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ABSTRACT: Drug discovery can be thought of as a search for a
needle in a haystack: searching through a large chemical space for
the most active compounds. Computational techniques can narrow
the search space for experimental follow up, but even they become
unaffordable when evaluating large numbers of molecules.
Therefore, machine learning (ML) strategies are being developed
as computationally cheaper complementary techniques for
navigating and triaging large chemical libraries. Here, we explore
how an active learning protocol can be combined with first-
principles based alchemical free energy calculations to identify high
affinity phosphodiesterase 2 (PDE2) inhibitors. We first calibrate
the procedure using a set of experimentally characterized PDE2
binders. The optimized protocol is then used prospectively on a large chemical library to navigate toward potent inhibitors. In the
active learning cycle, at every iteration a small fraction of compounds is probed by alchemical calculations and the obtained affinities
are used to train ML models. With successive rounds, high affinity binders are identified by explicitly evaluating only a small subset
of compounds in a large chemical library, thus providing an efficient protocol that robustly identifies a large fraction of true positives.

1. INTRODUCTION
The endeavor of drug discovery can be viewed as chemical space
exploration with an aim to simultaneously optimize multiple
properties, e.g., ligand binding affinity to the target, synthetic
accessibility, and toxicity. As this search space is vast, estimates
go up to 1060 drug-like compounds,1 in vitro and in vivo library
screens are able to cover only a minor fraction of the possible
solutions. To this end, computational chemoinformatic and
physics-based approaches have been employed to increase the
reach of the chemical space explorations.

Over the recent years, with the advent of artificial intelligence
(AI) methodology, machine learning (ML) approaches saw a
rapid adoption in drug discovery. A lot of research has been
devoted to constructing artificial neural networks capable of
exploring chemical space to suggest novel drug-like candidate
molecules for further screens.2−4 Deep learning methods have
also been successfully applied to predict ligand molecular
properties and establishing QSAR models.5 Establishing
structure activity relationships requires accurate prediction of
the ligand binding affinity to the target protein and remains a key
challenge for computational chemists. Active learning (AL)
approaches present a promising pathway to this goal.

The AL methodology comprises an iterative approach where
the machine learning models suggest new compounds for an
oracle (experimental measurement or a computational
predictor) to evaluate. These compounds and their scores are
then incorporated back into the training set for further
improvement of the models.

For example, machine learned models have been used to
predict results of free energy calculations6−8 or molecular
docking.9 Subsequently, a fraction of the compounds was
selected for calculations in the next iteration. Feeding the results
of the calculations back into the ML training and iterating the
process in a loop allowed to efficiently screen through a large
chemical library.

Alchemical free energy calculations10−12 based on first
principle statistical mechanics may serve as an optimal input
for such AL applications. While computationally demanding,
nowadays these calculations are readily accessible even at large
scale: the predictions for hundreds to thousands of ligands can
be obtained in a matter of days.13,14 Also, the accuracy of
alchemical predictions draws close to the experimental measure-
ments.15−18 Therefore, using these calculations as an oracle to
construct MLmodels could allow describing binding affinities of
large chemical libraries with high accuracy, while only a small
fraction of the library needs to be evaluated with the
computationally expensive alchemical method.
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In the current work, we apply AL approaches to the lead
optimization step of drug discovery. In the first part of the study
we retrospectively analyzed a large set of phosphodiesterase 2
(PDE2) inhibitors for which experimentally measured binding
affinities were readily available. We explored the optimization of
the learning process with respect to the ligand selection
procedure for the free energy calculations, the molecule
encoding for ML, and the hyper-parameter tuning of the ML
models.

Having established the optimal set of parameters to efficiently
navigate in this chemical subspace, we proceeded with a
prospective search for potent PDE2 inhibitors. We generated an
in silico compound library and navigated using an active learning
protocol based on the alchemical free energy calculation oracle.
Lead optimization performed this way recovered multiple
ligands with strong computed binding affinities, with only a
small fraction of compounds screened by computationally costly
alchemical calculations.

2. METHODS
2.1. Generating Ligand Binding Poses. For the

retrospective ligand library, which spans multiple different
scaffolds, multiple aligned crystal structures with bound
inhibitors were considered for use as reference structures for
starting pose generation: 4D08,19 4D09,19 4HTX,20 6CYD,21

6EZF,22 as well as 13 unpublished structures shared with us by
Janssen Research & Development. For each ligand in the
retrospectively analyzed library (Part I) the inhibitor with the
highest Dice similarity23 based on the RDKit topological
fingerprint24 was used as the reference. For the prospective
investigation in Part II, the generated ligand library shared a core
with the inhibitor from the 4D09 crystal structure;19 thus, 4D09
coordinates were used as a reference for the generation of
binding poses for each ligand in the library.

