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Context-dependent selectivity to natural
images in the retina

Matías A. Goldin 1,5 , Baptiste Lefebvre1,2,5, Samuele Virgili 1,5,
Mathieu Kim Pham Van Cang1,3, Alexander Ecker 4, Thierry Mora2,
Ulisse Ferrari 1 & Olivier Marre 1

Retina ganglion cells extract specific features from natural scenes and send
this information to the brain. In particular, they respond to local light increase
(ON responses), and/or decrease (OFF). However, it is unclear if this ON-OFF
selectivity, characterized with synthetic stimuli, is maintained under natural
scene stimulation. Herewe recorded ganglion cell responses to natural images
slightly perturbed by random noise patterns to determine their selectivity
during natural stimulation. The ON-OFF selectivity strongly depended on the
specific image. A single ganglion cell can signal luminance increase for one
image, and luminance decrease for another. Modeling and experiments
showed that this resulted from the non-linear combination of different retinal
pathways. Despite the versatility of the ON-OFF selectivity, a systematic ana-
lysis demonstrated that contrast was reliably encoded in these responses. Our
perturbative approach uncovered the selectivity of retinal ganglion cells to
more complex features than initially thought.

To carry out complex visual tasks, it has been proposed that each area
of the visual system extracts different features from the visual scene.
The complexity of these extracted features increases along the hier-
archy of visual areas1. This feature extraction process starts in the
retina, whose output is composed of retinal ganglion cells. These cells
can be classified in different cell types2 and each of them is supposed
to extract a low-level visual feature from the visual scene3. This feature
selectivity is often inferred by reverse correlation using a white noise
stimulus4. This type of linear response modeling using stimuli with
simple statistics, although effective in determining an approximate
receptive field of the cell, falls short of modeling the full nonlinear
response profile of the retina to complex stimuli such as the ones it is
usually exposed in nature.

A basic example of feature extraction is the selectivity of ganglion
cells to luminance increase or decrease: the so called ON cells are those
sensitive to light increments, whereas OFF cells are those sensitive to
light decrements, andON-OFF cells respond to both. Recentworks have
shown that, surprisingly, this ON-OFF selectivity depends on the visual

context. For example, it changes with the background luminance5,6.
Transient variations of the preferred polarity have also been reported in
response to large motion in the periphery7. In these studies, retinal
processing was probed with simple artificial stimuli. It is not clear how
ON-OFF selectivity would generalize tomore complex stimuli, even in a
regime of constant average global contrast and luminance8.

Here we use a novel perturbative approach for probing context-
dependent selectivity with perturbations added on top of natural
scenes. We stimulated ganglion cells of mouse and axolotl retinas with
natural images, and then added small checkerboard-like perturbations
on top of them. These perturbations evoked small changes on the
responses of retinal ganglion cells. When analyzing systematically the
responses to these perturbations, we found that the same ganglion cell
can be selective to light increments when the perturbations are added
on top of one natural image, and to light decrements when they are
added on top of another. Ganglion cells can thus switch their selec-
tivity from ON to OFF depending on the context, and do so during
natural scene stimulation. We designed a non-linear model to explain
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and predict these changes, and mapped this model to specific circuits
in the retinal network. Finally, we demonstrated that this strong con-
text dependence is compatible with a robust computation of a more
abstract feature: contrast.

Results
Anewmethod to estimate selectivity during natural stimulation
We recordedganglion cells in the retina ofmice and axolotls withmulti-
electrode arrays (MEAs) while stimulating photoreceptors with flashed
natural images. Each stimulus was presented for 300ms, followed by a
gray screen of 300ms. To measure the selectivity of ganglion cells
during natural image stimulation, we added dim checkerboard patterns
(Fig. 1a) to natural images. The amplitude of the checkerboard pattern
was chosen so to elicit a small but visible change on the average
ganglion cell response compared to the response to the same unper-
turbed natural image (see Supplementary Fig. 1). We repeated many
times the presentation of the same “reference” natural image, but we
perturbed it each time with a different checkerboard pattern. To avoid

any adaptation to the reference natural image, we interleaved these
stimuli with other perturbed natural images, andwith a large number of
flashed natural images without any perturbation. All natural images had
the same average luminance and contrast (see Methods).

For each cell and each reference image, we estimated a local spike-
triggered average (named hereafter LSTA) (Fig. 1b), as the average of
the perturbation patterns weighted by the number of spikes they
evoked. This estimation is similar to a classical Spike Triggered Aver-
age (STA)4, but here the checkerboardpatterns have a small amplitude
and thus explore a small, local region of the stimulus space centered
on the reference natural image. A large number of cells showed a
detectable ON or OFF LSTA (48 out of 50 cells from 2 axolotl retinas;
443 out of 634 cells from 6 mice retinas, see Methods).

Ganglion cells can change their selectivity to luminance and
space in different natural contexts
For many cells (around 86% for mice, 83% for axolotl), all the LSTAs
were consistent with the classical STA estimated with a standard
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Fig. 1 |ON-OFF selectivity canchange in anatural context for the sameganglion
cell. a We added a random checkerboard pattern with low contrast on top of a
natural image to obtain a perturbed image. Scale bar: 500 µm. b We flashed a
randomized sequence of perturbed and unperturbed images. All flashes lasted
300ms and were separated by 300ms of gray whose luminance was equal to the
mean luminance of the images. To calculate the LSTA, we averaged the different
perturbations, weighted by the number of spikes they evoked. c, d Two examples
of LSTAs, for mouse (ON cell, c) and axolotl (OFF cell, d), measured for two
example cells and different perturbed images. Top: the classical receptive field
with its spatial (left) and temporal (right) components. A green ellipse fitted to
the spatial component is shown in all the bottom panels as a reference for each
cell. Bottom left: reference image; bottom right: corresponding LSTA. The first
two rows LSTAsmatch the classical polarity, and the last two rows show a polarity
inversion. Scale bars: 200 µm. e Percentage of ganglion cells showing both ON

and OFF polarities for different natural images (N = 6 for mouse and N = 2 for
axolotl). Data are presented as mean and SEM for mouse and as mean and semi
dispersion for axolotl. f Number of ganglion cells recorded in total (light blue)
and showing LSTA polarity inversion (dark blue) against their ON-OFF index
estimated from their responses to full-field flashes. −1 means a pure OFF cell, 1 a
pure ON, and 0 an equal response to both ON and OFF flashes. g Cell population
distribution of the overlap value between pairs of LSTAs for the same cell, for
mouse (top) and axolotl (bottom). Overlap is estimated as the absolute value of
the denoised normalized scalar product between two LSTAs from two different
natural images (see Methods). 1 means that the two LSTAs had the same position,
0 that they had non-overlapping positions. N = 2527 overlaps were calculated for
mouse and N = 103 for axolotl. Source data are provided as a Source Data
file. Credit for the natural images shown here goes to Hans Van Hateren: http://
bethgelab.org/datasets/vanhateren/.
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checkerboard (Fig. 1c, d, top). However, we also found many cases
where a single ganglion cell shows an ON-type LSTA for one natural
image and anOFF-type for another one (Fig. 1c, d, bottom). Thismeans
that, when stimulated with one image, the neuron may increase its
firing rate if the luminance is increased inside its receptive field.
However, when stimulated with a different image, the firing rate may
increase if the luminance inside the receptive field decreases. This
result shows that the ON-OFF selectivity (termed hereafter polarity) is
not a fixed feature of this ganglion cell, but varies depending on the
context.

