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Ischemia-reperfusion injury occurs when blood supply to an
organ is disrupted—ischemia—and then restored—reperfu-
sion—and is commonly found under different pathological set-
tings such as cerebral, myocardial, renal, and hepatic ischemia-
reperfusion injuries. Despite apparent differences as to the
cause of these diseases, emerging evidence suggests that com-
mon signaling pathways, such as exosomes and microRNAs
(miRNAs), are involved in this context. Although miRNAs
are also found in the extracellular milieu, plenty of miRNAs
are found in exosomes and are thus protected from degrada-
tion. miRNAs selectively sorted into exosomes potentially regu-
late specific aspects of the onset and progression of ischemic
stroke. Such mechanisms involve the regulation of cell survival,
inflammation, angiogenesis, and neurogenesis. Likewise, miR-
NAs shuttled into exosomes are involved in the pathogenesis of
myocardial, renal, and hepatic ischemia-reperfusion injuries.
This review will discuss recent evidence on the exosome-facili-
tated progression of four ischemia-reperfusion conditions,
particularly concerning miRNAs within these vesicles. The
notion is given to miRNAs participating in more than one of
the four conditions, indicating a considerable degree of overlap
across ischemia-reperfusion conditions. We will conclude the
review by highlighting clinical opportunities of such exo-
some-derived miRNAs both as biomarkers and as therapeutic
targets.

INTRODUCTION
Ischemia-reperfusion injury is a complex pathological process that
begins with tissue anoxia and is accompanied by the production of
free oxygen radical-induced inflammatory responses.1 Ischemia pro-
motes intracellular and mitochondrial calcium levels via impairing
ATPase-dependent ion transport and reducing intracellular pH
impair cell volume regulatory mechanisms, further leading to the lysis
of organelle and plasma membranes.2,3 Although it salvages the deliv-
ery of oxygen and substrates required for aerobic ATP generation and
normalizes extracellular pH, reperfusion itself tends to be related to
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detrimental consequences by inducing paradoxical tissue responses,
endoplasmic reticulum (ER) stress, and postischemic capillary no
reflow, which amplify ischemic tissue injury.2,3 Among these condi-
tions, cerebral, myocardial, renal, and hepatic ischemia-reperfusion
injuries are eminent players since they continue to be among the
most frequent causes of debilitating disease and death in medicine.2

Although noticeable pathophysiological discrepancies exist, the
gene responses to ischemia-reperfusion in these four disorders
show a high degree of similarities, such as protein-coding RNAs
and non-coding RNAs (ncRNAs). The emerging recent evidence re-
veals that the common signaling pathways, exosomal-derived micro-
RNAs (miRNAs/miRs), the most common ncRNAs, as an essential
means of intercellular communication, have attracted considerable
interest in this context. Exosomes are lipid bilayer-enclosed spheres
that serve as the bridges for a critical role in transferring mem-
brane-bound proteins, lipids, and ncRNAs from donors to recipient
cells.4 miRNAs are small endogenous ncRNAs that regulate gene
expression posttranscriptionally by functioning as endogenous nega-
tive gene regulators.5,6 Interestingly, as essential components, miR-
NAs are selectively enriched into exosomes, and miRNAs shuttled
in exosomes can exert biological functions to regulate specific aspects
of onset and progression of ischemia-reperfusion injury.7 Owing to
aberrantly expressed after ischemia, exosomal miRNAs are revealed
to serve as a potential source of biomarkers and novel therapeutic
The Author(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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targets.8–10 This present review is meant as a summary of the latest
literature concerning the role of exosome-related miRNA contents
in the progression of cerebral, myocardial, renal, and hepatic
ischemia-reperfusion injuries. Aspects regarding the cellular and sub-
cellular source of exosomal miRNAs, their cellular targets, and biolog-
ical effects are assessed, with a particular emphasis on the potential as
biomarkers and therapeutic targets.

BRAIN, HEART, LIVER, AND KIDNEY ARE EMINENT
PLAYERS FOR ISCHEMIA-REPERFUSION INJURY
WITH A TIGHT INTERACTION: DYSFUNCTION
FOLLOWING ISCHEMIC STROKE
Ischemic stroke is an acute cerebrovascular disease characterized by the
sudden interruption of blood supply and oxygen, followed by subse-
quent restoration of blood flow and reoxygenation in a singular part
of the brain, contributing to severe disability and death.11 Myocardial
ischemia-reperfusion injury in acute myocardial infarction is the most
important cause of morbidity and mortality worldwide.12 Renal
ischemia-reperfusion occurs in artery stenosis, partial nephrectomy,
andmost commonly during kidney transplantation, causing severe con-
sequences or organ dysfunction and, as a result, yielding renal failure
and ultimate death.13 Hepatic ischemia-reperfusion injury is a signifi-
cant complication often seen in liver surgery and transplantation.14

Despite cerebral, myocardial, renal, and hepatic ischemia-reperfusion
injuries involving diverse pathophysiological processes with respective
organs, these four pathological settings have the common feature that
is among the most frequent causes of debilitating disease and death
globally. Additionally, since brain damage can modify the autonomic
and neurohormonal pathways involved in the control of myocardial,
renal, and hepatic function, patients affected by ischemic stroke are
incredibly vulnerable to severe adverse events on these organs.

Brain-heart interaction: Myocardial dysfunction following

ischemic stroke

Broadly, since brain damage can regulate the autonomic and neuro-
hormonal pathways associated with the modulation of heart function,
ischemic stroke in acute phase-induced myocardial dysfunction are
highly vulnerable to mortality, lifelong cardiac failure, or mild and
recoverable injury, which are tightly related to the severity of the
ischemic stroke and neurological deficits.15 As such, impaired
myocardial dysfunction because of severe ischemic stroke is a predic-
tor of worse functional outcomes and secondary complications.16

Following acute ischemic stroke, in the first 24 h, 60%–85% of pa-
tients indicate an electrocardiographic abnormality.17 During the first
3 months, 19% of patients with ischemic stroke have at least one se-
vere cardiac adverse event, 28.5% uncover impairment of left ventric-
ular ejection fraction, and 13%–29% induce systolic dysfunction.17

The pathophysiological mechanisms by which ischemic stroke leads
to myocardial dysfunction remain unclear. Leading mechanisms pri-
marily involve the hypothalamic-pituitary-adrenal axis,18 immune re-
sponses,19 inflammatory responses,19 gut dysbiosis,20 and other risk
factors.21 (Figure 1) Regardless of the mechanisms, myocardial
dysfunction (such as atherosclerosis and atrial fibrillation) increases
the risk of developing acute ischemic stroke, and vice versa, acute
ischemic stroke induces a variety of pathways as aforementioned,
therefore accelerating patients to develop a myocardial dysfunction.23

Brain-kidney interaction: Renal dysfunction following ischemic

stroke

Ischemic acute kidney injury (AKI) is a worldwide problem related to
promoting morbidity and mortality and can be considered a systemic
inflammatory condition that forms within a few days or even hours.
A meta-analysis of 12 studies and 4,532,181 patients who had an acute
ischemic stroke provided evidence that AKI is a common complication
following acute ischemic stroke, with a pooled prevalence incidence of
12.9% of cases suffering AKI.24 This is associated with increased mor-
tality following acute ischemic stroke. Tsagalis et al.25 retrospectively
recorded the data of patients hospitalized for a first-ever stroke and
indicated that approximately 28%ofpatients developedmoderate or se-
vere renal dysfunction, defined as glomerular filtration rate %60 mL/
min/1.73 m2. Additionally, among Hispanic patients who had a stroke
(90% of patients had an ischemic stroke), 62.5% showed an AKI.22 The
AKI rate varies widely due to the inconsistentAKI-defining criteria and
coding definitions. Mechanically, the central mechanisms of stroke-
induced renal dysfunction may involve the central autonomic network
and sympathetic nervous system;22 the peripheral mechanisms include
the regulation of immune responses, autoregulation, and the neuroen-
docrine system,with the help of releasing exosomes.22 (Figure 1)Never-
theless, growing evidence suggests that patients with renal dysfunction
have a graded and independent inverse impact on ischemic stroke, with
a higher thrombotic complication.26 Renal dysfunction can exacerbate
stroke pathogenesis and worsen recovery outcomes.26

Brain-liver interaction: Hepatic dysfunction following ischemic

stroke

In patients with cerebrovascular disease and/or stroke, the prevalence
of hepatic dysfunction is unknown since only a few data about the
prevalence of hepatic dysfunction in these patients have been pub-
lished. Kim and colleagues investigated 295 patients admitted with
acute ischemic stroke compared with 1,942 control subjects, and
they indicated that a greater proportion of the stroke group had signif-
icant liver fibrosis (>8 kPa) (9.2% versus 1.8%, p < 0.001), as well as a
higher severity of fibrosis (odds ratio [OR] = 1.268).27 In a preclinical
study, ischemic stroke can induce an immune response. In the liver, the
TUNEL+ apoptotic cells, Iba1+ macrophages, CD68+ macrophages,
Ki67+ proliferating cells, and interleukin-10 (IL-10)+ anti-inflamma-
tory cells increased and that of CD8a+ T cells decreased after middle
cerebral artery occlusion (MCAO).28 Interestingly, an immune-medi-
ated interaction pathway in experimentally caused liver inflammation
whereby, activate resident immune cells in the brain (i.e., the micro-
glia) is demonstrated, peripheral circulating monocytes transmigrate
into the brain, resulting in the development of sickness behaviors.29