Afterward, coordinates of the largest substructure matches
between each ligand and its reference were constrained to the
same coordinates as in the crystal structure. The remaining
atoms initial guesses were assigned via constrained embedding
following the ETKDG algorithm25 as implemented in RDKit.24

This approach was not always able to respect the constrained
positions of the common substructures and would return a
different outcome depending on the initial random seed. One
hundred of such structures were constructed for each ligand, and
the one with the smallest RMSD to the reference was selected.

Ligand binding poses were then refined by molecular
dynamics simulations in a vacuum. Here, the 6EZF22 structure
was used for the retrospectively analyzed ligand library (Part I),
and the 4D09 crystal structure19 was used for the prospective
library (Part II). First, a hybrid topology between the reference
inhibitor and each ligand was constructed with pmx,26 and the
coordinates of the largest common substructure were restrained
with a force constant of 9000 kJ/(mol nm2). Next, the energy of
the protein and reference inhibitor system was minimized.
Finally, the reference inhibitor was morphed into the ligand
following the hybrid topology while simultaneously lowering the
temperature from 298 to 0 K in a 10 ps simulation. Ligand
coordinates from the final frame were treated as the binding pose
and used to construct both the ligand representations for
machine learning and as starting ligand coordinates for the
relative binding free energy calculations.

2.2. Ligand Representations and Feature Engineering.
Machine learning of ligand properties requires a consistent,
fixed-size vector representation for each ligand. These are

typically composed of molecular fingerprints and/or constitu-
tional, topological, geometric, thermodynamic, and electronic
features of the molecule, an overview of which can be found
elsewhere.27 Here, we explored several representations to
encode the ligand library.

The first and most complex representation was built from all
the features we could compute directly with RDKit24 from
ligand topologies and 3D coordinates. Hence, we refer to this
representation as 2D_3D. These features include constitutional,
electrotopological, andmolecular surface area descriptors as well
as multiple well-established molecular fingerprints. A more
detailed breakdown is shown in Table S3.

Another representation was based on MedusaNet28 and
allows for encoding the three-dimensional shape and orientation
of a ligand in the active site. For this representation we split the
binding site into a grid of cubic voxels with 2 Å edge length and
counted the number of ligand atoms of each chemical element in
each voxel resulting in a sparse 4-dimensional tensor. Unlike in
the original MedusaNet paper,28 which dealt with convolutional
neural networks, we used a one-dimensional representation of
the tensor, as we work with linear layers instead. We refer to this
representation as atom-hot, as it is similar to one-hot encoding
used to label training data for classifiers in machine learning,
except for multiple atoms being able to occupy the same voxel.
Additionally a modified version, called atom-hot-surf, was
probed. This representation only considered voxels on the van
der Waals surface of the binding pocket.

The rest of the representations encoded protein ligand
interactions. The PLEC fingerprints29 were constructed by
means of the Open Drug Discovery Toolkit v0.730 to represent
the number and type of contacts between the ligand and each
protein residue from the 4D09 crystal structure. Additionally, we
also used a pair of representations composed of both
electrostatic and van der Waals interaction energies between
the ligand and each protein residue with at least one atom within
1.5 nm of any ligand in the library. Both were computed with
Gromacs 2021.1,31 the Amber99SB*-ILDN force field32−34 for
the protein, and the GAFF 1.9 force field35 for ligands. The
energies were evaluated at two different cutoff values: 1.1 nm for
the MDenerg representation and 5.1 nm for MDenerg-LR
representation.

Finally, in the first three iterations for the prospectively
analyzed data set (Part II), R-group-only versions of all of the
above representations were also used in addition to the complete
ligand ones described above. In these representations, features
that were impossible to calculate for all ligands in the library
given the much smaller structures, like parts of the GETAWAY
fingerprint, were dropped from the respective representations.

2.3. Ligand Selection Strategies. The character of
chemical space exploration can be altered by modifying the
selection strategy of ligands to be presented for an evaluation by
the oracle. We have probed the following strategies to select a
batch of 100 ligands at every iteration:

• random selection of ligands;

• greedy selects only the top predicted binders at every
iteration step;

• narrowing strategy combines broad selection in the first 3
iterations with the subsequent switch to greedy approach.
For the first iterations, several models are trained, each
using different sets of the previously described ligand
descriptors and the 5 models with the lowest cross-
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validation RMSE are identified. From each of those
models, the 20 best predicted binders are then selected;

• uncertain strategy selects the ligands for which the
prediction uncertainty is the largest;

• mixed strategy first identifies the 300 ligands with the
strongest predicted binding affinity (three times more
than with greedy selection), and then selects the 100
ligands with the most uncertain predictions among them.

