating any problem. For example, “robots.txt” files are frequently used
by websites to convey their scraping and crawling intents. Robots.txt files enable scraping
bots to crawl specific sites, while malevolent bots, on the other hand, are uninterested in
robots.txt files (which act as a “do not enter” sign) as explained below in Figure 3.

Data Collection from Different Sources

The pace at which medical data are being generated is increasing day by day during the
massive information explosion year, and global information is being produced in massive
quantities in every field, including healthcare [31,32]. Administrative records, biometric
data, clinical registration, diagnostics, X-rays, electronic health records, patient report data,
treatments, results, and other types of medical data are all included in medical data. These
massive and complex characteristics make data difficult to deal with for a meaningful and
unknown outcome. Healthcare centers and medical institutions around the world have
proposed a variety of medical information systems to deal with rapidly growing data and
provide the best possible services and care to patients [32]. The most common way to
collect and store the data is by management software, which can store all electronic and
non-electronic records. Several software products are available, e.g., eHospital Systems
(adroitinfosystems.com/products/ehospital-systems, accessed on 11 April 2022) and the
DocPulse Clinic/Hospital Information Management System (docpulse.com, accessed on
11 April 2022).

adroitinfosystems.com/products/ehospital-systems
docpulse.com
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For text mining, data collection from data sources is the key step. In medical science,
various types of medical data, as well as trends, are generated at a rapid pace, which can
be differentiated into five categories, as follows:

1. Hospital management software (Patient data/Clinical narratives).
2. Clinical trials.
3. Research data in Medicine.
4. Publication platforms for Medicine (PubMed, for instance).
5. Pharmaceuticals and regulatory data.

Tables 3–5 provide further details about the different types of data sources. Patient data
generated by clinical trials is available from various sources, as shown in Table 3. Medical
researchers benefit from open-access databases because they have enormous volumes of
data, rich data content, broad data coverage, and a cost-effective study strategy. There
exist several datasets and databases publicly available related to various medical fields that
contain many medical record variables (Table 4). Textual information is growing rapidly,
and it is difficult to grab concise information fast and structured manner. The published
literature is the most abundant and primary source of textual information in the health care
field (Table 5).

Table 3. Databases and registries for clinical trials.

Databases/Registries Trial Numbers Provided by Location Founded Year URL

ClinicalTrials.gov 405,612 U.S. National Library
of Medicine Bethesda, MD, USA 1997 https://clinicaltrials.gov/

(accessed on 11 April 2022)

Cochrane Central
Register of Controlled
Trials (CENTRAL)

1,854,672 a component of
Cochrane Library London, UK 1996

https:
//www.cochranelibrary.
com/central (accessed on
11 April 2022)

WHO International
Clinical Trials Registry
Platform (ICTRP)

353,502 World Health
Organization Geneva, Switzerland -

https:
//trialsearch.who.int/
(accessed on 11 April 2022)

The European Union
Clinical Trials Database 60,321 European Medicines

Agency
Amsterdam, The
Netherlands 2004

https://www.
clinicaltrialsregister.eu/ctr-
search/search (accessed on
11 April 2022)

https://clinicaltrials.gov/
https://www.cochranelibrary.com/central
https://www.cochranelibrary.com/central
https://www.cochranelibrary.com/central
https://trialsearch.who.int/
https://trialsearch.who.int/
https://www.clinicaltrialsregister.eu/ctr-search/search
https://www.clinicaltrialsregister.eu/ctr-search/search
https://www.clinicaltrialsregister.eu/ctr-search/search
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Table 3. Cont.

Databases/Registries Trial Numbers Provided by Location Founded Year URL

CenterWatch 50,112 - Boston, MA, USA 1994

http:
//www.centerwatch.com/
clinical-trials/listings/
(accessed on 11 April 2022)

German Clinical Trials
Register (Deutsches
Register Klinischer
Studien—DRKS)

>13,000
Federal Institute for
Drugs and Medical
Devices

Cologne, Germany

https://www.bfarm.de/
EN/BfArM/Tasks/
German-Clinical-Trials-
Register/_node.html
(accessed on 11 April 2022)

Table 4. Research data in Medicine.

