
Trends in

Biochemical SciencesOPEN ACCESS
Opinion
Determining and interpreting protein lifetimes in
mammalian tissues
Highlights
Robust proteome homeostasis (i.e.,
proteostasis) is crucial for organismal
health because proteome imbalance
and the accumulation of damagedmole-
cules have negative effects on nearly all
biological processes.

It has become clear that protein half-life
data in mammals provide vital informa-
tion at the whole-proteome level for un-
derstanding dynamic phenotypic
changes across scales.

Although methods and analysis frame-
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The orchestration of protein production and degradation, and the regulation
of protein lifetimes, play a central role in the majority of biological processes.
Recent advances in proteomics have enabled the estimation of protein half-
lives for thousands of proteins in vivo. What is the utility of these measurements,
and how can they be leveraged to interpret the proteome changes occurring
during development, aging, and disease? This opinion article summarizes leading
technical approaches and highlights their strengths andweaknesses.Wealso dis-
ambiguate frequently used terminology, illustrate recentmechanistic insights, and
provide guidance for interpreting and validating protein turnover measurements.
Overall, protein lifetimes, coupled to estimates of protein levels, are essential for
obtaining a deep understanding of mammalian biology and the basic processes
defining life itself.
works for determining protein half-lives
in vivo at the whole-proteome level are
becoming more popular, they require
careful customization depending on the
biological question.

Samples obtained from metabolic label-
ing schemes can be used to provide
spatial turnover information through
mass spectrometry imaging technol-
ogies such as matrix-assisted laser
desorption ionization (MALDI) and
nanoscale secondary ion mass spec-
trometry (NanoSIMS).

Protein abundance and turnover can
be measured using similar mass
spectrometry-based approaches but
are fundamentally different and provide
valuable and complementary insights.
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Relevance of studying protein turnover in vivo in whole mammals
The complex nature of mammalian tissues presents several analytical challenges for studying
in vivo protein turnover (see Glossary). However, recent advances in liquid chromatography
with tandemmass spectrometry (LC-MS/MS) and proteomic data analysis have made high-
throughput studies of protein turnover in vivo a reality [1–8]. The results of these studies have
begun to revolutionize our understanding of proteome fidelity and proteostasis. In this opinion,
we highlight the importance of measuring protein turnover and protein half-lives in vivo in whole
mammals and why correctly interpreting these results is crucial for advancing the field. Specifically,
we summarize leading analytical strategies, discuss recent discoveries, and disambiguate terms
used to describe proteome-wide measurements of protein turnover. The strengths and weak-
nesses associatedwith commonly used experimental designs are also presentedwhile highlighting
recent mechanistic insights gained from studying protein turnover in vivo.

Efficient protein degradation and robust protein turnover are crucial for maintaining organ homeo-
stasis. Accordingly, impaired protein turnover plays a key role in numerous human disorders,
diseases, and during aging [9]. Historically, most early studies of protein half-lives have focused
on tracking individual proteins, but currently a constellation of large-scale approaches can be
used to monitor the turnover rate of several thousand proteins in a single experiment [10]
(Table 1). Although these are exciting times for large-scale studies of protein turnover, an
under-appreciation of what is being measured in vivo and the impact of these findings has
emerged. In our opinion, it is crucial to emphasize the importance of careful experimental design,
precise terminology, and accurate data interpretation.