EXOSOME AND miRNA
Exosome: Biogenesis and characteristics

The exosome, with a size of approximately 30–150 nm, is one of the
three terminologies (based on their diameter size) of membrane-
bound extracellular vesicles (EVs).30,31 Four primary processes,
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Figure 1. Role of central autonomic network and systemic inflammation in mediating renal and cardiac dysfunction after ischemic stroke

(A) Ischemic stroke activates the hypothalamic-pituitary-adrenal axis, sympathetic nervous system, and the renin-angiotensin-aldosterone system, which regulate hormone

and neurotransmitter release, thus resulting in kidney dysfunction. (B) Release of inflammatory factors by injured brain cells and increased oxidative stress can cause blood-

brain barrier disruption, stroke-induced gut microbiome dysbiosis can transfer bacterial and endotoxin translocation to the blood, and the spleen can activate the immune

cell, thereby leading to systemic inflammation. Systemic inflammation is central in promoting renal and cardiac dysfunction after stroke. (C) Ischemic stroke-induced

activation of the hypothalamic-pituitary-adrenal axis and autonomic activation can alter the release of adrenal catecholamines and neural catecholamines, thus resulting in

cardiac dysfunction. This image is adapted from a previous study22 published under the Creative Common attribution license.
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including initiation, endocytosis, multivesicular body (MVB) forma-
tion, and secretion of intraluminal vesicles (ILVs), are involved in the
formation of exosomes.32 The first invagination of the plasma mem-
brane occurs during endocytosis, which induces the cell membrane to
sag inward to form an early endosome’s de novo formation, accumu-
lating ILVs in the lumen.33 Early endosomes tend to mature, leading
to the formation of MVBs when a part of the endosomal membrane
invaginates and buds into its lumen.34 After that, MVBs either come
to the plasma membrane to release ILVs (called exosomes) into the
extracellular space or fuse with the lysosome for degradation or auto-
phagosomes to deliver cargos.32,35 The formation of MVBs and ILVs
is a tightly regulated process, and the most exhaustive mechanism is
the endosomal sorting complex required for transportation (ESCRT)-
independent or -dependent pathway.36 After release, exosomes can be
extracted via ultracentrifugation with 100,000–200,000 � g. Consid-
erable protein markers have been revealed to characterize exosomes,
such as CD63, CD9, CD81, ALIX, TSG101, and others.37,38 As
mentioned, exosomes contain a variety of molecular cargos from
902 Molecular Therapy: Nucleic Acids Vol. 29 September 2022
the donor cells, e.g., RNAs, ncRNAs, DNAs, lipids, and metabolites,
which determine the structures, biological properties, and functions
of exosomes.

miRNA: Biogenesis and characteristics

The emerging evidence demonstrates that ncRNAs play a vital role in
regulating gene expression and contribute to numerous disorders.39

miRNAs, one type of ncRNAs, are much earlier reported (first discov-
ered in Caenorhabditis elegans) and the most discussed, with approx-
imately 18–24 nucleotides in size. It is a family of posttranscriptional
gene repressors that has appeared throughout the biology kingdom
and have been widely related to the regulation of gene expression
by combining with the 30 untranslated region of the target mRNA
sequence, suppressing the mRNA level.40 miRNA biogenesis is initi-
ated by transcription of these miRNA-coding loci by RNA polymer-
ase II,41 as consensus knows, in turn, to form plenty of nucleotide long
stem-looped hairpin primary precursors for miRNA. These are
known as primary miRNA transcripts or pri-miRNAs,42 which
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Figure 2. The brief sorting mechanism of exosomal miRNA and uptake by recipient cells

The biogenesis of miRNA involves transcription of a pri-miRNA, formation of pre-miRNA, translocation to the cytoplasm, and maturation of the miRNA. miRNAs containing

different RNAmotifs can be loaded intomultivesicular bodies (MVBs) via different RNA-binding proteins. MVBs can either follow a degradation pathway fusing with lysosomes

or release the intraluminal vesicles as exosomes to the extracellular space. Recipient cells can uptake exosomal miRNAs by three pathways: direct fusion, endocytosis, and

receptor signaling.
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further yield a 70–100 nucleotide long pre-miRNA with the help of
Drosha and DCGR8 and then are transported to the cytoplasm via ex-
portin 5 and RAN-GTP.5 Thereafter, the pre-miRNA can produce an
RNA complex (the miRNA and related passenger strand), which is
then loaded into an RNA-induced silencing complex, of which the
major effector is Ago2. Finally, Dicer, a double-stranded-specific
RNaseIII enzyme, cleaves double-stranded RNA and cuts the pre-
miRNAs into 20–23 nucleotide duplexes, which remain bound to
Ago2.43

miRNA loading into exosomes and uptake by recipient cells

Although the miRNA cargos in exosomes, to some extent, present the
transcriptomes of various cells, the miRNA profiles derived are sub-
stantially different from those originating from their cells of origin,
revealing that numerous miRNA species are selectively encapsulated
into exosomes.44 Various attempts have been performed to illustrate
the mechanisms of loading and sorting miRNA into exosomes.
Several pathways for loading miRNAs into exosomes are described.
The first one is the sphingomyelinase 2-dependent pathway, which
is the first molecule revealed to be associated with miRNA loading
into exosomes. The overexpression of sphingomyelinase 2 promotes
miRNAs’ sorting into exosome, whereas the inhibition of it shows a
contrary result.45 The second pathway is from the inherent structure
of miRNAwith a 30 end adenylation and uridylation, which is vital for
the recognition by AGO2. miRNAs with an adenylated 30 end are pre-
dominantly uncovered in cells, whereas miRNAs with a uridylated 30

end are sorted in exosomes, as demonstrated in RNA sequencing
research on human B cells and the related exosomes.46 The third
Molecular Therapy: Nucleic Acids Vol. 29 September 2022 903
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sorting pathway involves the sumoylated heterogeneous nuclear ribo-
nucleoprotein (hnRNP; mainly including hnRNPA2B1, hnRNPA1,
and hnRNPC)-dependent pathway via binding to miRNAs and facil-
itating the loading of miRNAs into exosome.47 The fourth pathway is
the miRNA-induced silencing complex (miRISC)-associated
pathway. The miRISC is mainly composed of miRNA, miRNA-
repressible mRNA, GW182, and AGO2. The RNA-binding protein
mediates the last sorting pathway. SYNCRIP selectively sorts miRNAs
and has a 4-nucleotide motif near the 30 end, independently of
hnRNPA2B1.48 Y-box protein 1 can selectively sort miR-223 into
exosomes in HEK-293T cells.49

After intracellular loading of miRNA into exosome and binding to the
region of their cells’membrane and through plasmamembrane fusion,
ultimately achieving miRNA-containing exosomes release, three po-
tential modes for the uptake of exosomal miRNA are reported. These
include the following. (1) Targeting the recipient cells’ surface directly
and merging with the cell membrane. (2) Internalizing through endo-
cytic mechanisms, with an association of clathrin- or caveolae-regu-
lated endocytosis, phagocytosis, or macropinocytosis.50 Of note, as a
prominent role, however, phagocytosis and macropinocytosis can
transmit miRNAs to the lysosome for degradation. After successful up-
take, the generation of functional proteins from exosome-derivedmiR-
NAs in recipient cells was negligible,44 revealing that endosomal escape
is vital for miRNA function and that exosome has a natural function of
endosomal escape without a precise mechanism so far. (3) The miR-
NAs docking in exosomes can be assimilated by recipient cells by
directly targeting the corresponding cytomembrane receptors, which
subsequently activate or inhibit interrelated signaling pathways.51

These different kinds of receptors could be manipulated on the surface
of the exosome to increase their uptake. For instance, targeting the hep-
aran sulfate proteoglycans on the cytomembrane promoted the uptake
of exosomes derived from the tumor by endocytosis,52 and various in-
tegrin receptors can increase the selective uptake of exosomes by
certain specific tumors such as breast and ovarian.44 In addition, the
interaction of T cell immunoglobulin and mucin domain-containing
protein 4 molecules with phosphatidylserine on exosomal membranes
can also increase the intake of exosomes as well as the miRNAs loading
in exosomes.53 A brief overview so as to how the communication be-
tween cells via exosomal miRNAs is presented in Figure 2.