Databases No. of
Datasets Owned by Domains Available Resources URL Ref

Biologic Specimen
and Data
Repository
Information
Coordinating
Center (BioLINCC)

262

National Institute
of Health,
Calverton, MD,
USA

Cardiovascular,
pulmonary, and
hematological

Specimens and Study Datasets

https://biolincc.nhlbi.
nih.gov/studies/
(accessed on
4 April 2022)

[33]

Biomedical
Translational
Research
Information System
(BTRIS)

Five billion
rows of data

Bethesda, MD,
USA Multiple subjects Study Datasets

https://btris.nih.gov/
(accessed on
4 April 2022)

[34]

Clinical Data Study
Request 3135

The consortium
of clinical study
Sponsors

Multiple subjects Study Datasets

https://www.
clinicalstudydatarequest.
com/ (accessed on
4 April 2022)

[35]

Surveillance,
Epidemiology, and
End Results (SEER)

-

National Cancer
Institute,
Bethesda, MD,
USA

Cancer (All
types)—Stage
and histological
details

Study Datasets
https://seer.cancer.gov/
(accessed on
4 April 2022)

[36]

Medical
Information Mart
for Intensive Care
(MIMIC)
MIMIC-III

53,423 patients MIT Laboratory
for
Computational
Physiology,
Cambridge, MA,
USA

Intensive Care
Patient data (vital signs, medications,
laboratory measurements,
observations and notes charted by care
providers, survival data, hospital
length of stay, imaging reports,
diagnostic codes, procedure codes, and
fluid balance)

https://mimic.mit.edu/
(accessed on
4 April 2022)

[37,38]

MIMIC-CXR

65,379 patients
(377,110 images
of chest
radiographs)

[39]

National Health
and Nutrition
Examination Survey
(NHANES)

-

Centers for
disease control
and prevention,
Hyattsville, MD,
USA

Dietary
assessment and
other nutrition
surveillance

data nutritional status, dietary intake,
anthropometric measurements,
laboratory tests, biospecimens, and
clinical findings.

https://www.cdc.gov/
nchs/nhanes/index.htm
(accessed on
4 April 2022)

[40]

Global Burden of
Disease (GBDx) -

Institute for
Health Metrics
and Evaluation,
Seattle, WA, USA

Epidemic
patterns and
disease burden

Surveys, censuses, vital statistics, and
other health-related data

https:
//ghdx.healthdata.org/
(accessed on
4 April 2022)

[41]

UK Biobank (UKB) 0.5 million Stockport, UK
In-depth genetic
and health
information

Genetic, biospecimens, and health data

https://www.
ukbiobank.ac.uk/
(accessed on
4 April 2022)

[42]

The Cancer Genome
Atlas (TCGA)

molecularly
characterized
over
20,000 cancer
samples
spanning
33 cancer types

National Cancer
Institute, NIH,
Bethesda, MD,
USA

Cancer genomics
over 2.5 petabytes of epigenomic,
proteomic, transcriptomic, and
genomic data

https:
//www.cancer.gov/
about-nci/organization/
ccg/research/structural-
genomics/tcga (accessed
on 4 April 2022)

[43]

Gene Expression
Omnibus (GEO)

4,981,280
samples

National Center
for Bioinformatics
(NCBI), NIH,
Bethesda, MD,
USA

Sequencing and
gene expression 4348 datasets available

https://www.ncbi.nlm.
nih.gov/geo/ (accessed
on 4 April 2022)

[44]

http://www.centerwatch.com/clinical-trials/listings/
http://www.centerwatch.com/clinical-trials/listings/
http://www.centerwatch.com/clinical-trials/listings/
https://www.bfarm.de/EN/BfArM/Tasks/German-Clinical-Trials-Register/_node.html
https://www.bfarm.de/EN/BfArM/Tasks/German-Clinical-Trials-Register/_node.html
https://www.bfarm.de/EN/BfArM/Tasks/German-Clinical-Trials-Register/_node.html
https://www.bfarm.de/EN/BfArM/Tasks/German-Clinical-Trials-Register/_node.html
https://biolincc.nhlbi.nih.gov/studies/
https://biolincc.nhlbi.nih.gov/studies/
https://btris.nih.gov/
https://www.clinicalstudydatarequest.com/
https://www.clinicalstudydatarequest.com/
https://www.clinicalstudydatarequest.com/
https://seer.cancer.gov/
https://mimic.mit.edu/
https://www.cdc.gov/nchs/nhanes/index.htm
https://www.cdc.gov/nchs/nhanes/index.htm
https://ghdx.healthdata.org/
https://ghdx.healthdata.org/
https://www.ukbiobank.ac.uk/
https://www.ukbiobank.ac.uk/
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


J. Pers. Med. 2022, 12, 1359 11 of 23

Table 5. Biomedical literature sources.