A cohesive terminology to define protein renewal parameters
Proteostasis refers to the processes that ensure the delicate balance of protein production,
maintenance, and degradation that are vital for cellular and tissue function. Although the general
concepts underlying protein synthesis and degradation are well understood, the terms describing
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Glossary
Degradation and synthesis rate
constants: values that quantify the rel-
ative change in concentration of a par-
ticular molecule over time. Following
metabolic labeling in animals, in a
steady-state situation these constants
can be obtained from relative labeling at
the level of single proteins.
Liquid chromatography with
tandem mass spectrometry (LC-
MS/MS): the most commonly used
analytical strategy for proteomic studies.
LC-MS/MS ultimately provides informa-
tion about peptide sequence, abun-
dance, and isotopic distribution that are
all key aspects for quantifying protein
turnover.
Matrix-assisted laser desorption/
ionization (MALDI): an ionization
technique that allows in situ analysis of
proteins and peptides within biological
samples and provides valuable spatial
information that is usually lost in con-
ventional LC-MS/MS.
Mean protein lifetime: the average
length of time a protein species persists,
often formally defined as the time
required for a protein to be reduced to 1/
e of its initial quantity.
Metabolic labeling: a type of labeling
of cells or tissues based on introducing
one or more tracer isotopes into the cell
culture media or the animal diet. This
approach allows a stable isotope that is
present in protein precursor molecules
to be processed into labeled amino acid
(s) and to become incorporated into the
proteome during mRNA translation.
Nanoscale secondary ion mass
spectrometry (NanoSIMS): also
known as multi-isotope imaging mass
spectrometry (MIMS), NanoSIMS is an
analytical strategy that facilitates nano-
scale resolution measurements of the
isotopic composition of biological mole-
cules in situ.
Protein half-life: the average time
required for a protein species to be
reduced to half of its initial number of
molecules.
Protein turnover: a dynamic process
by which old proteins are degraded into
amino acids and are subsequently
replaced by new versions through pro-
tein synthesis within cells.
Proteostasis: the term comprises the
integrated cellular activities that deter-
mine/regulate protein homeostasis
including synthesis, folding, trafficking,
and degradation aimed at ensuring pro-
teome fidelity and function.
these processes are sometimes used ambiguously. In this section wewould like to bring clarity by
providing a common set of terms for the field.

Cells contain proteins with abundances that roughly vary from thousands to tens of millions of
copies [11]. For an individual protein, the protein lifetime encompasses the entire time from
synthesis (i.e., birth) to degradation (i.e., death). Historically, protein renewal (i.e., the replacement
of old proteins) has been quantified in terms of average protein half-life. However, protein half-lives
in mammals cannot be reliably calculated for long-lived proteins (LLPs). Because for some LLPs
the mean protein lifetime is years or even decades, even small differences in labeling ratio will
greatly influence these values.

Often the term meaning 'protein lifetime' is used interchangeably with 'protein half-life' and, be-
cause this is not strictly correct, we advise to use the latter whenever possible. In a steady-
state situation, protein half-life is the point in time when the degradation of a population of old
proteins is equal to the newly synthesized population of proteins. Thus, by definition, at steady-
state, the mean protein lifetime is the same as the protein half-life (Box 1). Caution needs to be
taken when non-steady-state conditions are the subject of investigation because the two mea-
surements diverge. It is also important to emphasize that this terminology, in the context of LC-
MS/MS measurements, reflects an average process (e.g., the mean protein lifetime, half-life, or
turnover) of a pool of proteins with the same amino acid sequence. This is because these
technologies typically do not achieve measurements at the level of single molecules and instead
measure a population of peptides after protein extraction and trypsin digestion (Box 2).

Notably, the previously mentioned measurements are currently limited because proteins often
exist in multiple independent pools. Unfortunately, we currently lack a sufficient repertoire of
probes or analytical tools to distinguish the turnover of different protein subpopulations in
mammals in vivo. The same protein is frequently present in multiple protein complexes localizing
to various organelles with dissimilar turnover rates. To bemore accurate, we thus propose to refer
to proteins with multiple binding partners and functions (i.e., present in distinct pools) that show
different turnover rates in a single cell type as multi-lifetime proteins (Figure 1A, Key figure).
Currently, in whole mammals, and to properly analyze multi-lifetime proteins, we need to combine
bulk measurements with biochemical purification of intact protein complexes and organelles so
as to accurately determine their half-lives and distinguish protein subpopulations [12]. This is
mainly due to technical limitations because, for whole animals, we lack simple and reliable exper-
imental workflows for independently determining protein degradation and synthesis rate
constants such as those available for cell culture [13].

Metabolic labeling with stable isotopes for studying protein lifetimes
The standard experimental strategy to study protein lifetimes at a proteome-wide scale uses
metabolic labeling with heavy stable isotopes (i.e., 2H, 13C, or 15N) coupled to LC-MS/MS-
based proteomic analysis. Variations of this experimental paradigm have been reported, including
the use of light isotope labeling (12C) [14], but the general concept is simple and can be summa-
rized as follows: small mammals, typically rodents, are metabolically labeled through chow or
water enriched with select stable heavy isotopes that have extremely low levels in nature. As
the animals consume the food provided, the supplemented isotopes are gradually incorporated
into newly synthesized proteins during labeling periods that can span from days to months at a
rate reflecting protein turnover (Figure 1 and Box 2). In practice, a short period of metabolic
labeling for a few weeks is sufficient to measure the levels of incorporation in several organs
using LC-MS/MS-based proteomics. However, to achieve the near-complete labeling (99%)
that is required for some experimental workflows, labeling of mice for two generations is
Trends in Biochemical Sciences, February 2023, Vol. 48, No. 2 107