ROLES OF EXOSOMAL miRNAs IN ISCHEMIC STROKE
The role of exosomal miRNAs derived from brain-derived cells

Neurons and neurogliocytes (oligodendrocytes, astrocytes, microglia)
are vital players in maintaining the homeostasis of the microenviron-
ment. Upon a stroke condition, ischemia and reperfusion can result in
anaerobic metabolism and develop the release of pro-inflammatory
cytokines from neurogliocytes and neurons, promoting neuroprotec-
tion or further neurotoxicity within the brain ischemia area.54 Neuro-
gliocytes, which survive after ischemia and play a key role in response
to ischemia, are the primary components of the peri-lesions environ-
ment and have been implicated in poststroke immune modulation.55

An ongoing ischemic insult, excitotoxicity stress neurons, and inflam-
mation through releasing “find-me” signals (e.g., ATP), exposing
904 Molecular Therapy: Nucleic Acids Vol. 29 September 2022
“eat-me” signals (e.g., phosphatidylserine), and binding to opsonin
can induce neurogliocytes (e.g., microglia) to phagocytose such neu-
rons.56 Activation of these cells elicits the release of plentiful potential
exosomes into the extracellular space, further boosting function in
neurovascular repair, inflammatory regulation, and cell preservation.
Additionally, specific types of exosomal miRNAs act as neuroprotec-
tive players under ischemic conditions through interaction with the
effects downstream.

Microglia, the principal immune cells of the brain, are immediately acti-
vated andmigrate toward the location of the lesion after ischemia.57Mi-
croglia exacerbate brain damage or support endogenous brain repair,58

correlating with distinct phenotypes, as indicated by the pro-inflamma-
tory M1 and the anti-inflammatory M2 types.59 Exosomal miRNAs
(miR-124,60,61 miR-26a,60 miR-137,63 miR-424-5p61) derived frommi-
croglia are involved in supporting neuronal survival, angiogenesis, and
neurological recovery and inhibiting glial scar formation. For example,
exosomal miR-124 released fromM2microglia (such as IL-4-polarized
microglia) unregulated after stroke in the penumbra region exerts neu-
roprotection via increasing neural survival and attenuating neural def-
icits, apoptosis, and glial scar formation.62,63 miR-26a andmiR-13762,63

similarly shuttled in M2 exosome and increased angiogenesis by pro-
moting endothelial cell tube formation and neurological recovery via
attenuating neuronal apoptosis, respectively. In contrast, miR-424-5p
from hypoxic microglia induces significant brain microvascular endo-
thelial cell damage by modulating the FGF2/STAT3 pathway.61

As such, normoxic (miR-17-5p,64 miR-34c,65 miR-361,67 miR-
190b66) and hypoxic (miR-92b-3p,67 miR-7670-3p,67 miR-29a68)
astrocyte-derived exosomal miRNAs have been uncovered to
improve neuronal survival and poststroke functional recovery and
inhibit inflammation. Concerning neuronal survival, exosomal miR-
NAs, such as miR-92b-3p and miR-361,67,69 can not only directly
promote neuronal viability but also those such as miR-7670-3p67

and miR-190b66 indirectly inhibit autophagy and apoptosis-induced
cell death. Regarding neuroinflammatory regulation, exosomal
miRNAs can suppress inflammation both in vitro and in vivo (miR-
17-5p,64 miR-29a68). The regulation of poststroke functional recovery
seems to be broader, as indicated by the improvements in scores of
various neurological functions.67,69

Cortical neurons, as well, can release exosomes from their somato-
dendritic compartments to modulate poststroke immune response
(such as inflammation) and vascular remodeling (such as vascular
integrity) via further secreting miRNAs. Exosomal miR-181c-3p
derived from cortical neurons exerts protective effects on astrocyte
neuroinflammation via downregulation of CXCL1 using an MCAO
rat model.70 Additionally, neurons can transfer miR-132, a highly
conserved and neuron-enriched miRNA, via secreting exosomes to
endothelial cells to maintain brain vascular integrity by monitoring
the expression of vascular endothelial cadherin.71

Endothelial cells, the eminent cellular component of the blood-brain
barrier (BBB), develop the interface between circulating blood and
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CNS to maintain homeostasis by transferring exosomal miRNAs. For
example, brain endothelial cell exosomes improve functional motor re-
covery and are pivotal for altering synaptic plasticity and function via
transmitting miR-126-3p specifically, whereby they promote neurite
outgrowth and suppress PC12 cell apoptosis.72 Axonal application of
exosomes significantly elevates miRNAs that promote axonal growth
via inhibiting proteins in distal axons and parent somata. Mechanisti-
cally, they alter axonal growth by regulating miR-19a, miR-27a, miR-
195, and miR-298.73 In serum exosomes of patients who have had
acute ischemic stroke, they play a crucial role in regulating cell survival
and neuroinflammation by altering subtypes of microglia. Moreover,
they have the potential to exert or enhance these effects via transmit-
ting miR124-3p,74 miR-126,76 and miR-27-3P.75

The role of exosomal miRNA derived from mesenchymal stem

cells (MSCs)

MSC-derived exosomes are emerging to be an appealing therapeutic
tool for ischemic stroke, with the MSC-derived properties and the
characteristics of effortless storage, lower immunogenicity, higher
safety profile, and nature delivery vehicles. Current research indicates
that MSC exosomes promote poststroke recovery due to their ability
to modulate the expression of recipient cell protein, alter cell proper-
ties involved in stroke, andmediate restorative effects, such as cell sur-
vival, inflammation, neurogenesis, and angiogenesis, via miRNA
transfer.

Cell survival

A great deal of miRNAs enveloped into MSC exosomes, such as miR-
1-3p, miR-22-3p, miR-25, miR-26a, miR-26b-5p, miR-31, miR-126,
miR-132, miR-138-5p, miR-146a-5p, miR-206, miR-223-3p, and
miR-542-3p, were demonstrated to improve neuronal, astrocytic, oli-
godendrocytic, and microglial survival by downregulating target
genes including KDM6B, p53, KLF9, CH25H, TRAF6, ACVR2B,
LCN2, TLR4, RMRP, or CysLT2R.38,76–87 Autophagy is also associ-
ated with the promotion of cell death via leading to cellular accumu-
lation of toxic metabolites or cellular self-degradation.88 Exosomal
transfer of miRNAs from MSCs can reduce cell death by inhibiting
excessive autophagy. For example, Kuang et al. illustrated that miR-
25-3p loading into MSC exosomes protected primary neurons
exposed to oxygen-glucose deprivation against injury by improved
autophagic flux.38

Inflammation and neurogenesis

Concerning inflammation and neurogenesis, similar to those
mentioned earlier, a total of 7 miRNAs, miR-26b-5p, miR-126,
miR-138-5p, miR-138-5p, miR-221-3, miR-223-3p, and miR-542-
3p, produced from MSC exosomes can suppress neuroinflammation
of neurons, microglia, and astrocytes via inhibiting CH25H, LCN2,
RMRP, ATF3, CysLT2R, and TLR4, further causing the downregula-
tion of the TLR4, SMAD2, IRAK1/TRAF6, and PI3K/Akt/mTOR
pathways.76–78,80,83,87 Transfer of miR-124 and miR-17-92 released
from MSC exosomes and miR-26a enveloped into exosomes derived
from urine stem cells can improve neurogenesis after stroke directly
or indirectly by HDAC6 downregulation.89–91
Angiogenesis

Likewise, in preclinical studies, angiogenic effects have been uncov-
ered for exosomes to mediate miR-181b and miR-210 transfer from
MSCs to brain microvascular endothelial cells, mechanistically,
through TRPM7 and TIMP3 downregulation and HIF1a, integrin-
b3, VEGF, and CD34 elevation.92,93 Additionally, Gregorius et al.94

evaluated the effects of MSC exosome on microvascular remodeling.
The results showed that exosomes from hypoxic, instead of normoxic,
MSCs improved endothelial proliferation, migration, and tube forma-
tion in vitro and accelerated microvascular densities, microvascular
length, and branching point densities in vivo.94 Of note, hypoxic con-
ditions altered a distinct set of miRNAs in MSC exosomes related to
angiogenesis, with three being increased (miR-126-3p, miR-140-5p,
let-7c-5p) and three decreased (miR-186-5p, miR-370-3p, miR-409-
3p), altogether suggesting that hypoxic preconditioning enhances
the restorative effects of MSCs via altering master gene levels of miR-
NAs enveloped into exosomes.94

More interaction effects and related molecular targets under ischemic
strokeare summarized inTable1andFigure3.38,63,65,67,69,70,74–87,89–93,95–102

ROLES OF EXOSOMAL miRNAs IN MYOCARDIAL
INFARCTION
Numerous researchers investigating various exosomal miRNAs re-
vealed a novel insight into crosstalk in ischemic stroke, as
mentioned above, and a vital role of miRNAs enveloped in exo-
somes in myocardial ischemia is also recognized.103–105 Given
that, at the incipient stage (24 h), a set of miRNAs, namely
miR-1, miR-21, miR-126, miR-146b, miR-208, and miR-9651, are
increased after myocardial infarction, whereas others, such as
miR-133, miR-195, and miR-320, are reduced.106,107 Exosomes, in
the meantime, could be taken up by neighboring or distant myocar-
dial cells, given their various targets, which they modulate by post-
transcriptional regulation of gene expression; miRNAs loaded into
exosomes are potent repair factors.108 There is increasing evidence
that miRNAs are selectively enriched in exosomes, exerting biolog-
ical functions via modulating specific aspects of myocardial ischemia
and, as such, participating in cardiomyocyte survival, cardiac func-
tional recovery, inflammatory responses, and angiogenesis,109–143 as
indicated in Table 2 and Figure 4 and further discussed in the
following sections.