In all the cases, initialization of the models (iteration 0) was
based on the weighted random selection. Namely, the ligands
were selected with the probability inversely proportional to the
number of similar ligands in the data set. Ligands were
considered similar if after a t-SNE embedding36 they fell within
the same bin of a 2D histogram (the square bins of the 2D
histogram had a side length of one unit in the t-SNE space). The
embedding was constructed from the ligands’ 2D features
(constitutional and graph descriptors as well as MACCS37 and
BCUT2D38 fingerprints) using the full ligands for the
retrospective library and only the R-groups for the prospective
library.

2.4. The Oracle: Alchemical Free Energy Calculations.
Free energy calculations were used to generate training targets in
the prospective data set (Part II). These calculations were based
on the molecular dynamics simulations relying on the
nonequilibrium free energy calculation protocol10,17 based on
Crooks’ Fluctuation Theorem.39 The perturbation maps were
constructed using a star shaped map topology,40 where a single
ligand with the experimentally measured binding affinity and
common scaffold with the rest of the compounds was used as a
reference for all perturbations.

All the ligands were considered in their neutral form using a
single tautomer, as generated by RDKit. First, the ligands were
parametrized with GAFF 1.81 using ACPYPE41 and Ante-
Chamber42 with AM1-BCC charges43 and off-site charges for
halogen atoms.44 A hybrid topology was then built for each
evaluated ligand against the reference ligand with pmx.26

Solutes for the two legs of the thermodynamic cycle were
assembled. One leg of the cycle contained the protein
(parametrized by the Amber99sb*ILDN32−34 force field)
from the 4d09 crystal structure,19 the crystallographic waters,
and the hybrid ligands positioned according to their previously
determined binding poses. The other branch contained only the
hybrid ligands. The structures were then solvated with TIP3P45

water and 0.15 M sodium and chloride ions parametrized by
Joung and Cheatham46 in a dodecahedral simulation box with
1.5 Å padding. All subsequent simulations were carried out with
Gromacs 2021.631 with a 2 fs integration time step.

Prior to production runs, energy minimization and, for the
protein and ligand leg of the cycle, a short 50 ps NVT simulation
were performed. During these runs the solute heavy atoms were
position restrained with a force constant of 1000 kJ/(mol nm2).
Subsequently, 6 ns equilibrium simulations were performed in
an NPT ensemble. The temperature was kept at 298 K with the
velocity rescaling thermostat47 with a time constant of 2 ps. One
bar pressure was retained with the Parrinello−Rahman
barostat48 with a time constant of 5 ps. Electrostatic interactions
were handled via Smooth Particle Mesh Ewald49,50 with 1.1 nm
real space cutoff. Van der Waals interactions were smoothly
switched off from 1.0 to 1.1 nm. Isotropic corrections for both
energy and pressure due to long-range dispersion51 were
applied. All bond lengths were constrained via the LINCS
algorithm.52

From the generated trajectories the first 2.25 ns were
discarded, and the remaining simulation frames were used to
initialize alchemical nonequilibrium transitions between the two
end states: 80 transitions in each of the two directions. 50 ps long
nonequilibrium alchemical transitions were started from each
frame, and the work needed to perform the transition was
recorded. Relative binding free energies were calculated from
the bidirectional work distributions using a maximum-likelihood
estimator53 implemented in pmx.26 The whole equilibration-
transitions-analysis protocol was repeated five times for each
evaluated ligand and the mean and standard error of the five
repeats were taken as the relative binding free energy and
associated uncertainty. To obtain the absolute binding free
energy for use in the training set, the relative free energy was
combined with the experimentally known absolute binding free
energy of the reference ligand.

2.5. Model Architecture. Regressionmodels for free energy
prediction were ensemble models54 of multilayer perceptrons
with ReLU55 activation functions. Each individual perceptron
was trained on a 5-fold split of the training data, each leaving out
one fold for cross-validation, and was initialized with different
weights and biases. Each produced different predictions for
ligands in regions of chemical space where insufficient training
data was available. Averaging over the predictions of
independent models allowed us to recover not only more
precise values but also more accurate ones.56 Final predictions in
most of this work came from means of 5 models with standard
errors used for uncertainties. However, iterations four and five of
active learning on the prospective library further expand the
ensembles to average the final prediction over five repeats of the
above cross-validation training procedure, leading to averaging
over 25 individual models in total for these iterations.