CellPress logo


Trends in Biochemical Sciences
OPEN ACCESS

Pulse-chase analysis: a technique
used for examining changes in abun-
dance and labeling over a defined time-
period. Organisms or cells are exposed
to a labeled compound (i.e., pulse), the
labeled compound is then removed and
replaced with an unlabeled version (i.e.,
chase). By monitoring the level of the
labeled compound over time, one can
determine its degradation dynamics and
half-life.
Stable isotopes: atoms generally con-
taining extra neutrons that are stable and
non-radioactive, and hence are often
present in nature and not dangerous for
cells and animals. Examples of the
practical use of stable isotopes for pro-
tein metabolic labeling include essential
amino acids containing one or more
stable isotopes (e.g., 13C6-lysine con-
taining six atoms of 13C).
Stable isotope labeling in mammals
(SILAM): a method to metabolically
label rodents with stable isotopes.
Stable isotope labeling with amino
acids in culture (SILAC): an LC-MS/
MS-based proteomic technique using
stable isotopes supplied in cell culture
media to measure relative differences in
protein abundance.
necessary. Following the measure of the metabolic labeling in vivo, several strategies can be used
for the analysis of data to extract protein turnover measurements that consider or do not consider
the reuse of the isotopic labels. Because detailed data analysis of metabolic labeling largely
exceeds the purpose of this opinion, readers might refer to several excellent works covering
this aspect in detail [4,6,15–18].

Amino acids or amino acid precursor molecules enriched with heavy atoms are now the most
common chemical tracers used to study protein turnover [1,4,5,19–21]. Alternative chemical
strategies for measuring protein turnover leverage biorthogonal labeling and can be performed
with amino acid analogs. These can be either directly incorporated instead of methionine, such
as in the case of L-azidohomoalanine (AHA) [22], or through the expression of a modified
methionyl-tRNA synthetase, such as in the case of azidonorleucine (ANL) [23]. Although strate-
gies based on click-chemistry provide an opportunity to enrich the labeled proteome and
measure the newly synthesized proteins, they can be toxic to animals at high concentrations,
limiting their applicability to studies of protein turnover. By contrast, stable isotopes are particularly
powerful for metabolic labeling because they are almost indistinguishable from naturally occurring
atoms and provide the rare opportunity to confidently measure protein half-lives under nearly
endogenous conditions [24]. Furthermore, protein labeling with these minimal tracers sur-
mounts the limitations associated with the introduction of exogenous over-expressed fluorescent
proteins or epitopes that may alter natural protein production, folding, complex formation, and
degradation.

Studying protein lifetimes in mammals accelerates biological discoveries
Proteomics provides a rare opportunity to probe relationships between groups of proteins with
similar turnover rates and thus extract biological information about complex biogenesis and
degradation directly from mammalian tissues. For example, it has been established which
subunits of several large protein complexes, such as the core of the nuclear pore and parts of
the mitochondrial oxidative phosphorylation chain, show similarly exceptionally long lifetimes
[2,4,25]. It has also been discovered that these LLPs are maintained together as single units for
months and even years whereas several other components of the same complexes are turned
over on much shorter timeframes [2,4,25–27]. These discoveries represent the basis of new
research avenues addressing differences in macromolecular complexes occurring during aging
and pathologies that might affect their stability. Moreover, selectively impaired protein turnover
can be observed after stress or by the expression of mutant proteins that become misfolded
and accumulate [28–30]. Changes in protein half-lives can also reflect physiological responses,
which modulate protein turnover [4,31]. For example, changes in subcellular localization and
post-translational modifications (PTMs) can influence protein stability. For this reasonmeasurements
of protein half-life can be used for discovery purposes to reveal previously unknown interactors and
molecular mechanisms (Figure 1C).