Source Articles
(Million) Launched by Publication Type Topic Online Link

PubMed 33

National Center
for Biotechnology
Information
(NCBI)

Abstracts Biomedical and
life sciences 1996

https://www.ncbi.nlm.
nih.gov/pubmed/
(accessed on
4 April 2022)

PubMed Central
(PMC) 7.6

National Center
for Biotechnology
Information
(NCBI)

Full text Biomedical and
life sciences 2000

https://www.ncbi.nlm.
nih.gov/pmc/
(accessed on
4 April 2022)

Cochrane Library - Cochrane Abstracts and
full text Healthcare -

https://www.
cochranelibrary.com/
search (accessed on
4 April 2022)

bioRxiv -

Cold Spring
Harbor
Laboratory
(CSHL)

Unpublished
preprints

Biological
sciences 2013

https:
//www.biorxiv.org/
(accessed on
4 April 2022)

medRxiv -

Cold Spring
Harbor
Laboratory
(CSHL)

Unpublished
manuscripts Health sciences 2019

https:
//www.medrxiv.org/
(accessed on
4 April 2022)

arXiv 2.05 Cornell Tech Non-peer-
reviewed Multidisciplinary 1991

https://arxiv.org/
(accessed on
4 April 2022)

Google Scholar 100 (in 2014) Google full text or
metadata Multidisciplinary 2004

https:
//scholar.google.com/
(accessed on
4 April 2022)

Semantic Scholar 205.25
Allen Institute for
Artificial
Intelligence

Abstracts and
full text Multidisciplinary 2015

https://www.
semanticscholar.org/
(accessed on
4 April 2022)

Elsevier 17 (as of 2018) Elsevier Abstracts and
full text Multidisciplinary 1880

https:
//www.elsevier.com/
(accessed on
4 April 2022)

Springer Nature - Springer Nature
Group

Abstracts and
full text Multidisciplinary 2015

https://www.
springernature.com/
(accessed on
4 April 2022)

Springer - Springer Nature Abstracts and
full text Multidisciplinary 1842

https:
//link.springer.com/
(accessed on
4 April 2022)

2.3. Data Preparation

In the third phase (data preparation) of CRISP-DM, a final dataset is created from the
raw data, which will be used in the modeling tool. This phase is the major part (ca. 80%) of
a text/data mining project. The steps in the data preparation phase are (1) data selection (to
choose the dataset along with its attributes that will be used for the analysis based on the
project goals, quality, data type, and volume.), (2) data cleaning (to estimate missing data
and improve the dataset by correcting, imputing, or removing incorrect values), (3) data
construction (to create derived attributes or entirely new records, as well as to transform
data as needed), (4) data integration (to create new datasets and aggregate new values
by combining data from multiple sources), (5) data formation (to remove inappropriate
characters from the data and change the data’s format or design so that it fits into the
model) [14].

2.3.1. Data Cleaning/Data Transformation

The primary goal of data cleaning is to detect and remove duplicate data and errors
from a dataset to create a reliable dataset. Cleaning data entails identifying and removing
entries from a dataset that are corrupt, incorrect, duplicated, incomplete, or improperly

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pubmed/
https://www.ncbi.nlm.nih.gov/pmc/
https://www.ncbi.nlm.nih.gov/pmc/
https://www.cochranelibrary.com/search
https://www.cochranelibrary.com/search
https://www.cochranelibrary.com/search
https://www.biorxiv.org/
https://www.biorxiv.org/
https://www.medrxiv.org/
https://www.medrxiv.org/
https://arxiv.org/
https://scholar.google.com/
https://scholar.google.com/
https://www.semanticscholar.org/
https://www.semanticscholar.org/
https://www.elsevier.com/
https://www.elsevier.com/
https://www.springernature.com/
https://www.springernature.com/
https://link.springer.com/
https://link.springer.com/
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formatted (see Figure 4). Data cleaning is required to analyze information from multiple
sources [45–47].
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Various related tools and python libraries are discussed in the following sections.
Python Libraries for Data Cleaning include the following:

1. NumPy is a quick and easy-to-use open-source Python library for data processing.
Because many of the most well-known Python libraries, including Pandas and Mat-
plotlib, are based on NumPy, it is a fundamentally crucial library for the data science
environment. The primary purpose of the NumPy library is the straightforward
manipulation of large multidimensional arrays, vectors, and matrices. For numerical
calculations, NumPy also offers effectively implemented functions [48].