Varying network depths and layer widths were probed.
Preliminary hyper-parameter optimization of these values was
carried out on the retrospectively analyzed data set in Part I. The
resulting values were used for the first three iterations of active
learning on the prospective data set in Part II. In iteration 4,
hyper-parameters were reoptimized and feature selection was
performed by selecting the best combination of previously
described ligand encodings to use for the available training data.
The combination of 2D_3D descriptors and PLEC fingerprints
performed the best. In addition, for this iteration feature
selection was performed by discarding the features whose mean
importance determined by Integrated Gradients57 was under
0.02. Subsequent iterations used the full 2D_3D ligand
representation without further feature selection. The details of
the meta-parameters used with the prospective data set are in
Table S1. Active learning on the retrospective data set reused
many of the hyper-parameter values from the corresponding
iterations of the prospective case (Table S2).

Distributions of the input feature values were normalized to
zero mean and unit variance for each feature independently.
Similar normalization of the training free energies was also
attempted. However, better model accuracies were observed
with manually optimized scaling and bias values (Table S1).

2.6. Model Training. Training of models was done for 2000
or 20 000 epochs with L1 loss function (absolute error between
the prediction and training data). The stochastic gradient
descent optimizer58 with a momentum of 0.9 and batches of up
to 500 training ligands were used. An exponentially decaying
learning rate of 0.005 × 0.1epoch/10000 was employed. Inverse
frequency weighting was used to weigh the loss from individual
training examples based on a Gaussian kernel distribution of the
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training free energies to remove bias due to overrepresentation
of medium and high affinity ligands (Figure 3C). Early stopping
based on cross-validation loss was used to limit overtraining.

2.7. Ligand Library Construction. The ligand library for
the prospective PDE2 inhibitor study in the Part II of the
manuscript was constructed around a modified core from
the4D09PDB entry.19 A manual examination of the data set
explored in Part I revealed that chlorination of the cyclohexene
ring at different positions and addition of a methyl or a
difluoromethyl to the tricycle led to better binding affinities, and
a single combination of these features was chosen as the core of
the current library; chemical space exploration was restricted to
the remaining R-group (Figure 4A). The various R-groups were
built up from fragments present in the data set from Part I to
increase the likelihood of synthetic accessibility of the ligands.

Such fragments were obtained by removing the common
cores from each ligand series in the data set and decomposing
the remainders into chemical groups with the BRICS
algorithm59 as implemented in the RDKit version 2021.03.324

while keeping track of the atoms bonding to the cores and to
other fragments. This resulted in two groups of fragments:
linkers (Figure S6), which directly bond to the cores, and
termini (Figure 4A), which bond to the linkers. The library R-
groups were assembled by attaching each linker to the core by
the same atom it would attach to the cores in the original data set
from Part I. Different numbers and combinations of termini
were then added to the designated linker’s atoms.

3. RESULTS
3.1. Active Learning Cycle. Throughout the work we

employ an active learning cycle, as depicted in Figure 1, to
explore chemical space of PDE2 inhibitors. In the AL cycle, the
process is started by assembling a chemical library of interest and
initializing the procedure by a weighted random selection of a
batch of compounds for the first iteration to ensure ligand

diversity. The binding affinities of the selected ligands are
evaluated in an alchemical free energy calculation procedure.
These ligands together with the obtained affinity estimates form
a training set for machine learning (ML) models, which, in turn,
predict binding affinities for all the ligands in the chemical
library. In the next iteration, another set of compounds is
selected, and the same steps of the cycle are repeated. This way,
the training set keeps increasing, thus improving the accuracy of
the ML predictions. Most of the compounds with the highest
binding affinity are identified in a small number of iterations of
the cycle. In the process only a small fraction of the chemical
library is evaluated explicitly with the computationally expensive
physics-based approach, while affinities for the rest of the ligands
are predicted by the ML model.

To optimize the parameters of the active learning protocol, we
start with applying this scheme on a large collection of PDE2
inhibitors for which the binding affinities have been measured
experimentally (Part I of the study). This allows us to replace the
computationally expensive alchemical free energy calculation
step with a simple lookup table of measured affinities. In doing
so, in Part I of the study we are able to explore various
approaches for ligand encoding, their selection procedures, and
the effects on the ML predictions.

In Part II of the study, we apply the active learning cycle
prospectively, now using alchemical free energy calculations to
guide the model training.

3.2. Part I: Protocol Evaluation on a Retrospective
Data Set. In the first part of the investigation, we explored the
efficiency and convergence of the active learning protocols on a
data set of PDE2 inhibitors with experimentally measured
binding affinities. The collection of 2351 ligands interacting with
PDE2 has been assembled in Janssen Pharmaceutica from the
corresponding drug discovery project. This ligand set presents a
convenient case for probing different versions of model building
protocols, directly based on experimentally measured ΔG
values, rather than relying on computational methods. This
way, the oracle in Figure 1 is represented by the experimentally
obtained affinities.