In the context of aging, the study of protein lifetimes has shown that different tissues may affect
protein turnover in slightly dissimilar manners, although the relative half-lives of mitochondrial
components are very precisely coordinated across tissues [32]. The brain of aged animals
specifically shows reduced protein turnover, increased half-lives, and specific alterations that
might point to metabolic differences that affect proteome composition. Interestingly, these
alterations are also linked to biological processes that are observed in neurodegenerative
diseases [33]. These studies only start to address the involvement of different pathways that
regulate protein stability, and more systematic approaches will be necessary to understand
the precise molecular causes of these observations and the involvement of proteasomal and
lysosomal mechanisms.
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Box 1. Analyzing and interpreting in vivo measurements of protein kinetics

In a steady-state situation, protein kinetics can be approximated by simple exponential decays (Figure I) in which the degradation and synthesis rate constants are equal.
In reality, in a mammal the availability of precursor molecule might depend on the modalities by which the labels are provided (Box 2), further complicating half-life
calculations.

When interpreting the results of metabolic labeling, it is crucial that the age of the animal and the period of labeling are carefully considered. This is exemplified by the fact
that some long-lived proteins (LLPs; such as extracellular matrix components and nuclear scaffolds in postmitotic cells) are synthesized at a specific age of the animal
development [52,53]. If the goal is to study protein half-lives, using relatively short labeling periods with heavy amino acids is often appropriate, especially for measuring
the components of the proteome that are replaced frequently. However, if the goal is to identify LLPs, then multi-generation labeling followed by a chase with unlabeled
food is probably more appropriate.

Protein turnover measurements in isotopic labeling experiments are typically fractional, and the intact heavy and light labeled peptides are captured in the same MS1
scan. Thus, they are internally normalized within individual samples analyses and are not impacted by sample-to-sample technical variation. Attention must be exerted
for the interpretation of these calculations because, depending on the workflow used, the fractional abundance of isotopically labeled proteins can reflect either an 'older'
or a 'newer' population of proteins. However, bottom-up proteomic analysis depends on the ability to identify the peptide sequence in the MS2 scan. For some studies,
both the heavy and light peptide pairs are identified, whereas in others only one isotopolog is selected for MS2 and the abundance is solely based on inferring its
sequence based on the m/z values and peak intensities. MS-based imaging of metabolically labeled tissue sections can be achieved with MALDI and NanoSIMS,
providing spatial information.

Several labeling and analysis strategies have been deployed to investigate protein turnover and measure protein lifetimes in vivo. A problem that needs to be addressed
when studying protein turnover in vivo is that amino acids (essential and non-essential) are recycled within animals to preserve energy and increasemetabolic performance.
All these approaches are based on theoretical predictions of kinetic influx and efflux of pools of amino acids and proteins, and several computational approaches are avail-
able [1,4,15,17,54,55]. It is important to underline that these approaches are based on assumptions which are necessary to allow mathematical modeling (see Table 1 in
main text). The most common assumption is that the protein of interest does not change its level during the period analyzed, which may confound interpretation of the re-
sults.
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Figure I. Schematic representation of exponential decay and the basic equations at steady-state.
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To demonstrate the usefulness of protein turnover measurements, we summarize some exem-
plary case studies. To better understand the mechanisms underlying neurodegeneration,
pulse-chase analysis of amyloid precursor protein (App) knock-in mice showed that amyloid
accumulates over a time-period of months [34]. The amyloidogenic processing of APP also
caused a selective turnover impairment of synaptic vesicle-associated proteins. It is important
to underline that there is no standardized 'protein turnover analysis workflow', and different
strategies need to be tailored for each biological question. As an example, to study amyloid
deposition, an initial long-term pulse was necessary to label the majority of the slowly accumulating
Trends in Biochemical Sciences, February 2023, Vol. 48, No. 2 111
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protein pool, and a subsequent chase was required for tracking the degradation of the aggregated
long-lived pool and the non-aggregated protein that is shorter-lived. This strategy increased the
signal and minimized noise, which would not be possible with a continuous labeling paradigm,
and thus might be more informative for the determination of protein half-lives.

In the study of heart remodeling, protein turnover has been used in an elegant multi-omic study
integrating other omic data (such as transcript and protein abundance) to reveal new disease
gene candidates linked to heart hypertrophy [35]. In the same study, the integrated analysis of
half-lives has confirmed that protein–protein interacting partners are coordinated in turnover,
and that changes in these measurements can therefore be used to infer changes in protein
complex composition.

Protein turnover has also been used for addressing changes in synaptic physiology in both the
central and peripheral nervous systems [4,31,36,37]. One intriguing aspect revealed by these
studies is that the localization to a specific cellular subdomain (the synapse) extends the half-
lives of proteins [4,31], suggesting that local degradation mechanisms in the cell body or at the
synapse are not equally active. Another intriguing aspect is that peripheral nerve injury decreases
the turnover of synaptic proteins, suggesting that cellular damage could be one of the causes of
inefficient neurotransmission [36].