2. Data processing tasks such as data cleaning, data manipulation, and data analysis are
performed using the well-known Python library Pandas. The Python Data Analysis
Library is referred to as “Pandas”. Multiple modules for reading, processing, and
writing CSV, JSON, and Excel files are available in the library. Although there are
many data cleaning tools available, managing and exploring data with the Pandas
library is incredibly quick and effective [49].

3. An open-source Python library for automating data cleaning procedures is called
DataCleaner. Pandas Dataframe and scikit-learn data preprocessing features comprise
its two separate modules [50].

The data are then transformed into the proper format after being cleaned (Excel, JSON,
or XML). Data transformation makes it simpler to preprocess data and/or text. Depending
on the modifications that must be made, the data transformation may be straightforward or
complicated. The data are easier to use for both humans and computers after transformation
because it is more structured and organized. Additionally, it becomes simpler to integrate
into various programs and systems [46].

Various related tools are discussed in the following sections.

1. Generation of Bibliographic Data is known as GROBID. It is a machine-learning
library that has developed into a state-of-the-art open-source library for removing
metadata from PDF-formatted technical and scientific documents. The library plans
to reconstruct the logical structure of its original document in addition to simple bibli-
ographic extraction in order to support large-scale advanced digital library processes
and text analysis.

GROBID develops fully automated solutions based on machine learning models
for that reason. ResearchGate, Mendeley, CERN Inspire, and HAL, France’s national
publication repository, are just a few of the commercial and open-access scientific services
that the library is connected to.
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The result is to extract and transform PDF documents into XML TEI format, sup-
plement the extracted information with other online services, and illustrate the findings
gathered in PDF documents of scientific papers [51,52].

2. BioC is a straightforward and straightforward format for exchanging text data and
annotations, as well as for simple text processing. Its primary goal is to provide an
abundance of research data and articles for text mining and information retrieval.
They are available in a variety of file formats, including BioC XML, BioC JSON,
Unicode, and ASCII. These formats are available through a Web API or FTP [53].

To summarize, data cleansing improves a dataset’s consistency, while transforma-
tion simplifies data processing. Both processes improve the training dataset’s quality for
model construction.

2.3.2. Feature Engineering

Choosing, modifying, and converting raw data into features that may be utilized
in supervised learning is a process of feature engineering, often referred to as feature
extraction. This machine learning technique, feature engineering, uses data to generate
new variables that are not present in the training set. To streamline and accelerate data
transformations while also improving model accuracy, it can generate new features for both
supervised and unsupervised learning. With machine learning models, feature engineering
is necessary. Regardless of the architecture or the data, a bad feature will directly affect
your model. Numerous tools are available to automate the entire feature engineering
process and to generate a large pool of features in a short period for both classification and
regression tasks. Some feature engineering tools are FeatureTools, AutoFeat, TsFresh, Turi,
Azure Machine Learning Studio, ZOMBIE, FeatureFu, and OneBM [54,55].

Vijithananda et al. [56] extracted features from MRI ADC images of a brain tumor.
The following features were extracted from labeled MRI brain ADC image slices from
195 patients: Skewness, cluster shade, pixel values (he demographics), prominence, Grey
Level Co-occurrence Matrix (GLCM) features, energy, contrast, entropy, variance, mean,
correlation, homogeneity, and kurtosis. Both GLCM homogeneity and skewness were
excluded because they scored the lowest in the ANOVA f-test feature selection process. The
Random Forest classifier outperformed Decision Trees, Nave Bayes, Linear Discriminant
Analysis, K-Nearest Neighbors (KNN), and Logistic Regression and was chosen for further
model development. The final model had an accuracy of 90.41 percent in predicting
malignant and benign neoplasms.

2.3.3. Searching for Keywords

The extraction of keywords or key phrases from text documents is known as keyword
extraction. They are chosen from among the phrases in the text document and describe
the topic of the document. Several popular methods are available for automatically ex-
tracting keywords. Those are used in processes that automatically extract keywords from
documents to select the most frequently used and significant words or phrases from the
text document. This classifies keyword extraction methods as part of the natural language
processing field, which is important in machine learning and artificial intelligence. [57].
Keyword extractors are used to extract words (keywords) or groups of two or more words
that form a phrase (key phrases).