We started by generating binding poses for the ligands relying
on the 6EZF crystal structure of PDE2, followed by encoding
ligand representations for machine learning. As this collection
contains molecules with a variety of chemical scaffolds, ligands
could not be uniquely described solely by R-groups attached to a
single scaffold. Hence, only representations involving features of
complete ligands were used.
3.2.1. Ligand Representation. Both ligand representation

and their selection protocol are essential components for the
efficiency and accuracy of the active learning protocol in Figure
1. First, we evaluated the effectiveness of different ligand
representations by encoding the ligand library with diverse 2D
and 3D ligand descriptors (2D_3D), ligand−protein interaction
fingerprints (PLEC), interaction energies from molecular
mechanics force fields (MDenerg, MDenerg_LR), and grid-
based ligand representations (atom_hot and atom_hot_surf)
(Figure 2, top row). These ligand representations are described
in more detail in the Methods section.

Relying on a simple greedy selection rule, we performed the
cycles of active learning protocol choosing 100 ligands at a time
and using the experimentally measured ΔG values for reference.
The 2D_3D representation composed of all the chemo-
informatic features supported by RDKit24 consistently out-
performed the physics-based representations (MDenerg,
MDenerg_LR, and PLEC) both in model accuracy and in the

Figure 1. Active learning scheme. Models are trained to reproduce free
energies obtained experimentally or computed by MD. At each
iteration a batch of ligands is selected to be added to the training set
based on their predicted free energies according to the previous
iteration’s models. Iterative training of the models with an increasing
training data set improves prediction accuracy: most of the top binders
are identified by probing only a small part of the whole chemical library.
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rate at which strongly binding ligands were identified. The PLEC
fingerprint representation was finding strong binders much
slower than the others. Meanwhile, the 2D_3D representation
yielded the same top ligands more consistently than other
representations (Figure S1).
3.2.2. Ligand Selection Strategy. Having identified the

2D_3D descriptor representation as the most robust molecular
encoding, we further investigated the performance of ligand
selection strategies. In the above analysis we used the greedy
strategy of selecting the strongest binders predicted at every
iteration. While this leads to rapid improvement of binding
affinities, it runs the risk of getting trapped in the first local
minimum that is found. To mitigate this risk, we developed the
narrowing strategy, where in the first three iterations we instead
focus on broadening the scope of exploration in the chemical
library and in the later iterations switch to the greedy selection
mode. For these first three iterations, we train separate models
for all the ligand representations discussed above as well as
binned variants of MDenerg and MDenerg_LR, select the five
that have the best internal cross-validation RMSE, and use the
top 20 ligands predicted by each of them. If multiple
representations yield the same ligand in their top 20s, we use
the next best ligand from one of the representations, making sure
that we select 100 unique ligands for the next iteration. After the
third iteration we switch to the greedy approach with the 2D_3D
representation to descend deeper into the best local minimum
found so far. All in all, this strategy performs similarly to the
greedy approach and finds the most potent binders in the library
at a comparable rate (Figure 2 bottom row).

In addition to the greedy and narrowing protocols, we probed
three more strategies: uncertain, mixed, and random, all shown in
the lower panel of Figure 2.

One might expect that random selection of ligands to
construct the ML models would yield suboptimal predictions,
yet this depends on the particular objective that is set for
exploring chemical space. The random approach describes well
the general features of the chemical library (low RMSE, high
correlation). This comes as a consequence of arbitrarily selecting
ligands of diverse chemistry for model training. However, such a
seemingly good performance of the random selection comes
with a shortcoming: few potent compounds are being selected
(low percentage of Top 50 ligands). Thus, random sampling of
the chemical space could be used to obtain a general description
of the library, but for ligand affinity optimization a different
strategy might be preferred.

The uncertain strategy prioritizes selection of the predictions
for which the model showed the largest uncertainty. Here, we
model this uncertainty as standard deviation in predictions of 5
ensemble models trained on the same data with different
random starting weights. Similar to random selection, this
selection strategy places no priority on finding strong binders,
yet both the rate of their discovery and the accuracy of their
predicted free energies are worse than in the random selection of
ligands.