Beyond the several examples from specific fields of biology, there are some overarching ques-
tions about biological systems that protein turnover measurements can help to solve. As an
example, we still know very little about how proteome composition and homeostasis are
maintained, and can only address these questions when several thousands of protein lifetimes
and abundances are measured in parallel. These large-scale studies facilitate the identification
of determinants of protein stability, such as biochemical parameters influencing protein turnover
[38]. However addressing the role of PTMs in protein stability remains challenging [39]
(see Outstanding questions).
Box 2. Labeling rodents with stable isotopes for studying protein turnover

Stable isotopes can be incorporated into rodent proteins by metabolic labeling, similarly to what is done using stable isotope labeling with amino acids in culture
(SILAC). In animals this is done with custom chow enriched with 'heavy' nitrogen (i.e., 15N) or carbon (i.e., 13C). The rodent chow is formulated without 'light' atoms for
one or more defined molecular species, thus allowing specific labeling to be obtained.

There are currently two practical strategies used to label proteins for experiments requiring stable isotope labeling in mammals (SILAM): (i) by providing 'heavy es-
sential amino acids' such as lysine (e.g., 13C6-lysine) that cannot be synthesized and are thus solely provided from the diet and incorporated during protein biosynthesis
and (ii) by providing 'labeled amino acid precursors' that are incorporated into biomolecules and proteins through enzymatic reactions occurring within cells. As an ex-
ample, this is what is achieved when employing 15N diets. In this case 15N atoms are slowly incorporated into all the nitrogen-containing molecules such as amino acid
sidechains and backbones. Because mice cannot efficiently incorporate 15N as a derivatized salt, historically the 15N diet is based on blue-green algae (i.e., Spirulina
platensis) which can use 15N as the sole nitrogen source.

An alternative strategy is to deliver heavy atoms by subcutaneous injection or in drinking water in the form of deuterium oxide (i.e., 2H2O) [56]. Owing to the large differ-
ence in relative mass with respect to 1H (protium), deuterium (2H) is the only stable isotope which exerts a sizeable 'kinetic isotope effect' that slows enzymatic reactions
and results in toxicity at concentrations higher than 30% in animals and eukaryotic cells [57]. Nevertheless, because of its relatively low price, heavy water is an attractive
solution for protein turnover studies not only in rodents but also in humans [51]. In practice, the toxicity issues are mitigated by using low concentrations of heavy water
and relying on robust bioinformatic approaches for data interpretation [58–60].

There are advantages and disadvantages to using global isotopic labeling (e.g., 15N-labeled essential amino acids; Figure I). Briefly, although atom-based tracers can
provide reliable measurements of relative labeling, analysis of the MS spectra is challenging due to the presence of heterogeneous populations of peptides of the same
chemical composition that differ only by their isotopic composition (i.e., isotopologs). It is important to mention that this aspect has recently been addressed to simplify
the analysis of the isotopolog distribution either by forcing a light isotope labeling shift or by using water labeling and considering only the enrichment of two mass
isotopomers [18,61]. The use of heavy essential amino acids simplifies the analysis but only allows protein turnover measurements for peptides containing the heavy
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amino acids. At the same time, because these have predictable mass shifts which can be precisely separated and accurately measured by MS, their modeling is easier
to handle.
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Figure I. Theoretical peptide mass spectra from a metabolic labeling experiment (left), commonly used experimental labeling schemes, and a list of
applications (right). What is the main difference between 'continuous labeling' versus 'pulse-chase' labeling? In the 'continuous labeling' strategy, because there is
only one type of measurement, more complex trajectories in protein degradation dynamics are not captured. At the same time, it is simpler to analyze and model the
data for quantitative purposes if they approximate to first-order degradation kinetics. For proteins that are long-lived and possibly stabilized in aggregates, a pulse-
chase approach might become useful to decrease the background noise arising from the short-lived (non-aggregated) counterparts. In this case a chase allows
washout of the short-lived proteins and reveals more reliably the longer-lived species. Both strategies can be combined to obtain different sets of data and for
checking possible labeling inconsistencies. Abbreviation: AA, amino acid.
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Protein half-life and protein abundance: two orthogonal parameters
What is the difference between measuring protein levels (i.e., protein abundances) and protein
half-lives? In simple terms, classical protein abundance measurements provide information
about the relative quantity of protein, which in principle could be the consequence of changes
in gene expression, in protein degradation, or in both processes. At steady-state, protein produc-
tion and degradation are equal by definition, and protein levels therefore do not change
(Figure 1B). Protein half-lives at steady-state provide a substantially different set of data than
protein abundance. For example, if both production and degradation are doubled (and thus
turnover is faster and the half-life becomes shorter), protein abundance would not change and
protein abundance measurements would not be informative. One could still foresee that, in
such a situation, a protein could be used much faster and thus be more rapidly degraded
Trends in Biochemical Sciences, February 2023, Vol. 48, No. 2 113
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Key figure