Cell survival and cardiac functional recovery

Preclinical studies mimicking myocardial infarction found that exo-
somal miRNAs can improve hypoxic cardiomyocyte survival and
cardiac function recovery. As such, a series of miRNAs were shuttled
via exosomes, including miR-21, miR-98-5p, miR-25, miR-30e,
miR-125b, miR-126, miR-4732-3p, miR-146a, miR-185, miR-150-
5p, miR-210, miR-212-5p, miR-31, miR-486-5p, miR-338, and
miR-671, which, collected from MSCs, cardiac progenitor cells,
endothelial cells, endothelial progenitor cells, or patient serum, pro-
moted cardiomyocyte survival by downregulating miRNA targets
including PDCD4, FASL, TLR4, PTEN, LOX1, p53, BAK, or
SOCS2.112,114,117,118,120,123,124,127,129–133,137,138,140–142 In addition to
Molecular Therapy: Nucleic Acids Vol. 29 September 2022 905
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Table 1. Preclinical studies evaluating the effect of exosomal miRNAs in ischemic stroke

miRNA Expression Donor cell Recipient cell Exosome isolation Main function

miR-1-3p82 upregulation ucMSCs primary neurons ultracentrifugation
improve the cell viability and suppress
apoptosis of neurons

miR-17-9289 upregulation MSCs neurons, glial cells ultracentrifugation
improve neurological function and enhance
oligodendrogenesis, neurogenesis, and neurite
remodeling/neuronal dendrite plasticity

miR-22-3p81 upregulation ADSCs primary neurons ultracentrifugation
improve neuronal survival by promoting
the anti-apoptotic signaling cascade

miR-2538 upregulation ADSCs primary neurons ultracentrifugation
inhibit autophagic flux and protect
primary neurons from OGD injury

miR-26a84 upregulation ADSCs primary neurons ultracentrifugation
arrest neuronal damage by disrupting the KLF9-
mediated suppression on TRAF2/KLF2 axis

miR-26a90 upregulation USCs NSCs ultracentrifugation
promote both proliferation and neuronal
differentiation of NSCs

miR-26b-5p85 upregulation ucMSCs
SH-SY5Y, PC12,
primary microglia

ultracentrifugation
inhibit neuronal apoptosis induced by M1
microglia polarization following OGD

miR-27-3p75 upregulation patient serum BV2 microglia ultracentrifugation
aggravate cerebral injury, impede behavior
recovery, and promote microglia activation
and inflammatory cytokine expressions

miR-3186 upregulation ADSCs primary neurons kit
reduce infarct volume and neuronal
cell apoptosis after stroke

miR-34c65 upregulation ASs N2a ultracentrifugation
promote proliferation and inhibit apoptosis
of N2a cells stimulated with OGD

miR-92b-3p67 upregulation primary ASs primary neurons ultracentrifugation
attenuate OGD-induced neuron
death and apoptosis

miR-9895 upregulation primary neurons primary microglia ultracentrifugation
inhibit platelet-activating factor receptor-
mediated microglial phagocytosis to
attenuate neuronal death

miR-12491 upregulation BMSCs NPCs ultracentrifugation
ameliorate the brain injury by
promoting neurogenesis

miR-124-3p74 downregulation patient serum BV2 Kit
negatively correlate with serum proinflammatory
cytokines and the NIHSS and promote the
migration in LPS-induced BV2 microglia

miR-12463 upregulation BV2 primary ASs ultracentrifugation
attenuate glial scar formation and astrocyte
activation, proliferation, and migration and
promote astrocyte to neural progenitor transition

miR-12696 upregulation patient serum SH-SY5Y ultracentrifugation
regulate the cell cycle and promote ischemia/
hypoxia tolerance in neurons

miR-12697 upregulation ECs ECs, SMCs, ASs ultracentrifugation
increase axon and myelin density as well as
vascular density, arterial diameter, and vessel
patency, promoting M2 macrophage polarization

miR-12677 upregulation ADSCs neurons, ECs, BV2 ultracentrifugation
inhibit microglial activation and the expression
of inflammatory factors, improve functional
recovery, and enhance neurogenesis

miR-13279 upregulation BMSCs primary neurons ultracentrifugation
mitigate neuronal injury by targeting and
suppressing Acvr2b expression

miR-133b98 upregulation BMSCs neurons, ASs ultracentrifugation
increase axonal plasticity and neurite remodeling
and regulate the CTGF expression in astrocytes

miR-13499 downregulation BMSCs OLs ultracentrifugation suppress OL apoptosis

miR-135a-5p100 upregulation M2 microglia HT-22 ultracentrifugation
promote the proliferation and inhibit the
apoptosis of neuronal cells and the expression
of autophagy-related proteins

miR-137101 upregulation M2 microglia primary neurons ultracentrifugation
attenuate neuronal apoptosis, infarct
volume, and behavioral deficits

(Continued on next page)
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Table 1. Continued

miRNA Expression Donor cell Recipient cell Exosome isolation Main function

miR-138-5p76 upregulation BMSCs primary ASs kit
promote cell proliferation, inhibit apoptosis
of astrocytes injured by OGD, and reduce
the expression of inflammatory factors

miR-146a-5p80 upregulation ucMSCs BV2 microglia ultracentrifugation
reduce infarct volume, attenuate behavioral
deficits, and ameliorate microglial activation

miR-181b93 upregulation ADSCs BMECs kit
promote the angiogenesis of BMECs after
OGD via miRNA-181b/TRPM7 axis

miR-181c-3p70 downregulation primary neurons primary ASs kit
decrease the expression of CXCL1 and
inflammatory factors in astrocytes

miR-20682 upregulation ucMSCs primary neurons ultracentrifugation
improve the cell viability and suppress
apoptosis of neurons

miR-21092 upregulation BMSCs BMECs ultracentrifugation promote VEGF expression and angiogenesis

miR-221-3p83 upregulation BMSCs primary neurons ultracentrifugation

attenuate inflammation, pathological changes,
and apoptosis in MCAO mice brain tissues
and promote the viability and repress
apoptosis of OGD-treated neurons

miR-223-3p87 upregulation MSCs BV2 ultracentrifugation
reduce cerebral infarct volume, improve
neurological deficits, and promote learning
and memorizing abilities

miR-36169 upregulation primary AS PC12 ultracentrifugation
relieve nerve damage caused by ischemia
and suppress cell apoptosis

miR-542-3p78 upregulation MSCs HA1800 ASs ultracentrifugation
alleviate OGD-induced cell apoptosis,
ROS, and inflammation response

miR-1290102 upregulation ucMSCs primary neurons ultracentrifugation protect neurons by attenuating apoptosis

BMSCs, bonemarrow-derivedmesenchymal stem cells; OGD, oxygen-glucose deprivation;MCAO,middle cerebral artery occlusion; ECs, endothelial cells; SMCs, smoothmuscle cells;
ADSCs, adipose-derived stem cells; CTGF, connective tissue growth factor; ucMSCs, umbilical cord mesenchymal stem cells; KLF9, Kruppel-like factor; TRAF2, tumor necrosis factor
receptor (TNFR)-associated factor 2; OLs, oligodendrocytes; ASs, astrocytes; BMECs, brain microvascular endothelial cells; VEGF, vascular endothelial growth factor; USCs, human
urine-derived stem cells; NSCs, neural stem cells; NPCs, neural progenitor cells.
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the effect on cardiomyocyte survival, several miRNAs, namely miR-
24, miR-98-5p, miR-125b, miR-126, miR-133a-3p, miR-150-5p,
miR-338, miR-4732-3p, miR-31, miR-210, and miR-486-5p, loading
into exosomes from cardiomyocytes, MSCs, or endothelial cells were
identified to promote cardiac function recovery by promoting
cardiomyocyte survival, anti-inflammation, angiogenesis, or anti-
fibrosis.114,117,118,120,124,127,131,138,141,142 Suggestively, exosomal miR-
NAs play momentous roles in coordinating responses to cardio-
protective effects, i.e., by promoting cardiomyocyte survival and
cardiac functional recovery. Notably, not all miRNAs encapsulated
in exosome samples have a cardioprotective effect. Exosomal miR-
153-3p and miR-328-3p released from ischemic cardiomyocytes
and MSCs were identified to aggravate ischemic cardiomyocyte death
through ANGPT1 and VEGF/VEGFR/PIK/Akt/eNOS deactivation
and caspase-3 activation, respectively.128,136

Inflammation

Anti-inflammatory effects have been reported for exosomes to
mediate miR-671, miR-223, miR-98-5p, miR-126, miR-129, miR-
129-5p, and miR-146a transfer from MSCs and endothelial cells to
endothelial cells or cardiomyocytes, mechanistically, through
TGFBR2, SMAD2, NF-kB/P65, S100A9, TLR4, HMGU1, and ERG1
downregulation and PI3K/AKT activation.119,121,125,126,140,142 Herein,
MSCs can inhibit inflammation of heart muscle cells and endothelial
cells via suppressing inflammasome activation, a multiprotein com-
plex capable of cleaving and producing pro-inflammatory factors.