A significant fractionof ganglion cells showed this inversion in the
polarity of the LSTA (Fig. 1e; 14 ± 4% for mouse and 16.7 ± 0.7% for
axolotl). This result did not seem restricted to a single cell type. 39% of
ganglion cells showing polarity inversion could be classified as “ON-
OFF” (Fig. 1f, ON-OFF index between −0.25 and 0.25, see Methods). All
of them had a clear dominant ON or OFF component in their classical
receptive field measured with standard checkerboard. A large fraction
of ganglion cells showing polarity inversion is thus receiving inputs
from both ON and OFF pathways, but the natural context seems to be
able to modulate their respective contributions. Ganglion cells with

polarity inversion were also more often transient than sustained cells
(Supplementary Fig. 2).

We looked further into the cell classification using two stimuli, a
chirp2 and drifting gratings9 (see Methods and Supplementary Fig. 3).
We found that the inverting cells in theseexperiments donotbelong to
a specific type, but can appear in several groups.We found that all cells
showing polarity inversion had at least a detectable response to both
ON and OFF flashes. Cell types with a “pure” ON or OFF selectivity did
not show polarity inversion. However, the ratio between the ON and
the OFF responses could vary very broadly: some cells (e.g. the ON
transient type) had a strong ON response and a barely detectable OFF
response to flashes, but showed polarity inversion for some cells when
probed with natural images (see Supplementary Fig. 3, and Supple-
mentary Table 1). Only one inverting cell was direction selective.

Beyond the changes inpolarity, we observeddisplacements of the
LSTA from one reference image to another. To characterize these
displacements, we measured the amount of overlap between the dif-
ferent LSTAs of the same cell by estimating the absolute value of a
normalized scalar product between all the pairs of denoised LSTAs
from the same cell (see Methods). This measure will give 1 if the two
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Fig. 2 | A non-linear, convolutionalNeuralNetworkmodelpredicts the shapeof
theLSTAs. a Schematic of the different architectures used topredict the responses
of multiple retinal ganglion cells to a flashed image (top). The LNmodel (middle) is
composed by a linear filter followed by a nonlinear function. The CNN model
(bottom) is composed of a convolutional layer (inferred kernels) and a dense layer
(readout weights factorized in spatial masks and feature weights). b Average per-
formance of the two models at predicting the average responses to repeated,
unperturbed natural images (see Methods and Supplementary Fig. 4 for a scatter
plot of this data across all modelled cells). The data reported here is from N = 12
(mouse) and N = 7 (axolotl) cells that were both modelled and showed polarity
inversion. In both species the CNN significantly outperforms the LN (p = 1 x 10�3 for

mouse and p = 1 x 10�2 for axolotl, two-sided Wilcoxon signed-rank test). c, d Two
example LSTAs (second column), for mouse (c) and axolotl (d), measured for two
example cells (same as Fig. 1) and different reference images (first column), along
with the prediction of the two models (third and fourth column for LN and CNN
models, respectively). e Average performance of the two models at predicting the
LSTAs of inverting cells (see Methods). The data reported here is from N = 57
(mouse) and N = 26 (axolotl) measured LSTAs. Again in both species the CNN sig-
nificantly outperforms the LN (p = 1 x 10�9 for mouse and p = 5 x 10�2 for axolotl,
two-sided Wilcoxon signed-rank test). Bar plots are presented as mean and
SEM. Source data are provided as a Source Data file. Credit for the natural images
shown here goes to Hans Van Hateren: http://bethgelab.org/datasets/vanhateren/.
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LSTAs fully overlap, and 0 if they are disjoint. We found that overlap
was low for a fraction of them (Fig. 1g). These results show that both
spatial and luminance selectivity are dependent on thenatural context.

A convolutional neural network model can account for context
dependence
Is there a model that could explain this context dependence? We
tested if different types ofmodels could explain our results. To do this
we showed the retina, besides the perturbed images described above,
an independent and interleaved set of unperturbed natural images.We
fitted quasilinear and nonlinear regression models to predict the
activity of the ganglion cells from the stimulus and then we used the
fitted models to predict the LSTAs (see Methods). The quasilinear
regression model was a conventional linear-nonlinear model4,10. It fil-
ters the visual stimulus linearly, and then uses a monotonic nonlinear
function to transform the result of this filtering into an output neural
response (Fig. 2a, middle).

For the non-linear model, we used a nonlinear encoding model
implemented using convolutional neural networks11. In this type of
network, a set of higher-level representations (feature maps) are
extracted from the visual stimulus and combined to predict neural
responses (see Methods). Our network was composed of two layers: a
feature extraction layer followed by a readout layer. Each layer was
composed of a linear filter followed by a nonlinearity. The first layer
was a convolutional layer with four two-dimensional convolutional
kernels, where the filters were learned from the data. For each
experiment, the four kernelswere common to all themodelled cells. In
the second layer therewasonefilter followedby the samenon-linearity
for each ganglion cell (Fig. 2a, bottom, see Methods)12,13. In what fol-
lows, we refer to thismodel as the convolutional neural networkmodel
(CNN). Note that none of the models were trained with the perturbed
natural images.Onlyunperturbedflashednatural imageswereused for
training.

To estimate the model performance, we first tried to predict the
average response to another set of flashed natural images that were
not used for training, and were repeated multiple times. For each cell
we estimated an R-square value corrected to take into account the
limits imposed by the noise (see Methods) on a cell by cell basis. The
CNN model outperformed the LN model both in mouse (60 ± 3% vs
43 ± 3%, p < 10−3, two-sided Wilcoxon signed-rank test) and axolotl
(73 ± 3% vs 48 ± 4%, p < 10−2) (Fig. 2b). Note that the images used for
performance estimation were not part of the training set. Nonlinear
models are thus necessary to make accurate predictions on a stimulus
ensemble composed of unperturbed natural images.