We also explored a mixed strategy first proposed by Yang et
al.9 This strategy selects the most uncertain ligands among a
larger number of the strongest predicted binders. While the
mixed strategy outperforms random ligand selection, in contrast
to the finding of Yang et al., it identifies desirable ligands slower

Figure 2. Accuracy comparisons of different ligand representations (top) and ligand selection strategies (bottom). Representations are evaluated with
the greedy selection scheme, while the selection strategies with the 2D_3D representation composed of all the features supported by RDKit.
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than the narrowing and greedy approaches. Here, we used a 3:1
ratio of the number of selected predicted strongest binding
ligands to the number of selected most uncertain ones among
them. In the original work by Yang et al. the ratio was 50:1,
possibly explaining the observed difference in performance.
However, a ratio this large was impractical in our case given the
limited size of our data set of 2351 ligands only. In practice, the
performance of this selection approach can be tuned by
changing the above ratio, becoming equivalent to the greedy
strategy with a 1:1 ratio, i.e., selecting only the strongest binders,
and equivalent to the uncertain strategy when the identified
strongest binders cover the whole data set. However, such
tuning is impractical in a real prospective study, as it requires
rerunning the AL protocol multiple times and finding reference
free energies for all the discovered ligands in each repeat to
identify the optimal ratio.

As the protocol progresses and more ligands are added to the
training sets, all selection strategies result in better agreement
with the predictions from the final iteration, but the uncertain
strategy improves correlations the fastest (Figure S2). Overall,
the greedy, narrowing, and mixed approaches are able to quickly
locate the best binding ligands. The greedy and narrowing
approaches do this faster and more consistently identify the
same high affinity binders (Figure S3). However, the Kendall’s
rank correlation between the predicted and experimental
binding free energies is low for all the selection methods besides
the uncertainty-driven one (Figure S4). This results in large
numbers of ligands with lower experimental affinities being
selected for evaluation and inclusion into the training data set at
each iteration.

To select more active ligands in each iteration, one can simply
evaluate more ligands per iteration. While this does improve the
Kendall-tau correlation and the rate of discovery of strong
binders in the early iterations, increasing the number of
randomly selected ligands evaluated to build the very first
model significantly decreases the number of identified active
compounds per number of evaluated ligands in the starting
iteration (Figure S5).

Overall, the uncertain and random ligand selection sampling
covers broadly the chemical library and provides a better overall
description of the chemical space. However, to efficiently
identify most potent binders, other strategies, e.g., greedy or
narrowing, are preferred. As we are not primarily interested in an
accurate description of medium and low affinity compounds, we
can choose to sacrifice the accuracy of the general data set
quantification and proceed with those strategies that are capable
of best uncovering the most potent compounds.
3.2.3. Active Learning. As the ligand encoding and selection

strategies have been explored, we further illustrate the overall
active learning based chemical space exploration cycle using the
same experimentally characterized set of PDE2 inhibitors
(Figure 3). Here, we relied on the narrowing protocol of ligand
selection and performed 6 iterations of model training and the
subsequent binding affinity prediction. As the ligand library is
analyzed retrospectively, we readily have access to the
experimentally determined affinities (Figure 3A,B).

Analyzing the chemical space reveals three clusters of high
affinity binders, yet the overall number of such ligands is low.
The aim of the active learning procedure is to identify these
potent molecules.

We start with a weighted (to reduce the chances of very
similar ligands being chosen) random selection of 100 ligands
from our library and retrieve their binding free energies.

Following the narrowing selection approach, the active learning
protocol broadly explores the chemical landscape due to
disagreements between models based on different ligand
representations in the first two iterations. By iteration 2, the

Figure 3.Characterization of the retrospective data set and progression
of one repeat of the active learning protocol using the narrowing
selection rule to pick 100 new ligands per iteration. (A) T-SNE
embedding into 2D space based on Tanimoto similarity coefficients
shows three clusters of strongly binding ligands. (B) Distribution of the
experimental binding free energies shows the overall number of such
strong binders to be small. As the protocol progresses, the number of
identified high affinity ligands increases (C), as at each iteration 100
new ligands are selected (D) to be added to the training set. The inset in
panel (D) shows distribution means (with 95% confidence intervals)
and strongest binders found at each iteration. After the first iteration,
the distribution of binding free energies predicted using models based
on the 2D_3D representation (E) remains stable. Ligands selected at
each iteration in one repeat of the protocol (F, left) and the neural
network predictions for the binding free energies of all the ligands in the
same iteration (F, right).
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top models agree that the best ligands reside in the same three
clusters we identified (Figure 3A).