Angiogenesis

It has been uncovered that increasing the survival of cardiac endothelial
cells, ameliorating cardiac angiogenesis, and mediating the recanaliza-
tion of cardiac collaterals are great therapeutic targets. Secreted miR-
NAs encapsulated in exosomes derived from cardiomyocytes, MSCs,
cardiac progenitor cells, dendritic cells, or patient serum, including
miR-486-5p,138 miR-494-3p,139 miR-4732-3p,141 miR-210,109 miR-
322,135 miRNA-143,110 miRNA-21-5p,111 and miR-31,117 could pro-
tect against myocardial ischemia via promoting cardiac angiogenesis
and vascular regeneration, leading to accelerated blood flow to
ischemic myocardium. Some miRNAs, such as miR-210, play a role
via other effectors directly and indirectly. Overexpression of miR-210
in endothelial cells facilitates capillary-like structure formation and
VEGF-driven cell migration. Injection of miR-210 into the myocar-
dium demonstrated the increase of angiogenesis in cardiomyocytes
and vascular density in the area around the infarct with a 2-fold in-
crease in VEGF expression levels.109 For another, miR-210 promotes
angiogenesis after myocardial infarction via downregulating expres-
sion of EFNA3 protein and upregulating hepatocyte growth factor to
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Figure 3. The involvement of exosome-associated miRNAs in ischemic stroke

Different donor cells, namely neurons, microglia, astrocytes, endothelial cells, serum, and MSCs, can regulate recipient cells by transferring a set of exosome-associated

miRNAs, modulating biological behaviors including neuronal survival, inflammation, angiogenesis, and neurogenesis, therefore regulating ischemic stroke progression and

recovery.
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improve new ventricular remodeling, showing that miR-210 is indi-
rectly concerned by the process of angiogenesis.144,145 Importantly,
not all miRNAs encapsulated in exosome samples support angiogenic
effects. miR-143 and miR-145 derived from smooth muscle cells and
miR-208b derived from patient plasma can be transferred into endo-
thelial cells, further inducing endothelial cell death via mechanisms
that cause HKII, integrin-b8, or Bcl2 downregulation and CDKN1A,
FAK, RAF1, MAPK1, or Bax upregulation.125,143

ROLES OF EXOSOMAL miRNAs IN RENAL
ISCHEMIA-REPERFUSION INJURY
Ischemia-reperfusion injury is a primary cause of AKI that is linked to
high morbidity, mortality, and healthcare costs and for which no
effective prevention or management is available except for supportive
care in the practice of dialysis. After an ischemic insult in the kidney
and blood flow to the kidney, oxidative damage mediated by reactive
oxygen species develops various harmful cellular responses, inducing
inflammation, apoptosis, endothelial and tubular cell damage,
fibrosis, and acute renal dysfunction. These pathological processes
play an integral role in the initiation and extension of AKI; hence, in-
hibition is a potential therapeutic modality to relieve renal ischemia-
reperfusion injury. Similar to myocardial infarction and ischemic
stroke, due perhaps to the acute nature and severity of injury related
to AKI, a series of miRNAs, including miR-16, miR320, miR-101-3p,
908 Molecular Therapy: Nucleic Acids Vol. 29 September 2022
miR-127-3p, miR-210-3p, miR-126-3p, miR-26b-5p, miR-29a-3p,
miR-146a-5p, miR-27a-3p, miR-93-3p, and miR-10a-5p, are downre-
gulated in the serum of patients with AKI. In contrast, others
involving miR-494, miR-210, miR-21, miR-21-3p, and miR-192 are
upregulated at defined time points.146–150 Administration of several
cell-derived exosomes facilitates miRNA levels in ischemic kidney tis-
sue or serum. Similarly, most studies on AKI injury have previously
been performed using tissues or cells that were experimentally
exposed to renal ischemia and reperfusion,151–176 as described in Ta-
ble 3 and Figure 5 and emphasized in the following sections.

Cell survival and apoptosis

Among various cell death pathways, apoptosis, a category of pro-
grammed cell death, accounts for a large proportion of all death by
renal ischemia-reperfusion injury, mediated by a crowd of pro-
and anti-apoptotic factors promoted by extrinsic and intrinsic
pathways via the activation of death receptors and mitochon-
dria.177 A set of exosome-encapsulated miRNAs from various
donor cells can be taken into renal tubular epithelial cells and
result in efficient silencing or activating of mRNAs to regulate
apoptosis, further promoting renal tubular epithelial cell survival.
Nephroprotective effects were demonstrated for a great number
of exosomal miRNAs, namely miR-125b-5p,161 miR-146a-5p,163

miR-21,158,161 miR-20a-5p,151 miR-486-5p,172,173 miR-500a-3P,175
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Table 2. Preclinical studies evaluating the effect of exosomal miRNAs in myocardial infarction

miRNA Expression Donor cell Recipient cell Exosome isolation Main function

miR-21112 upregulation patient serum cardiomyocytes kit
reduce the infarct size and cell
apoptosis through PDCD4 downregulation

miR-21113 upregulation HEK293T cardiomyocytes and HUVECs ultracentrifugation
reduce PDCD4 expression and
attenuate cell apoptosis

miR-21-5p111 upregulation CTs HMVECs ultracentrifugation
suppress apoptosis and promote the
survival of HMVECs and angiogenesis

miR-24114 upregulation BMSCs cardiomyocytes and H9c2 ultracentrifugation
inhibit cardiomyocyte apoptosis and
improve myocardial function

miR-25-3p115 upregulation BMSCs cardiomyocytes ultracentrifugation reduce apoptosis and cytokine expression

miR-30e116 upregulation BMSCs cardiomyocytes ultracentrifugation
inhibit LOX1 expression, downregulate the
activity of the NF-kB p65/caspase-9
signaling, and ameliorate heart failure

miR-31117 upregulation ADSCs HMVECs ultracentrifugation
promote HMVEC migration and
tube formation by targeting FIH1

miR-98-5p142 upregulation BMSCs cardiomyocytes ultracentrifugation
suppress myocardial enzyme levels,
oxidative stress, inflammation response,
macrophage infiltration, and infarct size

miR-125b118 upregulation BMSCs cardiomyocytes ultracentrifugation
ameliorate cardiomyocyte apoptosis
and cardiac damage

miR-126119 upregulation ADSCs cardiomyocytes and EPCs ultracentrifugation
protect myocardial cells from apoptosis,
inflammation, and fibrosis and boost angiogenesis

miR-126120 downregulation ECs cardiomyocytes ultracentrifugation severe cardiac dysfunction and hypertrophy

miR-129121 upregulation HUVECs cardiomyocytes ultracentrifugation
downregulate TLR4 and disrupt the
NF-kB signaling and NLRP3 inflammasome
to protect against I/R injury

miR-129-5p122 upregulation BMSCs cardiomyocytes ultracentrifugation
decrease inflammatory cytokine
expression, apoptosis, and fibrosis

miR-132123 downregulation CPCs ECs ultracentrifugation
enhance tube formation via
downregulating RasGAP-p120

miR-133a-3p124 upregulation ucMSCs cardiomyocytes, H9c2, and HUVECs ultracentrifugation
promote angiogenesis, inhibit apoptosis,
reduce fibrosis, and preserve heart function

miR-143125 upregulation SMCs ECs ultracentrifugation
regulate angiogenesis by reducing the
proliferation index of ECs and their
capacity to form vessel-like structures

miR-143110 downregulation patient serum HUVECs ultracentrifugation
promote cell proliferation, migration,
and tube formation

miR-145125 upregulation SMCs ECs ultracentrifugation
regulate angiogenesis by reducing the
proliferation index of ECs and the capacity
to form vessel-like structures

miR-146a126 upregulation ADSCs cardiomyocytes and H9c2 ultracentrifugation suppress apoptosis and inflammatory response

miR-150-5p127 upregulation BMSCs cardiomyocytes ultracentrifugation
decrease Bax expression, alleviate pathological
changes of the myocardium, decrease apoptosis
rate, and improve cardiac function

miR-153-3p128 downregulation BMSCs H9c2 and ECs ultracentrifugation
reduce the apoptosis by promoting
ANGPT1 expression and VEGF/VEGFR2/
PI3K/Akt/eNOS pathway activation

miR-185129 upregulation BMSCs cardiomyocytes ultracentrifugation repress ventricular remolding by inhibiting SOCS2

miR-208b143 upregulation patient plasma HUVECs ultracentrifugation
suppress cell viability and migration and
promote cell apoptosis by regulating Bcl2 and
Bax and the FAK/MAPK1/Raf-1 pathway

miR-210123 downregulation CPCs cardiomyocytes ultracentrifugation
inhibit apoptosis by downregulating
ephrin A3 and PTP1b