We next investigated whether thesemodels could generalize, and
could also reproduce the LSTAs obtained for different natural images,
and in particular the changes in polarity described above. To predict
the LSTAs with a model, we calculated the gradient of the model
output with respect to its input for each ganglion cell and each natural
image (see Methods). Note that the reference images for which the
experimental LSTAs were measured were not part of the training set.
Figure 2c, d shows the comparison between the shape of the LSTAs
observed experimentally and the ones inferred by each model, for the
same cells as in Fig. 1. As expected, the LNmodel always predicted the
same LSTA shape, independent of the reference natural image. The LN
model could thus not reproduce the observed changes in LSTA
polarity or location. On the contrary, the LSTAs predicted by the CNN
model were very similar to the experimental ones. We quantified the
quality of this prediction by estimating the correlation betweenmodel-
predicted LSTAs and experimental LSTAs after denoising (see Meth-
ods) for the cells that showed polarity changes. The average correla-
tion was significantly better for the CNNmodel than for the LN model
(Mann-Whitney U test, p < 10−8 for mouse and p <0.05 for axolotl;
Fig. 2e). These results show that the CNN model was able to predict
both the neural responses to flashed natural images and the

corresponding LSTAs, even if the model was never trained with these
perturbed images, much better than the LN model. The CNN model
was thus able to generalize and not only predict the responses to
images, but also to perturbations of them.

An interpretation of these results is that the LSTA describes the
linear function that would best approximate the stimulus-response
function locally. The LSTA corresponds to the perturbation thatwould
increase the most the firing rate of the cell, if applied to the corre-
sponding natural image. LSTA could thus be seen as an experimental
estimate of the local gradient of this function14. Our results regarding
the polarity inversion for different images can thus be interpreted as
large changes in the gradient of the stimulus-response function over
the stimulus space. Simple linearmodels have a constant gradient and
cannot explain these results. Linear models followed by a mono-
tonically increasing non-linearity cannot explain polarity inversion
either, as the non-linearity only scales the gradient by a non-negative
number. A special case is a model composed of a linear filter followed
by a quadratic non linearity15: since the non-linearity is not monotonic,
it multiplies the gradient by a number that can be either positive or
negative. This model can thus show polarity inversion. However, it
predicts that the gradient varies only by a scaling factor, with no
change in shape. As a result, it cannot predict the observed displace-
ment of the LSTAs (Fig. 1c, d, g). Models with more non-linearities, like
the CNNmodel, are thus necessary to accurately predict the observed
changes in both spatial and luminance selectivity.

Polarity changes are due to ON and OFF pathway convergence
onto ganglion cells
Which component of the CNN model allows predicting the LSTA
changes, andwhichcouldbe the correspondingpathways in the retinal
circuit? The first layer of the CNN is composed of convolutional ker-
nels. After learning on ganglion cell responses, they have either a
strong ON center and a weaker OFF surround, or an OFF center com-
bined with a weaker ON surround (Fig. 3a and Supplementary Fig. 5A,
B). This is analogous with the processing performed by ON and OFF
bipolar cells. The second layer pools the rectified outputs of this first
layer, and is analogous to the way ganglion cells sample inputs from
bipolar cells. In ganglion cells where LSTA polarity inversion was
observed, the learned model pooled inputs from both ON and OFF
kernels of the first layer (Fig. 3b). If we removed the ON kernels from
the model, polarity inversion would disappear. This suggests that
retinal ganglion cells show LSTA polarity changes because they pool
inputs from both ON and OFF bipolar cells, directly or indirectly, and
that inactivating the ON bipolar cells could suppress the observed
polarity inversion. We tried clustering the modeled cells in the 4D
feature weight space, to see whether the inverting cells would cluster
together. However, we found no clear patterns in the feature space
(Supplementary Fig. 5C). This might be due to the small number of
cells involved per experiment which prevents performing robust
clustering.

To test if LSTA changes of polarity depend on theONpathway, we
estimated LSTAs while blocking the ON pathway in the retinal circuit
(Fig. 3c). We first measured LSTAs for different reference images, then
blocked the transmission from photoreceptors to ON bipolar cells in
the mouse retina by adding L-AP4 to the bath (see Methods), and
repeated the same stimulus to measure LSTAs again. We detected
across 3 mice retinas a total of 209 cells showing LSTAs before L-AP4
application. Of these, 26 were detected to invert. In retinal ganglion
cells presenting LSTA polarity inversion, LSTAs with ON polarity dis-
appeared (Fig. 3d, top two rows), while LSTAs with OFF polarity were
largely unchanged (Fig. 3d, bottom two rows). In only in 4% of
the cases, LSTAs with ON polarity remained after L-AP4 application,
while LSTAswith OFF polarity did stay in 26% of the cases (Fig. 3e). The
decrease of LSTAs with OFF polarity is due to the experiment duration
when adding L-AP4 and measuring again LSTAs: ganglion cells tend to
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lose sensitivity after many hours of recording, and this results in some
LSTAsdisappearing over time.Nevertheless, thedifference in decrease
between the LSTAs showing ON and OFF polarity is highly significant
(p = 2 × 10−3, Fisher exact test). As a result, ganglion cells that showed
an inversion of polarity in the control condition did not after L-AP4
application. Our pharmacological manipulation thus suppressed the
observed inversion of LSTApolarity aspredicted (Fig. 3e). The changes
of LSTA polarity thus require the convergence of the ON and OFF
pathways onto the same ganglion cell.

Changes in polarity underlie a robust encoding of local contrast
We showed above that the CNN model can accurately predict the
LSTAs of retinal ganglion cells for different natural images. To inves-
tigate more systematically the relationship between the reference
natural image and the corresponding LSTA, we took advantage of the
learned CNN model to predict and generate LSTAs corresponding to
each of the 2910 reference natural images used for training themodel,
for each modeled ganglion cell (see Methods). For each of these cells
we performed a principal component analysis (PCA) on the ensemble
of predicted LSTAs. For most cells, the first two principal components
(Fig. 4a) accounted for a large fraction of the variance of these LSTAs
(87 ± 3% across population).We thus projected all the LSTAs, as well as
the natural images themselves, in the two-dimensional space formed
by these two first principal components. We represented each image

as a point in this two-dimensional space, and the associated LSTA as a
vector (Fig. 4b, c). We chose this vector field representation because
the LSTA represents the optimal direction in the stimulus space in
which to perturb the stimulus in order to increase the firing rate of the
ganglion cell (i.e. the gradient of the stimulus-response function). For
readability, we binned the projection space and averaged together all
the images and the corresponding LSTAs that fell in the same bin.

For some ganglion cells this representation shows that the
direction of the LSTAs is almost always pointing in the same direction
(Fig. 4d). This corresponds to a cell with little variation in the LSTA
shape and polarity across images. In this case, an increase of firing rate
will always signal a change in the same direction in the stimulus space,
nomatterwhat the reference image is. Thisdirection correspondshere
to a decrease of the local luminance (same as PCA 1 in Fig. 4a).