FlashText, for example, is a free and open-source Python package that enables keyword
search and replacement and is one of the recently described keyword extraction tools [58].
It performs a full analysis using an Aho-Corasick algorithm and a Trie Dictionary. As a
general rule, keyword matching entails scanning the corpus (human-created documents
comprise a large, structured set of texts) for each term. Consider the following scenario:
Someone has 100 keywords and needs to search through 2000 papers; a single term is
selected at a time and a search of the 2k corpus is performed; the search is continued for
100 × 2000 is 200,000 iterations. In addition to this keyword search tool, four Python-based
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tools are selected from the various keyword and phrase extraction tools that are available,
and their features, benefits, and NLP tasks are contrasted in Table 6.

Table 6. Searching for relevant content.

Natural Language Toolkit SpaCy Scikit-Learn NLP Toolkit Gensim

What is it?
open-source python
platform for handling
human language data

open-source python library
for advanced natural
language processing

machine learning software
library for the Python
programming language

fastest python library for the
training of vector embedding

Features

• Based on NumPy,
SciPy, and Matplotlib

• An easy and efficient
way to analyze
predictive data

• Easily accessible and
reusable in different
contexts

Advantage

• Most well-known and
comprehensive NLP
libraries with many
extensions

• offers support in the
largest number of
languages

• easy to use
• fully integrated with

Python
• compatible with other

deep learning
frameworks

• many already trained
statistical models
available

• applicable to many
different languages

• high speed and
performance

• freely available
• able to process long

texts
• platform-independent

usable

• simple and efficient
tools for machine
learning, data mining,
and data analysis

• freely available for
everyone

• applicable to different
application areas, like
natural language
processing

• Provides ready-to-use
models and corpora

• Models pre-trained for
specific areas such as
health care

• Processes large amounts
of data using
streaming data

NLP Tasks

• Classification
• Tokenization
• Stemming
• Tagging
• Parsing

• Classification
• Tokenization
• Stemming
• Tagging
• Parsing
• Named Entity

recognition
• Sentiment Analysis

• Classification
• Topic Modeling
• Sentiment Analysis

• Text similarity
• Text summarization
• Topic Modeling

GitHub stars 10.4 k 22.4 k 49 k 12.9 k

Website nltk.org (accessed on
16 March 2022)

spacy.io (accessed on
16 March 2022)

scikit-learn.org (accessed on
16 March 2022)

radimrehurek.com/gensim/
(accessed on 16 March 2022)

Reference Bird et al. [59] Honnibal [60] Pedregosa et al. [61],
Pinto et al. [62] Rehurek and Sojka [63]

2.4. Modeling

In the fourth phase (known as modeling) of CRISP-DM, various modeling techniques
are tested and calibrated by adjusting the model parameters to achieve the best results [14].
The steps in the modeling process are (1) choosing a modeling technique to select one
or more task-specific models/algorithms/assumptions, (2) the creation of test designs to
determine the model’s strength by evaluating the model’s quality and validity, (3) the
building of models (to use the modeling tool for building models from the prepared dataset,
adjust the model parameter, and describe the model), and (4) the evaluation of models
to explain the model outcome based on subject knowledge, the predetermined success
norms, and the test design, rank the multiple generated models, and readjust the parameter
settings—if required.

From several available models for organizing and analyzing the data, the selection of
a model depends on the purpose (e.g., forecast) and the type of data used (unstructured or
structured). A model is a set of data, patterns, and statistics. The available data-mining
models are divided into two categories: Predictive and descriptive. Descriptive models are
frequently used to determine patterns in data that can be explained by humans. Predictive