Assessing and understanding in vivo protein turnover at multiple scales
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Figure 1. (A) Theoretical cartoon depiction of single- and multi-lifetime proteins and how these factors impact on global measurements of protein turnover. (B) Cartoon
depiction of possible changes in protein abundance and turnover upon manipulation in vivo (C) Bulk measurements of protein turnover are influenced at multiple scales
during in vivo experiments. This biological complexity can occur at the molecular, organelle, cellular, organ, or organismal (i.e., individual) level. Although many of these
validations discussed are straightforward, they are rarely performed and we encourage their inclusion whenever possible.
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because of increased molecular damage. If the levels of that protein need to be kept constant for
the optimal function of the organism, homeostatic mechanisms will continuously counterbalance
the increase in degradation with higher protein production, very quickly reaching a new steady-
state situation where the overall protein levels are not changed.
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In non-steady-state situations, following metabolic labeling for a given period, half-life measure-
ments are more complex to investigate, especially in whole mammals, where formal analysis of
protein turnover trajectories is not as simple as in cell culture [13]. In any case, associated with
protein abundance measurements, protein turnover provides additional information about the
dynamic changes in protein expression. In this context, we would like to stress that, from a
practical point of view, protein abundance measurements when changes are small (<5–10%
difference) are often too noisy to provide reliable information. In these cases, measurements of
the metabolic incorporation of stable isotopes can be extremely quantitative because they
often include an 'internal control' – the unlabeled version of the same protein – across multiple
biological replicates. In other words, the fractional abundance [i.e., 'old'/('new' + 'old')] is a direct
way to capture the protein properties [26]. In practice, this allows one to ascertain changes in
protein renewal rates with high precision that cannot be currently obtained from conventional
protein abundance data. Ideally for discovery purposes, metabolic labeling dynamics and protein
abundance should be monitored in parallel, allowing investigators to obtain a more complete
picture of changes following perturbations.

Are protein lifetimes similar in vitro and in vivo?
Although simplified models are instrumental for addressing the regulation of protein lifetimes [40],
recent data suggest that protein lifetimes measured in cultured cells underestimate those
obtained from in vivo studies [4,41,42]. Immortalized cells have abbreviated cell cycles and
may have lost key regulatory mechanisms necessary to ensure proper coordination of protein
complex assembly and proteome stoichiometry. Ultimately, this situation may accelerate cellular
processes and protein turnover. In addition, proteins which have a lifetime exceeding the duration
of the cell cycle will complicate the interpretation.

In some cases we can overcome this limitation by studying primary cells, with the caveat that they
frequently represent model systems that reflect developmental processes in vivo that require
robust protein synthesis. This is problematic because it can result in misestimating the protein
turnover rates observed in vivo. On the other hand, there are cases where cells in culture do
show very long lifetimes, for example, senescent cells undergoing contact inhibition [43]. These
cells have minimal protein synthesis and show extended protein lifetimes that only capture
minimal aspects of the dynamic situations observed in vivo.

Although all these cellular models have their strengths and weaknesses, we suggest using
them only when there is no in vivo alternative. In general, we wish to emphasize that
researchers need to understand that, to obtain the most biologically meaningful results,
the biological question should match the protein labeling paradigm (Figure 1C). If the goal is to
determine absolute protein lifetimes, one needs to be very careful in considering the experimental
limitations. However, determining relative changes in protein lifetimes between two conditions (i.e.,
genetic, pharmacological) is generally straightforward provided that the protein measurements are
precise.

Possible strategies to troubleshoot and validate protein turnover measurements
Validation of changes in protein turnover poses a challenge even if there are several possible
strategies. First, there is a need to discern technical validations from biological validations,
which ultimately serve as a confirmation that the observed alterations of the biological process
under investigation are reliable and ultimately correspond to a meaningful biological change.