On the contrary, other ganglion cells showed large variations in
the direction of the LSTAs in the PCA space (Fig. 4e, f). This corre-
sponds to important changes in the LSTAs across images, like the ones
present in cells with inversion of polarity. However, these changes
were not random: there was a systematic relation between the refer-
ence image (i.e. the starting point of the arrow) and the LSTAs (i.e., the
direction of the arrow). For these cells, the vector field showed a
diverging structure: the vector size was minimal at a central point and
LSTAs always pointed outward from this central point (Fig. 4e, f black
arrows). The vector field representation thus uncovered a systematic
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Fig. 3 | ON-OFF pathway convergence onto ganglion cells is needed for LSTA
polarity inversion. a Examples of learned convolutional kernels (scale bar:
200μm) showing both ON and OFF polarities. All kernels present a strong center
and a weaker surround of the opposing polarity. The kernels shown here are taken
frommice, as all the rest of the data in the figure (see Supplementary Fig. 5A, B for
more details). b Feature weights fromON (y-axis) and OFF(x-axis) featuremaps for
each modeled ganglion cell. Purple: ganglion cell with LSTA polarity inversion.
c Schematic showing the model-retina analogy. A stimulus arrives at the first pro-
cessing stage of the CNN, the convolutional kernels, which are analogous to the
bipolar cells in themiddle layer of the retina. Information from the kernels ispooled
by the modeled ganglion cells, or combined into ganglion cells in the output layer
of the retina through the ON and OFF pathways. Both modeled and biological
ganglion cells can showONandOFF LSTAs. For the analogy with the pharmacology
experiment, the ON kernels of the model are suppressed (red cross), which

corresponds to the application of L-AP4 blocking synaptic transmission between
photoreceptors and ON bipolar cells. In both the model and the biological retina,
ganglion cells cannot show ON LSTAs, while OFF LSTAs remain unchanged.
d Example cell from mouse in a pharmacology experiment. This cell is a classical
ON cell, which displays both ON and OFF LSTAs (Control column) for different
images. After applying L-AP4 (see Methods), ON LSTAs disappear (top two rows)
while OFF LSTAs remain unchanged (bottom two rows). e Proportion of LSTA
measured in control and still present after bath application of L-AP4, across all
cells displaying polarity inversion. The difference is highly significant (p = 2 × 10−3,
two-sided Fisher exact test). The data was obtained on N = 26 inverting cells
across 3 experiments. The errors for the two percentages are estimated from a
binomial distribution. Source data are provided as a Source Data file. Credit for
the natural images shown here goes to Hans Van Hateren: http://bethgelab.org/
datasets/vanhateren/.
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relation between the reference images and their corresponding LSTA
shapes.

Since the LSTA corresponds to a gradient, this central point
corresponds to a local minimum of the stimulus-response function.
The single minimum and the structure of the vector field with a
positive divergence is reminiscent of the one produced by a quad-
ratic function. Therefore, we hypothesized that this vector field
could be produced by a cell whose response is proportional to the

square difference between the presented image and a uniform gray
image, which is a contrast function16. We thus defined a local contrast
function as the square difference between the luminance value and a
constant gray value, taken for each pixel and averaged over the
receptive field center.We generated the vector field predicted by this
local contrast function (see Methods, and Fig. 4e, f green arrows).
The two vector fields, the one generated with the CNNmodel and the
one generated with this local contrast function, looked similar.
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Fig. 4 | There is a systematic relationshipbetween images andLSTAs. a For each
cell, we predicted the LSTAs associated with 2910 natural images with the CNN
model. We applied PCA on this ensemble of LSTAs for each cell. Top and middle
row: the first two PCA components for an example mouse retina ganglion cell.
Bottom row: variance of the LSTA ensemble explained by the first five principal
components, averaged across all the inverting cells of mouse. b, c Representation
of image-LSTA pairs as points and arrows in the two dimensional PCA space
representation for the stimulus space. In (b) three image-LSTA pairs are color
coded into point-arrow pairs. In (c) the arrow origins are located on the projection
of the image in the PCA space and the arrow indicates the projection of the LSTA.
d Vector field for an example mouse cell encoding for luminance. The resulting
vector field points in the direction of the first principal component (PCA 1, see a),
showing that this cell increases its firing rate for decreasing luminance inside the

receptive field, regardless of the image chosen as context. eVectorfield for another
ganglion cell. In this case, the resulting vector field (black arrows) diverges from the
center. This means that this cell will fire more for a bright image if it gets brighter
inside the receptive field, and for a dark image if it gets darker inside the receptive
field. Green arrows: prediction of the contrast model (see text). f Same as (e) for an
example axolotl cell. g Performance of the contrast model at predicting the var-
iance in the neural response predicted by the CNN (see Supplementary Fig. 6 for a
scatter plot of this data). The data reported here is from N = 14 (mouse) and N = 7
(axolotl) cells that were both modelled and showed polarity inversion. Data are
presented asmean and SEM. Source data are provided as a Source Data file. Credit
for the natural images shown here goes to Hans Van Hateren: http://bethgelab.org/
datasets/vanhateren/.
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Despite having more parameters, the CNN model was only slightly
better at predicting the responses to natural images (58 ± 7 % vs
48 ± 6% for mouse; 74 ± 4% vs 46 ± 6% for axolotl). The local contrast
model could explain on average 79% of the variance of the responses
observed in the CNN model for mouse and 78% for axolotl (Fig. 4g),
and largely outperformed the LN model (p-value=5x10�4 for mouse
and 0.03 for axolotl). This suggests that the computation performed
by the CNNmodel on those cells can be reasonably approximated by
a computation of local contrast.

This vector field representation uncovers a systematic relation
between LSTA and the corresponding natural image, and this relation
suggests that these ganglion cells can compute local contrast when
stimulatedwith natural images. To check if this relation could be found
directly in our data, without relying on the CNNmodel, we first looked
for several examples where the stimulus falling inside the receptive
field center was a high contrast one, with both dark and bright regions.
If the responses of a ganglion cell are increased by an increase of
contrast inside the receptive field, any perturbation that wouldmake a
bright region brighter, or a dark region darker, should increase the
firing rate. As a consequence, the measured LSTA should have an OFF
region in the darkest regions of the reference image, and a ON region
in the bright region of the natural image. We found several examples
where there was a striking correspondence between these dark and
bright regions of the natural image and the corresponding
LSTA (Fig. 5a).

To further confirm this correspondence, we performed experi-
ments where we presented reference natural images, and the corre-
sponding negative images, where black becomes white and white
becomes black. We measured the LSTAs for each of these images. If
bright regions in the reference image become dark regions, and vice-
versa, following our interpretation, the corresponding LSTA should
also change and take the opposite polarity. Among the cells detected
to invert (39out of 527 cells recorded in 4mouse retinas), 57 ± 9%were
observed to reliably change their LSTA polarity when presented with
negative natural images (Fig. 5b). These results confirm that ganglion
cells that show polarity inversion in their LSTAs can perform a robust
local contrast computation, despite the changes in their ON-OFF
selectivity.