nltk.org
spacy.io
scikit-learn.org
radimrehurek.com/gensim/
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models use known results from various datasets to forecast unidentified or future values
of other variables of interest. Predictive models are usually based on the previously
provided data and their results. Classification, prediction, regression, and time series
analysis are tasks in the predictive models. Descriptive model data mining tasks comprise
clustering, associating rules, sequence discovery, and summarization (Figure 5). A number
of algorithms/methods are available for the prediction and analysis of patterns in the data.
However, the selection of the algorithm is mainly depending on the dependent variables
whether labeled or unlabeled. If the dependent variable/s in the dataset are labeled, a
supervised learning algorithm is used. Decision trees, the random forest (RF), support
vector machines (SVMs), and competitive risk model are commonly used algorithms. In
contrast, if the dependent variables in the data are not labeled, an unsupervised learning
method is used. Clustering analysis, partition clustering, hierarchical clustering, principal
component analysis (PCA), and association analysis are some of the unsupervised learning
algorithms [64,65].
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The dataset is the primary distinction between supervised and unsupervised machine
learning. It is referred to as supervised learning if the dataset employs a labeled dataset for
input and output, whereas unsupervised learning techniques use unlabeled data. As the
name suggests, supervised learning entails the external supervision of a model’s training.
Unsupervised learning, on the other hand, does not involve any supervision. Additionally,
in the case of supervised learning, the goal is to predict the outcome of new data. In the
case of unsupervised learning, the goal is to find hidden patterns and gain insight from
enormous amounts of new data. In contrast to supervised learning models, which are
straightforward, unsupervised learning models require a large training set to produce
the desired results, making them computationally complex. Some of the applications of
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supervised learning models include diagnosis, identity fraud detection, image classification,
price predictions, sentiment analysis, spam detection, market forecasting, and weather fore-
casting. Unsupervised learning models are used in the pipelines for anomaly detection, big
data visualization, customer personas, feature elicitation, recommended systems, structure
discovery, and targeted marketing [64,66].

As an instance of the modeling example, the suitability of a WebCrawler (Storm-
Crawler) for the acquisition of all health-related web content on the German Health Web
(Germany, Austria, and Switzerland) was investigated by Zowalla et al. [67]. For this
purpose, a support vector machine classifier model was trained to distinguish between
health-related and non-health-related web pages using the dataset created from the German
health web. This model was tested for accuracy and precision on an 80/20 training/test
split and against a crowd-validated dataset. For predicting cardiovascular diseases, the
best-suited technique was the ‘Decision Tree’ compared with eight other techniques, i.e.,
Deep Learning, Nearest Neighbor (k-NN), Gradient Boosted Tree, Generalized Linear
Model, Logistic Regression, Naïve Bayes, Random Forest, and Rule Induction [18]. Fur-
thermore, some parameters were optimized using the optimized parameters operator to
achieve better results when using the ‘Decision Tree’.

2.5. Data Model Validation and Testing

This step’s primary goal is to validate and test the selected model for the data in
the model development process. The validation procedure is used to ensure that the
developed model is accurate enough for the intended use [68]. The first half of this
step, model validation, is important because the used/newly developed model cannot
be relied on solely because it was designed to fit the training data and demonstrates that
the training data fits the model well. To validate a model, output predictions are made in
scenarios unrelated to the training set, and the same statistical measures of fit are computed.
The second half of this step involves testing the model with test data and comparing its
accuracy with the results of the validation step. Only when a model is compared to test
data and statistical calculations show a satisfactory match is it considered “ready”. For the
classification of tumor and non-tumor samples, Dong et al. [69] employed a training dataset
(which consists of mass spectrometry (MS) raw data obtained from 194 paired tumor and
non-tumor samples) to train different models and used a similar type of dataset (which
consists of MS raw data obtained from 58 paired tumor and non-tumor samples) as a test
dataset. The convolutional neural network (CNN), gradient boosting decision tree (GBDT),
support-vector machine (SVM), principal component analysis (PCA) plus SVM, logistic
regression (LR), and random forest (RF) were compared, and the CNN model showed the
highest accuracy. Some of the ML model validation testing tools include Apache Spark,
Excel, Hadoop, KNIME, Python, R, RapidMiner, SAS, SQL, and Tableau.

2.6. Evaluation

In the fifth phase (known as evaluation) of CRISP-DM, a more thorough evaluation and
review of the model’s construction is conducted to ensure that the model properly achieves
the business objectives. The steps in the evaluation phase are (1) the assessment of outcomes
to assess how well the model achieves the project’s goals, discover additional constraints,
information, or clues about future paths, and present the project’s final statement, (2) the
review process to conduct a more in-depth review of the project and address quality
assurance concerns, and (3) the decision for further steps to determine whether or not to
proceed with the deployment or to make changes for the improvement [14].