(Continued on next page)
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Table 2. Continued

miRNA Expression Donor cell Recipient cell Exosome isolation Main function

miR-210130 upregulation BMSCs cardiomyocytes ultracentrifugation
increase cardiomyocytes viability, improve
heart function, and reduce cardiac fibrosis

miR-210131 downregulation BMSCs HUVECs ultracentrifugation improve angiogenesis and cardiac function

miR-212-5p132 upregulation BMSCs cardiomyocytes ultracentrifugation protect against cardiac fibrosis

miR-218-5p133 upregulation EPCs cardiomyocytes ultracentrifugation
promote CF proliferation and
inhibit myocardial fibrosis

miR-223134 upregulation ucMSCs HUVECs and H9c2 ultracentrifugation
facilitate angiogenesis of HUVECs, repress
inflammatory response and apoptosis, and
promote angiogenesis in cardiomyocytes

miR-322135 upregulation CPCs HUVECs ultracentrifugation
promote angiogenesis via the
upregulation of Nox2

miR-328-3p136 upregulation cardiomyocytes cardiomyocytes ultracentrifugation
promote the activation of the caspase
pathway and apoptosis

miR-338137 upregulation MSCs cardiomyocytes and H9c2 ultracentrifugation
inhibit H2O2-induced apoptosis and
improve cardiac function by regulating
MAP3K2/JNK signaling pathway

miR-363-3p133 upregulation EPCs cardiomyocytes ultracentrifugation
promote CF angiogenesis and inhibit
myocardial fibrosis

miR-486-5p138 upregulation BMSCs CFs and ECs ultracentrifugation
promote angiogenesis by downregulating
fibroblast MMP19 and increase the
potency of myocardial repair

miR-494-3p140 upregulation BMDCs CMECs ultracentrifugation
enhance tube formation and
promote angiogenesis

miR-671140 upregulation adMSCs cardiomyocytes ultracentrifugation alleviate fibrosis and cell apoptosis

miR-4732-3p141 upregulation MSCs
cardiomyocytes
and HUVECs

ultracentrifugation
induce angiogenesis and inhibit
myofibroblast differentiation and the
production of extracellular matrix

BMSCs, bone marrow-derived mesenchymal stem cells; LOX1, lectin-like oxidized low-density lipoprotein receptor-1; SOCS2, suppressor of cytokine signaling 2; adMSCs, adipose-
derived mesenchymal stem cells; HUVECs, human umbilical vein endothelial cells; TLR4, Toll-like receptor 4; NLRP3, NOD-like receptor 3; I/R, ischemia-reperfusion; ADSCs, ad-
ipose-derived stem cells; EPCs, endothelial progenitor cells; ucMSCs, umbilical cord mesenchymal stem cells; EGR1, early growth response factor 1; CFs, cardiac fibroblasts; ECs,
endothelial cells; HIF1, hypoxia-inducible factor-1; HMVECs, human microvascular endothelial cells; CPCs, cardiac progenitor cells; NOX, NADPH oxidase; MMP19, matrix metal-
loproteinase 19; BMDCs, bone marrow-derived dendritic cells; CMECs, cardiac microvascular endothelial cells; SMCs, smooth muscle cells; CTs, cardiac telocytes.
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miR-216a-5p,168 miR-199a-3p,165 miR-30,154 and miR-93-5p,153

which, collected from MSCs, urine-derived stem cells, hypoxic
myotubes, HK2, endothelial colony-forming cells, or serum
from patients and mice with AKI, protected tubular epithelial
cells from apoptosis by downregulating a set of miRNA
targets, namely p53, IRAK1, nuclear factor kB (NF-kB),
PDCD4/NF-kB, PTEN/AKT, PTEN, Sema3A, or DRP1, or acti-
vating several miRNAs downstream, including AKT and
ERK.151–153,156,159,161,163,165,168,172,173,175 In response to renal
ischemia-reperfusion injury, mitochondrial fission occurs and
can lead to apoptosis and necrosis, suggesting that it appears to
be important for the progression of the apoptotic pathway. Inter-
estingly, several exosomal miRNAs are involved in the regulation
of mitochondrial dysfunction associated with apoptosis. Cao
et al.167 indicated that MSC exosomes that accumulated in the
renal tubules during renal ischemia-reperfusion injury enhanced
mitochondrial functions by mechanisms that increased miR-
200a-3p expression as well as activated the Keap1-Nrf2 pathway.
Exosomal miR-30 and miR-20a-5p, respectively, from MSCs and
910 Molecular Therapy: Nucleic Acids Vol. 29 September 2022
hypoxic renal tubular epithelial cells protect against acute tubular
mitochondrial injury associated with apoptosis.151,152

Inflammation

Tubulointerstitial inflammation is a critical pathological feature of
AKI and triggers the evolution of interstitial fibrosis. Ischemia pro-
motes tubulointerstitial inflammation due to ischemic tubular
epithelial cells activating macrophages to promote tubulointerstitial
inflammation in the kidney. Exosomal miRNAs regulate inflamma-
tory responses through a set of miRNA targets. Hence, miR-93-5p,
miR-146a-5p, and hsa-miR-500a-3P transferred via exosomes from
MSCs, urine-derived stem cells, or serum from patients with AKI
repress inflammation activation in the ischemic kidney by downregu-
lating the miRNA target: the MLKL or IRAK1 that further repressed
NF-kB.153,163,175 Of note, importantly, not all exosomal miRNAs have
anti-inflammatory effects. Injection of the miR-374b-5p- and miR-
23a-enriched exosomes from hypoxic tubular epithelial cells into
mice renal parenchyma resulted in a high-level inflammatory
response and M1 macrophage activation.160,170 Hypoxia-inducible
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Figure 4. The involvement of exosome-associated miRNAs in myocardial infarction

The recipient cells can internalize various exosome-associated miRNAs released from different donors, which modulate various biological responses, including cell survival,

inflammation, angiogenesis, and fibrosis, thus regulating myocardial infarction progression and recovery. ADSC, adipose tissue-derived mesenchymal stromal cell.
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factor 1a (HIF-1a), a vital transcription factor, has been well-docu-
mented as an oxygen-sensitive regulator to orchestrate the protective
effect in response to ischemia. Interestingly, HIF-1a appears to
mediate the secretion of exosomal miR-23a derived from hypoxic
tubular epithelial cells via suppression of A20.160 Exosomal miR-21
derived from hypoxic myotubes can be integrated into renal tubular
epithelial cells and target the downstream PDCD4/NF-kB and
PTEN/AKT pathways, exerting anti-inflammation, whereas HIF-1a
siRNA injection reversed the observation.156 Taken together, the
HIF-1a-dependent release of miRNA-enriched exosomes is involved
in inflammation modulation.
Fibrosis

Renal fibrosis, a standard pathological change in the progression of
AKI to chronic disease, is characterized by myofibroblast activation
and interstitial extracellular matrix accumulation.178 Tubular epithe-
lial cells can employ exosomes to exert profibrotic effects on an
injured kidney through miRNA shuttling. Hence, miR-150-5p-,
miR-21-, and miR-150-containing exosomes from tubular epithelial
cells initiate the activation and proliferation of fibroblasts directly
or via the SOCS1 or PPARa/HIF-1a signaling pathway indi-
rectly.157,162,164 Additionally, a bilateral renal ischemia-reperfusion
model can induce an AKI in the early phase, accompanied by renal
fibrosis. In the meantime, urinary exosomal miRNAs, namely miR-
9a, miR-141, miR-200a, miR-200c, and miR-429, which share
Zeb1/2 as a typical target mRNA, are upregulated together, indicating
that they may be associated with developing renal fibrosis.155 In sum-
mary, tubular epithelial cell-released exosomal miRNAs can be a
promising candidate for therapeutic studies in either animal models
or further preclinical trials for alleviating progressive kidney fibrosis.
ROLES OF EXOSOMAL miRNAs IN HEPATIC
ISCHEMIA-REPERFUSION INJURY
Hepatic ischemia-reperfusion injury, a significant complication of
hemorrhagic shock, resection, and transplantation, has complex
pathophysiology, which involves the two interrelated local phases of
ischemia-induced cell damage and reperfusion-induced inflamma-
tion. As our knowledge of hepatic ischemia-reperfusion injury gets
deeper, current research on the pathogenesis and treatment has
already focused onmiRNAs. Notable miRNAs that are increased dur-
ing the pathogenesis of hepatic ischemia-reperfusion injury involve
miR-122, miR-450b, miR-155, miR-191, miR-370, miR-210, miR-
34, miR-297, miR-497-5p, and miR-128-3p, which, in turn, exag-
gerate ischemia-reperfusion injury via suppression of their target
genes,179–188 whereas others, namely miR-146a, miR-194, miR-140-
5p, miR-142-3p, and miR-9-5p, are reduced.189–193 Studies have
demonstrated the renal protective effects of specific miRNAs, namely
miR-20a, miR-1246, and miR-124-3p, which are highly expressed in
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Table 3. Preclinical studies evaluating the effect of exosomal miRNAs in renal ischemia-reperfusion injury

miRNA Expression Donor cell Recipient cell Exosome isolation Main function

miR-20a-5p151 upregulation HK-2 TECs ultracentrifugation
promote TECs’ proliferation and
improve mitochondrial functions

miR-21156 upregulation serum, C2C12 TECs ultracentrifugation
anti-inflammatory and anti-apoptotic effects
and attenuate sepsis-induced renal injury

miR-21157 upregulation senescent cells HPTCs ultracentrifugation
promote HPTCs’ phenotype transition
through enhancing HIF-1a signaling