Discussion
We have shown that, during natural image stimulation, many ganglion
cells can change their selectivity for light increase or decrease
depending on the natural image. This strong dependence of selectivity
on the context can be modelled by non-linear neural network models,
and a convolutional neural network model learned on the data can
reproduce these results. These changes in theON-OFF selectivity result
from a convergence of the ON and OFF pathways onto the same
ganglion cells. The changes in polarity of the LSTA suggest strong
context-dependent responses. However, our results show that this is
compatible with the robust encoding of more abstract features like
contrast.

We could only estimate LSTAs for a limited number of reference
images. It is thus possible that some ganglion cells that did not show
change in LSTA polarities in our results would have shown a polarity
inversion with a different choice of reference natural images. There-
fore, the exact ratio of cells showing this effect might be under-
estimated. On the ganglion cells where theCNNmodel was learned, we
predicted LSTAs for 2910 natural images, and found that a larger
fraction of these cells should present changes in LSTA polarity
according to the CNNmodel (54% in mouse, 66% in axolotl). Note that
it is also possible that this polarity inversion could also beobserved for
stimuli other than natural images. For example, we observed it for
negative images (Fig. 5).

Our results show that contrast can be robustly decoded from
these ganglion cells by reading their spike count, since their response
always increases with local contrast, no matter what the reference
image is. On the contrary, information about local luminance is
ambiguous. For some reference natural image, increasing in firing rate
is associated with an increase of local luminance, and with a decrease
for other images. However, the information about luminancemight be
preserved throughother decodingmethods. For somecellswenoticed
that the latency for the response to natural images associated with an
ON-like LSTA was different from the one associated with an OFF LSTA
(Supplementary Fig. 7). It might thus be possible to read luminance
from the latency of the response. Previous works have suggested that
information about different features of the visual scene might be
encoded in different features in the retinal response, e.g., latency and

a b Image LSTA LSTAInverted
imageLSTAImage

ON

OFF

Fig. 5 | Contrast computation is confirmed using natural images and their
inverted bright-dark counterparts. a Four example images presenting high
contrast in the center of the receptive field of four mouse ganglion cells. As
hypothesized (see text), bright (dark) regions in the image correspond to
bright (dark) LSTA regions. b An example of OFF ganglion cell of mouse

retina where LSTA was measured both for natural images (1st column) and for
the negative images (3rd column). LSTAs that appeared dark for the images,
were bright for the negative counterparts. Credit for the natural images
shown here goes to Hans Van Hateren: http://bethgelab.org/datasets/
vanhateren/.
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firing rate17,18. Our results support this idea in the case of natural sti-
mulation. In order to account for the different response latencies, we
implemented a simple extended version of our CNNmodel to make it
time dependent (see Supplementary Fig. 8). Although this simple
modification predicted the response latency well for some cells, it
made important mistakes for others. Improving the performance fur-
ther would require to try very different model architectures (e.g.,
Vierock et al.19 McIntosh et al.20) and to learn the model on responses
to natural movies, rather than flashed natural images.

Previousworks have shown thatOFF ganglion cells can respond to
light onset when changing the background luminance5. Here we have
measured the ON-OFF selectivity of ganglion cells for natural images
where the overall background luminance was kept constant. Further-
more, in our stimuli all the image presentations, with and without
perturbations, were interleaved to avoid any adaptation to the specific
statistics of a natural image. The changes in polarity cannot thus be
attributed to adaptation to the background luminance.

Geffen et al.7 reported that OFF ganglion cells can switch to ON
polarity during and slightly after a sudden shift of a large grating
present in the surround. Compared to our study, the change in that
study was evoked by a transient and dynamical change in one stimulus
property, whilewemeasured the LSTAs forflashednatural images. The
results of Geffen et al.7 suggest that extending our paradigm to a
spatio-temporal case14,21, by applying perturbations on top of a scene
with natural dynamics, could reveal evenmore complexity in the LSTA
dependence on context.

Maheswaranathan et al.22 learned a deepnetworkmodel on retinal
responses to natural movies and noticed that the gradient of the
stimulus-response function, estimated with their network model,
could change polarity depending on the content of the natural scene.
The gradient they calculated is the closest equivalent to our LSTA. The
main difference with our approach is that they only estimated it on a
model, while our estimation of the LSTA allows a direct experimental
measure of how retinal processing can be context-dependent during
natural imageprocessing. Ourmethod tomeasure LSTA canbeused to
validate models by showing a qualitative difference between different
model classes. For example, quasilinear models could not predict
polarity changes or displacements. In comparison, classical estimation
of performance cannot tell what is missed in the prediction of the
response.

Measuring LSTAs has thus two interests. First, it is useful to test
possiblemodels of sensoryprocessing, andpossibly discard some. The
changes observed in the measured LSTAs could simply not be repro-
duced by linear-nonlinear models. Second, it can also be a tool to test
which features of the image can be robustly coded by a ganglion cell.
Our results showed that ganglion cells presenting changes in LSTA
polarity could perform a robust computation of local contrast.

Related works in the visual cortex have learned deep neural net-
works online to then find the stimulus that maximized the neuronal
response13,23–25. This approach is complementary to ours: while they
looked for the most exciting input, LSTAs can be seen as the locally
most exciting input, i.e. the local change that will be best at increasing
the response. An interesting outcome of our study is that these local
changes do not always point in the same direction. Instead, this
direction can systematically vary with the reference image. Our results
thus show that the processing performed by one neuron on the visual
scene cannot be summarized by a single most exciting stimulus, and
calls for a deeper evaluation of single neuron selectivity and
invariance26 when stimulating with natural scenes by using LSTA
estimation.

Similarly, a related work by Keshishian et al.27 in the auditory
cortex, using deep networkmodels learned ondata, approximated the
processing performed by neurons in the auditory cortex by describing
three different STAs for one cell, and each of them was associated
with a different region of the stimulus space. In our vector field

representation, this would correspond to three regions inside which
the vector field would be constant. Similarly to Maheswaranathan
et al.22, that study did not measure them experimentally. More
importantly, our results show that even in the retina some ganglion
cells cannot be reduced to a small number of STAs because they code
for a more abstract feature, which results in systematic changes in the
LSTA depending on the reference image. Our perturbative approach
could thus be applied in other sensory systems to refinemodels or test
hypotheses about what features are extracted from the sensory input.