In terms of technical validations, we would like to delineate several categories. One category
addresses the rigor of the fractional abundance measurements. In this case, a spike-in
Trends in Biochemical Sciences, February 2023, Vol. 48, No. 2 115
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Outstanding questions
Does physicochemical protein damage
broadly interfere with protein turnover,
and how does this mechanistically
contribute to aging and pathology?

What are the molecular processes that
regulate protein turnover, and can they
be pharmacologically manipulated?

What is the impact of PTMs such as
phosphorylation on protein turnover?
Will it be possible to differentiate at
the molecular level the modifications
that have causative effects in protein
stabilization or degradation?

Specific PTMs (such as ubiquitination)
are thought to regulate protein
turnover, but their role in the
regulation of protein stability in vivo
remains largely unexplored. Will it be
possible to obtain a comprehensive
and quantitative atlas of these protein
modifications that combines information
about their subtypes, abundance, and
influence on protein stability?

Will the rapidly evolving field of protein
turnover be able to measure turnover
at the 'intact protein' level, transitioning
from a peptide-centric to a more pre-
cise 'top-down' approach?

Will in vivo protein turnover data
become more common in the clinical
context and be used to guide early
diagnosis and personalized medicine?
experiment can be run in parallel with the biological samples to provide an idea of the sen-
sitivity of the actual measurements. This is obtained by mixing tissue extracts from unlabeled
and fully labeled animals and measuring different ratios of incorporation in the mixed samples
[4]. Although the mixing is performed in vitro, the tissues that will be measured are the same
used for the actual turnover measurement, thus providing useful information about the reliabil-
ity of the data. One other category addresses the reproducibility across cohorts of animals
and should be addressed either by performing the same measurements with different animals
(and potentially in different laboratories) to ensure that the measurements are reproducible
(although this is often practically unfeasible owing to the relevant costs of these experiments).
One additional technical validation addresses the influence of a defined isotope or of a precise
diet formulation on the measurements. To solve this issue, one option is to perform a second
experiment and track protein degradation with a different isotopolog. Finally, to avoid mea-
surement differences due to variability of the analysis workflow (typically the type of LC-MS/MS),
several crossvalidation methods based on classical biochemical analysis or imaging approaches
can be used, although these usually only recapitulate changes for a defined number of proteins.
Crossvalidating results using orthogonal MS analysis and labeling strategies is an opportunity
to integrate complementary data and reach more reliable conclusions. A recent work directly
compared different strategies to analyze datasets obtained using different labeling techniques
but the same mouse strains [44]. Such integrated approaches will be key for establishing
shared ground-truth frameworks for analyzing and interpreting proteome-wide turnover
measurements.

To provide spatial information that is lost in other MS approaches, nanoscale secondary ion
mass spectrometry (NanoSIMS) or MS imaging [i.e., matrix-assisted laser desorption/
ionization (MALDI)] can be used to study protein replacement in the endogenous environment
using tissue sections [45–49]. Biological validations are more complex and, although virtually
infinite scenarios exist, we showcase a few examples in Figure 1C and discuss additional interpre-
tative aspects in Box 2 that might be useful for planning the correct validations.

Concluding remarks
It is our opinion that the proliferation of new technologies and the development of robust analysis
workflows will culminate in a wealth of in vivo protein turnover data that will allow researchers to
address several open questions (see Outstanding questions).

The main challenge that this field will face is how to obtain a 'meaningful biological understanding'
of the complex underpinnings of protein lifetimes. To address this, we will need to consider
contemporarily technological aspects that can influence the biological interpretation of the
results while also combining more advanced metabolic labeling-based measurements in a
multi-level perspective. To provide a simple example, the influence of different cell types on
these measurements is difficult to address in vivo and might require cell sorting or genetic
labeling strategies. Tissues that harbor only a few cell types will be less challenging than
more complex tissues with highly heterogeneous cellular compositions. However, even a
single cell type is likely to have differences that are only addressable at single-cell resolution.
Furthermore, within cells, protein pools might have dissimilar lifetimes depending on their
interactors, PTMs, or subcellular localizations, reflecting an opportunity for so far unimaginable
biological discoveries.

Overall, we believe that, in combination with numerous experimental manipulations, all these
approaches will allow us to systematically define the dynamic properties of the proteomes
which will provide new avenues for human pathophysiology and biomedical research [50,51].
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