From the third iteration the narrowing selection rule behaves
exactly as the greedy protocol. The procedure switches to
training an ensemble of five models only on the 2D_3D
representation. The next 100 ligands are selected based on the
mean prediction of these five models, allowing for some
cancellation of errors in regions of insufficient training data as a
result of this ensemble approach. As active learning continues, it
focuses on the three high affinity regions and selects ligands with
lower experimental binding free energies than initially (Figure
3D). The training sets also become progressively biased toward
strongly binding ligands with each iteration (Figure 3C).
Despite this, the distribution of predicted binding free energies
does not changemuch following the initial iteration (Figure 3E).

Eventually, though, after the majority of the strongly binding
ligands have already been identified and added to the training
set, their pool is exhausted. With the decrease in number of
strong yet unidentified binders, the models begin to backfill the
training set with weaker binding ligands: the strongest identified
binders at iterations 5 and 6 do not outcompete the best binders
identified earlier (inset in panel D of Figure 5). As the
probability of finding even higher affinity ligands now drops with
each iteration while the computational cost remains the same,
about 5 iterations appears to be optimal for halting the active
learning process.

3.3. Part II: Prospective Ligand Optimization. Having
verified and identified the limits of adaptive learning protocols in
a retrospective analysis (Part I), we have applied this approach
prospectively to identify novel high affinity PDE2 inhibitors. In
Part II, the alchemical free energy calculations were used as an
oracle in the active learning cycle (Figure 1).
3.3.1. Library Generation and Alchemical Oracle. For the

search of potent inhibitors, we constructed a custom library of
34 114 compounds. For that, we selected one scaffold from the
data set analyzed in Part I as a core and attached varying R-
groups at a common position. Such library design based on a
common scaffold ensures that relative binding free energies can
be calculated accurately, thus providing reliable decisions by the
oracle in the AL cycle. Each R-group was composed of functional
groups present in the data set analyzed in the first part of the
investigation. The R-groups comprised a linker attached to the
core (Figure S6) decorated with up to three terminal groups
(Figure 4A).

Since in the prospective analysis experimental affinity
measurements were not available, we computed binding free
energies of the ligands selected by the protocol of MD-based
alchemical simulations and trained the neural networks on the
calculated affinities. The alchemical approach yields accurate
predictions of free energies, which we benchmarked on a subset
of ligands from the experimental library from Part I that share
the same scaffold as the prospective library (55 molecules). The
root mean squared error (RMSE) of the computed values
compared to the experimental measurement was 1.1 ± 0.3 kcal/
mol (Figure 4B). In addition to the computational error,
experimental measurements also have an associated uncertainty.
For a similar set of PDE2 inhibitors a standard deviation for
measurements of a bioactivity assay is reported to be 0.3 kcal/
mol.60 This, however, likely represents a lower bound of the true
experimental error, as repeated pIC50 measurements for the
same compound and protein show standard deviations of ∼0.9
kcal/mol.61 All in all, propagating uncertainties from computa-
tion and experiment, we estimate the difference between the

computed and measured ΔG to have an associated error of 1.1−
1.4 kcal/mol. The benchmarked compounds together with the
reference ligand (55molecules total) also appear in the currently
investigated prospective library and, so, are further used for
validation of model predictions (Figure 5A,B).
3.3.2. Active Learning of the Prospective Data Set. The

behavior of the active learning protocol trained on MD based
free energies was similar to the models trained on experimental
free energies in the retrospective analysis in Part I (Figure 3).
The protocol initially explored the chemical space to find
promising high affinity regions (Figure 5F). After the switch to
using the best predicted ligands, greedy selection, from models
based only on the 2D_3D ligand representation in the third
iteration, the protocol predominantly focused on one region of
chemical space. In this subspace, a substitution of a benzene ring
directly bound to the scaffold was preferred, and probing
molecules with this chemistry returned higher affinity hits
(Figure 5C,D). Finally, at the sixth iteration, the number of
found high affinity ligands dropped, indicating their pool was
likely exhausted. Therefore, the protocol was stopped at this
point.

The RMSEs for both the experimental validation ligands
(green curve) and those yet to be evaluated via simulations
(purple curve) show low RMSE values, by the end of the
learning cycle reaching 1.00 ± 0.09 and 1.19 ± 0.08 kcal/mol,
respectively (Figure 6A). These error magnitudes are already on
par with those expected from the reference MD simulations.
Furthermore, as the iterations progress and more ligands are
added to the training set, model accuracy increases. This can be
seen from the decrease in RMSE for ligands that will be
evaluated for subsequent iterations (Figure 6A). The prediction
accuracy for validation ligands (molecules with the exper-
imentally measured affinities) does not change much with every
iteration, yet a low RMSE value of ∼1 kcal/mol is retained. As
the ligands from the validation set all have fairly low binding
affinities, few chemically similar molecules are added to the

Figure 4. Ligand library construction and validation of alchemical free
energy calculations. (A) For the library construction, one ligand
scaffold was selected from the data set investigated in the Part I. The
scaffold was combined with a set of linkers (Figure S6) and termini,
using the chemical groups marked in red to form the covalent bonds.
(B) Validation of binding free energies obtained with nonequilibrium
free energy calculations against experimental results.
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training set, leading to little opportunity for improvement in
those regions of chemical space.