Methods
Electrophysiological recordings
Electrophysiological data were recorded from isolated retinas from 6
C57BL6J mice of 8 to 11 weeks (median of 9), and 2 adult axolotl sala-
manders (Ambystomamexicanum, pigmented wild-type). The animals
were housed in enriched cages with ad libitum food, andwatering. The
ambient temperature was between 22 and 25 °C, the humidity was
between 50 and 70% and the light cycle was 12–14 h of light, 10–12 h of
darkness. The experiment was performed in accordance with institu-
tional animal care standards of Sorbonne Université. After killing the
animal, the eye was enucleated and transferred rapidly into oxyge-
nated Ames medium. Dissection was made under dim light condition
as described previously28,29. We mounted a piece of retina onto a
membrane, and then lowered it with the ganglion cell side against a
252-channel multi-electrode array (MEA) whose electrodes were
spaced by 30 μm. During dissection and recordings, the tissue was
perfused with oxygenated Ames solution and a peristaltic perfusion
system with 2 independent pumps: PPS2 (Multichannel Systems
GmbH). Mice retinas were kept at 35–37 degrees and axolotl retinas at
room temperature (20–24 degrees) during the whole experiment.

The data sampling rate was 20 kHz. The raw signal was acquired
through MC_Rack Multi-channel Systems software 4.6.2, it was high-
pass filtered at 100Hz, and the spikes were isolated using SpyKING
CIRCUS 1.0.628. Subsequent data analysis was done with custom-made
Python codes. We extracted the activity of a total of 634 neurons from
mice, and 50 neurons from axolotl. We kept cells with a low number of
refractory period violations (< 0.5%, with median < 0.09% for all
experiments, 2ms refractory period) and whose template waveform
could be well distinguished from the template waveforms of other
cells. These constraints ensured a good quality of the reconstructed
spike trains. In addition, we discarded neurons that showed no or
almost no responses to flashed images, preventing the estimation
of LSTAs.

Pharmacology
For the experiments requiring the ON-pathway inactivation, we used a
metabotropic glutamate receptor agonist (L-AP4, TocrisBioscience) to
block synaptic transmission between the photoreceptors and the ON-
bipolar cells. A new Ames medium was preheated at 35–37 degrees
with L-AP4 diluted at 5μM concentration and used to perfuse the
retina. To evaluate the effectiveness of L-AP4, we stimulated the retina
with full-field flashes at 0.25 Hz and checked that the spiking responses
to the onset of the flash were abolished.

Visual stimulation
A white mounted LED (MCWHLP1, Thorlabs Inc.) was used as a light
source, and the stimuli were displayed using a Digital Mirror Device
(DLP9500, Texas Instruments) and focused on the photoreceptors
using standard optics and an inverted microscope (Nikon). The light
level corresponded to photopic vision: 4:9× 104 and 1:4× 105 iso-
merisations / (photoreceptor. s) for S cones andM cones respectively.

Checkerboard stimuli
We displayed a random binary checkerboard during 40min to 1 h at
30Hz to map the receptive fields of ganglion cells. Check size was
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42 µm for mice and 73.5 µm for axolotl. For mice retinas, a second
checkerboard stimulationwas shownbefore the endof the experiment
to control for the stability of the ganglion cell functional responses.

A three dimensional STA (x, y and time)was sampledusing 21 time
samples. The spatial STA presented across all the figures was obtained
as the 2 dimensional spatial slice at the maximum value after
smoothing. The temporal STA is the one dimensional time slice at that
same value. A double Gaussian fit was performed on the resulting
spatial STA, and the ellipse corresponding to a 2σ contour of thefit was
plotted for all the figures.

Natural image stimuli
We used the Open Access van Hateren Natural Image Dataset30,
which consists of 4212monochromatic and calibrated images taken
in various natural environments. The calibration ensures a strictly
linear relationship between scene luminance and pixel value. To
avoid that the retinal system adapts to different ranges of light
intensities encountered in different environments, we performed a
preprocessing step. First, we identified the imageswith a significant
number of pixels above saturation, which was defined as the pro-
portion of pixels above a given threshold (6266 for ISO 200, 12551
for ISO400 and 25102 for ISO800). If the saturation level was above
2%, the imagewas discarded. This resulted in a total of 3190 images.
Second, we cropped the central part of each image (final size:
864 ×864px). Third, for each image, pixel valueswere converted to
luminance with the conversion factor provided by the calibration.
Fourth, the images were normalized with a custom procedure to fix
the mean luminance and the root mean square (RMS) contrast: the
linear scale was transformed to log scale, the distribution of pixel
values centered and scaled, to finally come back to the linear scale
and centered and scaled thedistributionof pixel values for a second
time to a final mean and standard deviation (respectively 0.5 and
0.25 for mice, and 0.36 and 0.12 for axolotl). Pixel values below 0
were clipped to 0, and those above 1 to 1.

Unperturbed natural image stimulus
The dataset of 3190 images obtained after the preprocessing step
described in the previous paragraph was used to stimulate the retina.
We selected 30 images which were presented multiple times (30 and
20 repetitions each formice and axolotl respectively) to create the test
dataset for the CNN. The other images were only flashed once. Around
10%of them (250 images both formouse and axolotl) were allocated to
the validation dataset while the rest of the images composed the
training dataset.

Perturbed natural image stimulus
The generation of the perturbed natural image stimulus consisted in
superimposing some of the natural images (7–8 for mouse and 4 for
axolotl) withmultiple perturbation patterns. We used a checker size of
42 µm for mice and 54 µm for axolotl, and the checkerboard had
72 × 72 checks for mice and 56 × 56 checks for axolotls.

Calibration of perturbation amplitude
We determined the minimal perturbation amplitudes that produced a
discernible spike count difference between the response to the natural
image and to the corresponding perturbed natural image. In a cali-
bration experiment, we used 4 images and several fixed perturbation
patterns formice and axolotl respectively, that were repeated 25 times
for each of 7 perturbation amplitudes, and were presented in a ran-
domized manner. The final perturbation amplitude chosen for mice
was 12.5% and 3.125% for axolotl, where a value of 100% corresponds to
the maximum intensity, used for a classical checkerboard. These
values corresponded to a change in the firing rate of approximately
1.5 Hz, in the ganglion cells that responded with a high enough firing
rate to the unperturbed images (Supplementary Fig. 1).

LSTA calculation
For each reference image, we counted the spikes occurring between
30 and 350ms after each perturbed image presentation. We then did
an average of the perturbation patterns of each reference image
weightedby their corresponding spike counts. For plotting,we applied
a smoothing by bicubic splines. An ellipse corresponding to the 2σ
contour of the classical STA was plotted on top as a reference in all
figures.

To count the number ofONandOFF LSTAs,wedenoised the LSTA
using a spline-based method for receptive field estimation31, with 2
additional steps to only detect LSTA that were distinguishable from
background and compact in space.

To measure the overlap between LSTAs of the same cell (dis-
placement, Fig. 1g), the weighted average results were denoised by a
gaussian blur and then were fitted with a 2D gaussian envelope. The
overlap between each couple of LSTAs was then estimated as the
normalized scalar product of their fitted gaussians, in absolute value.