miR-21158 upregulation BMDCs TECs ultracentrifugation promote BMDCs’ maturation

miR-21159 upregulation TECs kidney, heart, liver, and lungs ultracentrifugation
decrease apoptosis and reduce
proinflammatory cytokines production
in kidney, heart, liver, and lungs

miR-23a160 upregulation TECs macrophages ultracentrifugation
activate macrophages to promote
tubulointerstitial inflammation via
suppression of the ubiquitin editor A20

miR-30152 upregulation MSCs TECs ultracentrifugation
alleviate mitochondrial fragmentation
and DRP1 activation and inhibit
mitochondrial apoptotic pathways

miR-93-5p153 upregulation MSCs kidney tissue ultracentrifugation
inhibit apoptosis and inflammation, reduce
tissue damage, and promote renal function

miR-124-3p154 upregulation TECs HK2 cell ultracentrifugation
HPC EVs are more effective to attenuate
mice renal I/R injury than normoxic EVs

miR-125a155 upregulation rat kidney tissues NA kit biomarker

miR-125b-5p161 upregulation ucMSCs TECs and HK2 ultracentrifugation
attenuate the cell-cycle arrest and
apoptosis of TECs

miR-146a-5p163 upregulation USCs HK2 cell ultracentrifugation
reduce renal tubular injury and inhibit local
inflammation and oxidative stress in cells

miR-150162 upregulation TECs kidney interstitial fibroblast cells ultracentrifugation
initiate the activation and
proliferation of fibroblasts

miR-150-5p164 upregulation TECs kidney fibroblasts ultracentrifugation activate fibroblasts and aggravate renal fibrosis

miR-199a-3p167 upregulation BMSCs HK-2 cell ultracentrifugation
inhibit apoptosis, downregulate Sema3A,
activate AKT and ERK pathways, and
alleviate kidney ischemia injury

miR-199a-5p166 upregulation BMSCs TECs ultracentrifugation
amplify the suppression of ER stress
and further protect against I/R injury

miR-200a-3p167 upregulation MSCs TECs ultracentrifugation
suppress inflammatory response,
inhibit cell apoptosis, and regulate
mitochondrial structure and function

miR-216a-5p168 upregulation USCs HK-2 cell ultracentrifugation
induce apoptosis suppression
and functional protection

miR-218-5p169 upregulation kidney perfusate PBMCs ultracentrifugation
modulate immune responses
in transplant recipients

miR-351155 upregulation rat kidney tissues NA kit biomarker

miR-374b-5p170 upregulation TECs M1 macrophage ultracentrifugation
activate a high-level inflammatory
response and M1 macrophage reaction

miR-486-5p171 upregulation ECFCs ECs, TECs ultracentrifugation
prevent ischemic kidney injury by
targeting phosphatase and tensin
homolog and inhibiting ECs apoptosis

miR-486-5p172 upregulation ECFCs HUVECs ultracentrifugation
decrease PTEN, stimulate Akt
phosphorylation, and induce potent
functional and histologic protection

miR-486-5p174 upregulation ECFCs HUVECs ultracentrifugation
involve interaction of CXCR4
with endothelial cell SDF-1a

(Continued on next page)
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Table 3. Continued

miRNA Expression Donor cell Recipient cell Exosome isolation Main function

miR-486-5p173 upregulation ECFCs ECs ultracentrifugation inhibit apoptosis of ECs

miR-500a-3p175 downregulation patient serum TECs ultracentrifugation
suppress MLKL expression and attenuate
cisplatin-induced programmed cell death
and NF-kB-driven renal inflammation in ECs

miR-687176 upregulation rat kidney tissues liver tissue kit
upregulate hepatic tissue inflammation and
induce liver tissue injury and apoptosis

ucMSCs, umbilical cord mesenchymal stem cells; BMSCs, bone marrow-derived mesenchymal stem cells; TECs, tubular epithelial cells; USCs, human urine-derived stem cells; ECFCs,
endothelial colony-forming cells; ECs, endothelial cells; PTs, proximal tubules; MLKL, mixed lineage kinase domain-like protein; HPTCs, human proximal tubular cells; PBMCs, pe-
ripheral blood mononuclear cells; HPC, hypoxia preconditioning; EVs, extracellular vesicles; I/R, ischemia-reperfusion; ECFCs, endothelial colony-forming cells; ADSCs, adipose-
derived stem cells; HUVECs, human umbilical endothelial cells; PTEN, phosphatase and tensin homolog; BMDCs, bone marrow-derived dendritic cells; ER, ER BIP, binding immu-
noglobulin protein; CXCR4, CXC chemokine receptor type 4; SDF-1a, stromal cell-derived factor-1a; DRP1, dynamin-related protein 1.
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MSC exosomes and exert a regulatory effect by delivering prewrapped
miRNAs to recipient cells.194–197 As discussed previously, MSC-
derived exosomal miR-20a is involved in regulating apoptosis during
renal ischemia-reperfusion injury. Similarly, miR-20a could alleviate
ischemia-reperfusion injury-induced abnormal expression of genes
related to apoptosis and autophagy, such as active caspase-3,
mTOR, P62, and LC3II.194 Both hepatocytes and liver tissue exhibited
significantly downregulated levels of miR-1246, and exosomes
containing miR-1246 could modulate T helper 17/regulatory T
balance, induce anti-apoptotic and pro-survival effects, and amelio-
rate ischemia-reperfusion injury-induced hepatic dysfunction in
mice.195,196 In addition, exosomes that carry more abundant miR-
124-3p can increase the content of miR-124-3p in grafts and have
an increased potential to suppress ferroptosis of ischemia/reperfu-
sion-treated hepatocytes by inhibiting prostate six transmembrane
epithelial antigen 3. In contrast, exosomes from MSC knocked out
for miR-124-3p indicated a reversed effect on ferroptosis.197 Hence,
many miRNAs are found in MSCs’ corresponding exosomes (see
also Table 4), but the precise signaling cascades regulated under the
condition of hepatic ischemia-reperfusion injury are not yet fully
known.

THE EXOSOMALmiRNAs INVOLVED IN AT LEAST TWO
OF FOUR ISCHEMIA-REPERFUSION CONDITIONS
Although four disorders yield diverse pathophysiological processes
with respective tissues and organs, ischemia-reperfusion is the
common feature. Intriguingly, certain same exosomal miRNAs
appear to participate in more than one of four ischemia-reperfusion
conditions via modulating respective signaling pathways. These over-
lapped miRNAs exhibit similar protective consequences for disease
outcomes. Paying abundant attention to uncovering potential over-
lapped miRNAs may provide novel insights into tissue remodeling
processes and identify targets for ischemia-reperfusion condition
therapies. From the above exosomal-miRNA intervention studies, a
total of 63 miRNAs have, meanwhile, been identified, for which
robust evidence suggests their involvement in more than one of the
four ischemia-reperfusion pathophysiological statuses. Of these 63
miRNAs, ischemic stroke condition yields 28 miRNAs, myocardial
infarction condition yields 30 miRNAs, and renal ischemia-reperfu-
sion condition yields 19 miRNAs, whereas only three miRNAs are re-
ported in hepatic ischemia-reperfusion condition. Suggestively, these
miRNAs have a large degree of overlap under these conditions. A total
of 17 miRNAs, namely, miR-20a (miR-20a-5p); miR-21; miR-25
(miR-25-3p); miR-30 (miR-30e); miR-31; miR-98 (miR-98-5p);
miR-124 (miR-124-3p); miR-125a (miR-125b and miR-125b-5p);
miR-126; miR-132; miR-133b (miR-133a-3p); miR-146a (same as
miR-146a-5p); miR-150 (miR-150-5p); miR-210; miR-218-5p; miR-
223 (miR-223-3p); and miR-486-5p, have, meanwhile, been uncov-
ered to be involved in more than one of the four conditions. Hence,
9 overlapped miRNAs (known as miR-25, miR-31, miR-98, miR-
126, miR-132, miR-133a-3p, miR-146a, miR-210, miR-223) and 8
overlapped miRNAs (miR-21, miR-30, miR-124, miR-125b, miR-
146a-5p, miR-218-5p, miR-486-5p) have been identified between
ischemic stroke and myocardial infarction and between renal
ischemia-reperfusion and myocardial infarction, respectively. Like-
wise, two miRNAs, namely miR-146a-5p and miR-124 (miR-124-
3p), are identified to be involved in three of the four ischemic condi-
tions, whereas none of the miRNAs are shown to be involved in all
four conditions.