After the analysis of text data, the next step is to visualize the data meaningfully for
interpretation and communication purposes. Text visualization is primarily accomplished
through the use of charts, graphs, maps, timelines, networks, word clouds, and so on. These
visualized results allow humans to read the most important aspects of a large amount of
information. There are several tools available to display the analyzed data. These tools
make it easy to identify and discover patterns, outliers, trends, and insights in data straight-
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forwardly and understandably. Effective data visualization has benefits and advantages
such as easy understanding of the outcome, effortless and prompt decision-making, and
a higher degree of engagement for a diverse audience over other communication meth-
ods (e.g., verbal communication). For successful data visualization, there are three main
principles: (1) Depending on the purpose, select the appropriate visualization style, (2) the
selected visualization style should be appropriate for the targeted audience, and (3) the
chosen visualization style should be accompanied by an effective graphic design [70]. The
most important aspects of selecting the appropriate visualization style are considering the
selected data and the aim of the visualization. For example, line and bar charts are suitable
for comparing data points across a dataset. Diverse visualization styles are available for
creating attractive and effective visual information, i.e., typographic visualization (e.g.,
word cloud), graph visualization (e.g., tree), chart visualization (e.g., bar/line chat), 3D
visualization, etc. Below, in Table 7, we provide a list of various visualization styles along
with a few of the available tools in each category.

Table 7. Data visualization style with exemplary tools.

Visualization Style Tool [Reference]

Text marking/highlighting cite2vec [71], TopicLens [72], SurVis [73], Poemage [74],
Overview [75]

Tags or word cloud SentenTree [76], InfoVis [77], VisOHC [78], IncreSTS [79], Word
storms [80]

Bar charts TextTile [81], SentiCompass [82], NewsViews [83], WeiboEvents
[84], CatStream [85]

Scatterplot PhenoLines [86], SocialBrands [87], TopicPanorama [88],
#FluxFlow [89], PEARL [90]

Line chart Vispubdata.org [91], GameFlow [92], MultiConVis [93],
Contextifier [94], Google+Ripples [95]

Node-link NEREx [96], iForum [97], NameClarifier [98], DIA2 [99],
Information Cartography [100]

Tree
OpinionFlow [101], Rule-based Visual Mappings [102],

HierarchicalTopics [103], Whisper [104], The World’s Languages
Explorer [105]

Matrix
Interactive Ambiguity Resolution [106], Fingerprint

Matrices [107], Conceptual recurrence plots [108], The
Deshredder [109], Termite [110]

Stream graph timeline VAiRoma [111], CiteRivers [112], ThemeDelta [113], EvoRiver
[114], LeadLine [115]

Flow timeline TimeLineCurator [116], Interactive visual profiling [117]

Radial visualization ConToVi [118], ConVis [119]

3D visualization Two-stage Framework [120]

Maps/Geo chart Can Twitter save lives? [121], Visualizing Dynamic Data with
Maps [122], Spatiotemporal Anomaly Detection [123]

Besides these tools, there are software available with gigantic capabilities to visualize
the data, such as, Microsoft Excel’s PivotTables, R, Tableau, Power-BI, datawrapper, and
Google Charts. These tools are easy to use and very helpful in creating a clear and dynamic
display of data because of their interactive graphical interface. Furthermore, different li-
braries written in different programming languages are also available for data visualization,
which are easy to use for programmers, such as JavaScript libraries (e.g., D3.js, Chart.js,
and Highcharts), python libraries (e.g., Matplotlib, Seaborn, and Plotly), and R libraries
(e.g., ggplot2, Leaflet, and Esquisse). The major challenges of data visualization are the
massive amount of data, the complexity of data, and missing/duplicate entries [124].
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2.7. Deployment

In the deployment phase (sixth and final phase of CRISP-DM, Shearer [14]), the
knowledge gained from the project is organized and presented (e.g., live demonstrations)
in a way that is useful for the project, the company, and the customer. This phase’s
complexity varies greatly. The steps in the deployment phase are as follows: (1) Create
a deployment plan to formulate and note a deployment strategy for the model, (2) plan
the monitoring and maintenance to create well-thought-out planning of maintenance and
monitoring to shun problems during the operational phase of a model, (3) produce a final
report to prepare and present a final report of the project in the form of a written document
and verbal meeting, and (4) review the project to evaluate successes and failures, as well as
potential areas for improvement in future projects.

3. Conclusions and Future Outlook

The amount of medical text data is rapidly increasing. From medical text data, data
mining can be used to extract new and useful information or knowledge. The CRISP-DM
system presented in this study focuses on each step of data mining while using medical
examples to explain each step. The authors plan to develop an artificial intelligence-based
web crawling system with 4D visualization of the data in a summarized and easy-to-
understand manner and use these data as a source of information for researchers, as well
as for the education of patients and medical staff in future work.
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