To estimate the quality of the model-based LSTA predictions
(Fig. 2e), the LSTAs of the modelled cells were again denoised as
described above with a gaussian blur and fitted with a 2D gaussian.
Their fit was then correlated pixelwise with the model-based LSTA
predictions.

ON-OFF index
We presented 20 repetitions of full field illumination steps to the
retinas. An ON step of 3 s duration was followed by an OFF step of the
same length. To measure the ON-OFF index of ganglion cells, we
defined a window of 800ms after each step onset. The ON-OFF index
was calculated as the difference between the sum of spikes occurring
in the window after the ON step and the sum of spikes after the OFF
step, divided by the total spike count in both windows.

Cell typing
We performed three further experiments in mice retinas of C57BL6J
mice of 17 weeks to find out if our polarity inverting cells do belong to
any specific cell type.

Stimulus. In addition to our perturbation protocol to detect polarity
inverting cells, we applied two additional ones. 1) A full field ‘chirp’
stimulus composed of ON and OFF steps, plus varying full field fre-
quencies and amplitudes, with luminance values ranging from 0 to 1.
The stimulus is the exact same that Baden et al.2 used to find and
classify 32 different types of ganglion cells. It was played at 50Hz,
containing 20 repetitions of 32 s length, (See Supplementary Fig. 3). 2)
Drifting gratings (DG) moving in 8 different directions with a speed of
479.5 um/s, at a spatial period of 959 um (274 pixels at 3.5 um/pix) and
at 50% Michelson contrast (0.75–0.25 luminance). Each DG lasts 10 s,
preceded by 2 s of gray (0.5 luminance), the temporal period being 2 s.
Therefore, each grating edge goes through a ganglion cell’s receptive
fields 5 times per DG. The 8 directions were repeated 4 times in a
pseudo-random manner. The stimulus profile and dynamics is iden-
tical to the one described in Yao et al.9 to retrieve direction selective
cells. In our caseweused a unique luminance value, as described in the
Visual stimulation section above.

Typing. To cluster cells in different types, we based our analysis on the
chirp and checkerboard stimulus responses, and representing each
ganglion cell with a reduced representative vector. To obtain these
vectors, first we constructedperi-stimulus histograms (PSTH) from the
spikes evoked from the chirp stimulus, using a binning of 100ms.
Then, for each experiment, we z-scored all PSTHs and performed a
PCAon them.We kept the number of components thatwere needed to
explain 80% variance of the data (around 12 components). Second, we
used the temporal profile (21 samples at 30Hz) of each cell’s STA
obtained using the checkerboard stimulus. We z-scored it and
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performed a PCA, keeping the first component, which explains around
60% of the variance. This adds information about the classical STA
polarity of the ganglion cells. Third, we used the area of the ellipse
fitted to the classical STA, as the product value of their major and
minor axis σ values. These areas were normalized from 0 to 1. In this
way, we obtain a data vector of around 14 values, depending on the
experiment, that describes each ganglion cell according to their
response to a chirp and a checkerboard. Then, we performed an
agglomerative clustering, setting the threshold value in a way that all
clusters look homogeneous across PSTHs and STAs. This resulted in
overclustering that produced around 50 ganglion cell groups (from
around200cells in eachexperiment). In the last step,weassignedeach
cluster group to one of the 32 types described in Baden et al.2. To do
this, we used the Calcium imaging data provided by the authors to
match it with our data. We based ourselves in their Extended data
Fig. 1, where the authors link electrophysiology and calcium imaging
by means of a convolution between a Ca2+ event triggered by a single
spike. We transformed our PSTHs by convolving themwith a decaying
exponential, in which we adjusted the temporal decay constant to
maximize correlation of our cluster groups and theirs (median max-
imum correlation of 0.76). Cell types that present strong responses to
the modulating frequencies and amplitude were assigned correctly,
while other types which mostly respond to ON/OFF steps, were
assigned in a second round of correlation match after excluding the
former groups. Besides the correlation of the chirp traces, we con-
firmed the correct assigning of groups by checking that the ellipses of
each type formapropermosaic, that the spatial STAs lookuniform, the
similarity of their direction selectivity PSTHs (see below) and that of
the spike waveforms. Finally, we computed a correlation matrix
between the average chirp response of each type to show that the
groups are homogeneous (Supplementary Fig. 3A).

Direction selectivity. We constructed PSTHs from the spikes evoked
from the chirp stimulus, and calculated themean firing rate evoked by
each DG direction, and normalized it to the maximum direction for
each cell (values 0 to 1). To assess selectivity, we calculated the vector
sumof these normalized response vectors,which spanned values from
0 to 2, as it is usually done2,9. To test if a neuronwas direction selective,
we performed a shuffle test on the cells whose resulting vector sum
was bigger than 0.5, randomly permuting the direction labeling of
every DG trial, and calculating the shuffled vector sum 1000 times for
the null distribution. We set a threshold p-value of 0.05 and we
obtained in this manner 91 inverting cells out of 664 (14%). We
obtained further confirmation of our cell typing above by corrobor-
ating that the detected cells with this method belonged to the direc-
tion selective groups reported obtained (groups ‘DS’, Baden et al.2).

Ganglion cell modeling criteria
For the 4 mice retinas and 2 axolotl retinas where the set of unper-
turbed images was presented, we selected the cells to be modeled
under the following criteria: a) they did have a classical STA, b) for
mouse recordings,whether their STAwas stable across the experiment
(assessed by repeating the checkerboard stimuli at the end); c) the
spiking responses across the unperturbed, repeated images were
stable. To assess stability, we used the criterion of Cadena et al.13 and
discarded the neurons that showed a ratio of explainable-to-total
variance smaller than 0.10.Wewere able tomodel 90 cells inmice and
50 cells in axolotl.

Linear-nonlinear model (LN)
We implemented a regularized LNmodel. This model is fitted for each
neuron separately and consists of: 1) a linear filter of weights wij that
compute a dot product with the input images (where i and j index
space), 2) a pointwise nonlinear function fθ that converts the filter
output into a non-negative spike rate, and c) a Poisson noisemodel for

training. We chose fθ to be a parametric softplus function such that
f θ xð Þ=αln 1 + exp βx + γð Þð Þ, where θ = {α, β, γ}. The spiking rate r of a
neuron given an input image X follows as: r(X) = fθ (∑ijwijxij), where
X = xij.