Of note, regardless of the source of exosomes, miRNAs involved in
more than one of four pathophysiological conditions have a large de-
gree of overlaps concerning modes of action. For example, studies re-
porting an increase in cell survival in one ischemic condition usually
had a corresponding effect in three other conditions, such as miR-
125, miR-95, miR-126, and miR-146a. As such, miRNAs with roles
in the angiogenesis promotion or inflammation inhibition in one con-
dition also demonstrated similar effects in three other conditions,
such as miR-126, miR-223, miR-133a-3p, and miR-210. Importantly,
diverging effects have been revealed for one miRNA. Perhaps owing
to the disparate nature of ischemia and donor cells, inverse effects
were reported for myocardial infarction compared with ischemic
renal injury in the case of miR-21. This is decreased in mouse hearts
after myocardial infarction, while serum and HEK293T cell exosome
increased it. miR-21 exosomes efficiently delivered miR-21 into car-
diomyocytes, significantly repressed cardiomyocyte apoptosis in
both in vivo and in vitromodels of myocardial infarction, and reduced
the infarct size in mouse hearts after myocardial infarction by
Molecular Therapy: Nucleic Acids Vol. 29 September 2022 913
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Figure 5. The involvement of exosome-associated miRNAs in renal ischemia-reperfusion injury

Various recipient cells can uptake a series of exosome-associated miRNAs derived from different donor cells, which alter several biological processes, namely cell survival,

apoptosis, inflammation, and fibrosis, regulating myocardial infarction progression and recovery. USC, urine-derived stem cells.
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reducing PDCD4 expression.112,113 Inversely, miR-21 secreted from
senescent cells could facilitate epithelial-to-mesenchymal transition
of human proximal tubular cells, further induce kidney fibrosis via
the mechanisms that target PPARa protein, and consequently
enhance HIF-1a expression.157

EXOSOME-ASSOCIATED miRNAs AS NOVEL
POTENTIAL BIOMARKERS AND THERAPEUTIC
TARGETS
Given the important clinical implications of exosomes for various
ischemic conditions, the extracorporeal strategies for specifically target-
ing exosomes are a promising therapeutic option inmanaging ischemia.
Exosomes, the natural miRNA carriers, have several attributes. Exo-
somes have high stability, protecting miRNAs from degradation by
endogenous RNases. They, in the meantime, are luxuriant in multiple
body fluids such as blood, urine, saliva, and cerebrospinal fluids, which
are easy to isolate and endowwith non-invasive advantages. A plethora
of miRNAs are aberrantly expressed after ischemia-reperfusion injury,
which is suggested as a biomarker of ischemia. Hence, alteringmiRNAs
derived from exosomesmay draw a clue to the progression of ischemia-
reperfusion conditions, making them attractive therapeutic targets.

Exosome-associated miRNAs as potential biomarkers

Up- or downregulated levels of exosomal miRNAs detected in
ischemia-reperfusion conditions contribute to the diagnosis. Upon
914 Molecular Therapy: Nucleic Acids Vol. 29 September 2022
stroke conditions, exosomal miR-134, miR-21-5p, miR-30a-5p,
miR-223, miR-9, and miR-124, which were collected from the
plasma or serum from patients who had a stroke, are upregu-
lated,198–201 whereas others, namely miR-422a and miR-125b-2-3p,
are downregulated.202 Likewise, in myocardial infarction, a set of
miRNAs shuttled via exosomes, namely miR-122-5p, miR-126, and
miR-21, from serum are increased,203,204 whereas miR-143, miR-
204, miR-1915-3p, miR-4507, and miR-3656 are decreased.110,205,206

Of note, miR-21 (miR-21-5p),199,204 an overlapped miRNA, is not
only a promising biomarker for diagnosing myocardial infarction
and ischemic stroke but distinguishing among hyperacute, subacute,
and recovery phase ischemic stroke. The area under the curve is
0.714 for the subacute phase and 0.734 for the recovery phase.199

By comparing exosomal expression patterns at baseline, pretreat-
ment, and posttreatment, correlating with clinical parameters, and
combining with continuous follow up, it is possible to predict patient
prognosis. miR-223, one of the most highly expressed miRNAs in
exosomes of healthy humans, is elevated after the onset of acute
ischemic stroke in circulating exosomes, correlates to NIHSS score,
and inclines to a poor outcome.200 As such, exosomal miR-134,
miR-9, and miR-124 derived from serum from patients who had
ischemic stroke correlate positively with NIHSS scores, infarct vol-
umes, and serum concentrations of IL-6.198,201 Suggestively, high
expression of exosomal miR-9, miR-124, miR-134, and miR-223
correlate to a worse prognosis.

http://www.moleculartherapy.org


Table 4. Preclinical studies evaluation of the actions of exosomal microRNA in hepatic ischemia-reperfusion injury.

miRNA Expression Donor cell Recipient cell Exosome isolation Main function

miR-20a194 upregulation ucMSCs LO2, HepG2 ultracentrifugation
alleviate the abnormal expression of
genes related to apoptosis and autophagy
(active caspase-3, mTOR, P62, LC3II)

miR-1246195 upregulation ucMSCs LO2 kit
protect hepatocytes against I/R injury
via modulating the differentiation of
Tregs and Th17 cells

miR-1246196 upregulation ucMSCs LO2 ultracentrifugation
induce anti-apoptotic and pro-survival
effects in LO2 cells and ameliorate
I/R-induced hepatic dysfunction

miR-124-3p197 upregulation BMSCs hepatocytes ultracentrifugation
reduce ferroptosis of ischemic
cells by inhibiting STEAP3

ucMSCs, umbilical cord mesenchymal stem cells; I/R, ischemia-reperfusion; BMSCs, bone marrow-derived mesenchymal stem cells; STEAP3, prostate six transmembrane epithelial
antigen 3; Tregs, regulatory T cells.
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Exosomes as delivery vehicles for miRNA-based therapy

The use of carrier systems for the delivery of therapeutic payloads to
targeted cells or tissues has attracted considerable attention, and,
owing to their potential to shuttle cargos, exosomes have gained
privilege in nanotherapeutics. Many ischemia-reperfusion injury-
suppressive miRNAs are downregulated in cells and corresponding
exosomes; thus, one strategy to inhibit the progression of the hypoxic
disorder is encapsulating exogenous ischemia-reperfusion injury-
suppressive miRNAs into exosomes and transmitting them to recip-
ient cells and tissues. An exosome-based miRNA delivery system with
an extensively applicable ability in ischemia-reperfusion injury ther-
apy had been demonstrated; using a lentiviral vector (LV)-modulated
approach, MSCs were infected with LV-miR-30e-5p. Afterward, miR-
30e-enriched exosomes markedly inhibited LOX1 expression, thereby
downregulating the NF-kB p65/caspase-9 signaling activity and
ameliorating heart failure after myocardial infarction in rats.116

Likewise, intravenous administration of exosomes overexpressing
miR-126 poststroke promoted functional recovery, enhanced neuro-
genesis, and inhibited inflammation.77 Besides that, inhibition of
ischemia-reperfusion injury-upregulated exosomal miRNAs is
another valuable method, given that they are commonly increased
upon such conditions. As described above, miR-21-containing exo-
some could facilitate kidney fibrosis via the PPARa-HIF-1a signaling
pathway. Nevertheless, inhibition of miR-21, using caloric restriction
or caloric restriction mimetics of donor cells, prevented the occur-
rence of mesenchymal transition in recipient cells. Currently, the de-
livery of miRNA inhibitors or small interfering RNAs (siRNAs)
through exosomes gains much attention, for example as illustrated
by Kuang et al. that nativeMSC exosomes, but not exosomes obtained
from MSCs pretreated with anti-miR-25-3p, cause oligonucleotide
autophagic flux and cell death by modulating p53-BNIP3 in
C57BL/6 mice exposed to cerebral ischemia.38
CONCLUSION AND PERSPECTIVES OF THE
SIGNIFICANCE OF EXOSOMAL miRNAs
Exosomes are paramount in the progression and development of
ischemia-reperfusion injury, mainly depending on their cargos.
Upon such conditions, miRNAs enveloped in exosomes are re-
vealed to exert biological functions via modulating specific aspects,
such as participation in cell survival, inflammation, neurogenesis,
angiogenesis, apoptosis, and fibrosis, which decisively regulate tis-
sue progression. Importantly, exosomal miRNAs that appeared in
at least two of four conditions exhibit a substantial degree of
overlap and have an excellent consistency for modes of action.
Circulating, cell-free exosomal miRNAs have great potential as
diagnostic or therapeutic biotools, generally serving as an exciting
development in ischemia-reperfusion injury management. Never-
theless, major challenges remain to be solved prior to the
implementation of exosomal miRNAs as clinical assays in such
disorders. A technique to generate pure and homogeneous exo-
somes and a deeper mechanism underlying the release and cargo
machinery in all four conditions must be explored further.
Different isolation protocols may lead to isolating subpopulations
of exosomes with different miRNAs, proteins, functions, and non-
vesicular macromolecules such as lipoproteins.207–210 Notably, the
nuclear RNA exosome complex is eukaryotes’ most versatile RNA-
degradation machine.211–213 Therefore, it is well worth demon-
strating the nuclear RNA exosome complex regulation by
modulating the levels of exosomal miRNAs. Currently, there are
31 clinical trials associated with miRNAs enveloped in exosomes
with diverse states registered at https://clinicaltrials.gov/. Of these
31 trials, 7 are completed, 13 are active and recruiting, 2 are active
but not recruiting, 4 are not yet recruiting, 1 is enrolling by invi-
tation, and 4 are unknown. Although preclinical and clinical
studies are just on the threshold and more in-depth investigations
to uncover the effects and mechanisms of exosomal miRNAs are
imperative, the dawn of an exosomal miRNA era is expected
with the indefatigable endeavor of researchers.
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