Regularization. two types of regularization were applied: a) L1 reg-
ularization to induce sparsity: LL1 =

P
ijW ijV ; b) Laplacian regulariza-

tion to induce smoothness: L4 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ijðW *4Þ2ij
q

where W =wij

and Δ= 1
4

1 2 1
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Convolutional neural network model (CNN)
The first layer of the CNN model was a convolutional layer with four
two-dimensional convolutional kernels, where the filters were learned
from the data. For each experiment, the four kernels were common to
all themodelled cells. The second layer was composed of one filter for
each cell followed by a non-linearity. The weights of each of these
filters were factorized in a two-dimensional spatial mask and a vector
of feature weights (with one weight for each of the features extracted
by the first layer) to decrease the number of model parameters, fol-
lowing previous work12,13.

The model is composed of: a) convolutional kernel weights krsk

that compute convolutions with the input images (where r and s index
the single kernel spatial dimensions and k indexes kernels), b) point-
wise nonlinear functions f θk 1½ � that convert the convolutional outputs
into non-negative activation values. And in addition, for each neuron n:
c) readoutweightswijkn whichcanbe factorized aswijkn =uijnvkn where
i and j index space, uijn represent the spatial weights and vkn the fea-
ture weights, d) a pointwise nonlinear function f θn 2½ � , and e) a Poisson
noise model for training. We choose f θk 1½ �and f θn 2½ � to be softplus
functions. The functions f θk 1½ � only had the parameter δ and f θn 2½ � had
no parameters and were used like smoothed ReLus.

The outputs of the kth unit of the first layer were:
Ak = f θk 1½ � Kk* X

� �
. The spiking rate rn of the nth neuron given an input

image X was: rn Xð Þ= f θn 2½ � ðPk

P
ijuijnvknAijkÞ. Additionally, batch nor-

malization was applied to the outputs of the first layer.

Regularization. We used a Laplacian regularization on the convolu-
tional kernels of the first layer, and we used L1 regularization on the
spatial weights and on the feature weights of the second layer such

that: L4 =
P

k

P
rs
ðKrsk *4Þrs

ε+
P

rsk
ðKrsk Þ2

andLL1 = λsp
P

ijn∣uijn∣+ λf
P

kn∣vkn∣with ε = 10−8.

Model training and cross-validation
Model fitting. Considering the n recorded image-response pairs
X 1,y1
� �

, . . . , Xn,yn
� �

, the resulting loss function is given by:

L= 1
n

Pn
k = 1r Xk

� �� yklogr Xk

� �� �
+ LL1λL1

+ λ4LΔ where the first term

corresponds to the negative log-likelihood of the Poisson loss and
where λL1 and λΔ are the hyperparameters which control the impor-

tance of the Laplacian and L1 regularization terms.
We fitted the model by minimizing this loss using the Adam

optimizer on the training set. The training set was composed of 2910
natural images and the associated responses (i.e., number of spikes
elicitedbetween the 30msand 350ms after the onset of theflash). The
batch size was fixed to 64. We used a learning rate initially equal to
0.001 and added a decay. In addition, we used early stopping. These
two mechanisms prevented overfitting.

We cross-validated the hyperparameters λL1 andλ4 for each neu-
ron independently by performing a random search. The optimal
hyperparameter values where the ones whose model produced the
lowest loss value (without regularization terms) on the validation
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dataset. When fitting models with different hyperparameters, we used
the same split of data for training, validation, and testing across
models.

Model evaluation. To evaluate the performance of the models, we
used a testing set of 30 different stimuli where each stimulus has been
repeated 30 times for mice or 20 times for axolotl. These repetitions
allowed to separate prediction error in two parts: the error due to the
limitations of the model and the error due to the intrinsic noise in the
response.

Given n responses to the same stimulus, y1, . . . ,yn, we averaged
them over odd and even numbered trials to get two estimates of the
actual mean response, �y0 and �ye. We defined the reliability as the
correlation between these estimates, r�y0,�ye . Then, given the prediction

of one model, ŷ, we estimated the noise-corrected correlation:

rnc =
1
2 rŷ,�y0 + rŷ,�ye

� �
ffiffiffiffiffiffiffiffiffi
r�y0,�ye

p as introduced by Keshishian et al.27. We reported as

model performance the corresponding noise-corrected R-

squared, R2
nc = r

2
nc.

LSTAprediction. Given amodel which predicts the firing rate r Xð Þ of a
neuron in response to image X , we predicted the LSTA with:

LSTA Xð Þ= ∂r Xð Þ
∂X = ∂r Xð Þ

∂xij

� �
, the gradient of themodel outputwith respect

to the input image. This quantity is also referred to as the data
Jacobian matrix32. Since all our models were implemented with
TensorFlow33, we took advantage of automatic differentiation to cal-
culate the LSTAs.

Vector field analysis
To understand the relationship that a ganglion cell presents between
the reference images and their corresponding LSTAs, we used theCNN
model to predict for each modelled cell the LSTAs for 2910 images in
our dataset. A principal component analysis was made on these pre-
dicted LSTAs on a cell by cell basis to obtain a two dimensional space
composed by the two first principal components (PCA1 and PCA2). We
projected each image as a point in the space defined by these two
components, by calculating the dot product between the image and
the two components. For each image we also made the projection of
their corresponding LSTA. This produced a vector field for each cell.
To ease the visualization of the vector field, the projection space was
binned and the images and LSTAs falling inside each binwere averaged
to be represented by a single point (the projected image) and arrow
(the corresponding LSTA).

Simple contrast model
A simple contrastmodel was produced by assuming that the firing rate

of the cell was given by: rðIÞ / P
ijaijðlij � l0Þ2, where r Ið Þ is the firing

rate of a cell responding to the image I,lij are pixel values of the image,

l0 is a reference value of these pixels against which the contrast is
calculated, and αij is a set of weighting parameters that should deter-
mine the contribution of each pixel. To reduce the number of para-
meters, insteadof fitting one αij for each lij , we assumed theweights to

be distributed as a 2D gaussian fαijg=A* N X � μð Þ�R θð Þ, σð Þ with X =
(x,y), µ = (x0,y0), σ = ðσx ,σyÞ and where R is the rotation matrix. The

parameters γ = fx0,y0,σx ,σy,θ,A,l0g were fitted to the data. The fit was
made through gradient descent so as to make the contrast model
reproduce as well as possible the LSTAs predicted by the CNN (black
arrows in Fig. 4e, f).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
A minimum dataset (data from one example mouse experiment)
generated in this study has been deposited in the Zenodo database at
the link https://zenodo.org/record/6868362#.YtgeLoxBxH4. Due to
the size of the full dataset, it has not been entirely uploaded in a public
repository. Authors are happy to share it upon request. Also, Source
data for the figs. panels 1e, f, g, 2b, e, 3e, 4g are provided with this
paper. Source data are provided with this paper.

Code availability
Modeling package is at https://gitlab.com/samuele_virgili/retina_
modelling_2. The rest of the analysis code is available at https://
github.com/samuelevirgili/Context-dependent-selectivity-to-natural-
images-in-the-retina.
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