Both ligands from the validation set and those selected at each
iteration have narrow dynamic ranges of predicted binding free
energies (Figure 6C). Combined with the remaining model
errors, this leads to low correlations between the predicted and
reference free energies, when evaluated within those ligand sets.
Additionally, the predicted free energies of the strongest binders

selected at each iteration are often underestimated (Figure 6C).
Nevertheless, the models are still able to distinguish strongly and
weakly binding ligands, reaching near perfect true positive rates
for the yet unmeasured ligands in later iterations (Figure 6B).
Furthermore, every iteration provides further enrichment of
high affinity ligands in the training set.
3.3.3. Strongest Binders. We terminate the active learning

procedure for the prospective data set after six iterations and
further explore the identified highest affinity binders. The
chemical space exploration yields several ligands with computed
binding free energies below −17 kcal/mol that have been found,
while the lowest binding free energy of the experimentally
known ligands with this scaffold was above −14 kcal/mol
(Figure 5B). The best binding ligands found in the prospective
library are depicted in Figure 7. All the high affinity ligands show
a similar pattern of substitution at the same functional group. A
benzene ring serves as a linker to the scaffold, and two groups
decorate the ring: a single halogen atom at the 4 or 5 ring
position and a longer flexible hydrophobic group that sometimes
also contains an electronegative atom.

For the strongest binders, the increase in affinity is provided
by the interactions with hydrophobic residues in the vicinity. We
analyzed the most frequent contacts in the simulations for the
protein ligand complexes in Figure 7 and observed that the
optimized functional group mostly interacted with leucine,
methionine, and histidine side chains. The halogen atoms and
ether group also allow for favorable contacts with serine and
glutamate.

4. DISCUSSION
4.1. Ligand Selection. The nature of the chemical space

exploration by means of active learning (Figure 1) can be
strongly influenced by the strategy of ligand selection for ML
model training. The random and uncertain strategies provided a
decent general description of the compound library, yet for a
task of lead optimization, one might prefer to obtain a better
description of the most potent binders. The greedy and
narrowing ligand selection approaches rapidly find strongly
binding ligands, at the cost of better describing high affinity
ligands than low affinity ones. For example, the last iteration of
the active learning protocol on the prospective library predicts
binding free energies for the ligands with the strongest predicted
binding at an RMSE of 1.06 ± 0.14 kcal/mol, while for the
weakest predicted binders the RMSE is 1.69 ± 0.16 kcal/mol
(Figure 6C). This comes about due to the much smaller number
of training ligands in the low affinity regions (Figures 3C and
5C). Still, free energy calculations show only two of the 94 worst
predicted binders that were simulated to have stronger affinities
than the validation ligands do in experiments, indicating a low
false negative rate for such predictions.

Although in the prospective investigation of this work (Part
II) we used the narrowing selection strategy, in practical terms
computing many descriptors required for the first iterations may
be computationally expensive. Retrospectively, we have also
probed a simple variant of such a narrowing approach, where for
the first three iterations ligands are selected randomly and
afterward the procedure switches into the greedy mode. Such a
random2greedy strategy finds the strongest binders slower;
however, the final results in the end offer a good balance between
the identified high affinity ligands and the overall accurate
description of the chemical library (Figure S8).

While the selection strategy and ligand encoding have a strong
effect on the accuracy of the models, the AL procedure appears

Figure 5. Progress of the active learning algorithm used with the
prospective ligand library. Validation ligands highlighted inside the (A)
t-SNE embedding36 for the prospective library and (B) the distribution
of their experimental binding free energies. (C) Distribution of the
calculated free energies of the training ligands, and (D) those selected
for evaluation of binding free energies at each iteration. The inset in
panel (D) shows distribution means (with 95% confidence intervals)
and strongest binders found at each iteration. (E) Distribution of
predicted free energies over the whole prospective ligand library at each
iteration. Calculated binding free energies of the ligands selected to be
added to the training set at each iteration and free energies predicted by
themodels at those iterations all displayed on a t-SNE embedding of the
whole prospective ligand library. Arrows indicate progress of the active
learning protocol.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00752
J. Chem. Theory Comput. 2022, 18, 6259−6270

6266

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c00752/suppl_file/ct2c00752_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00752?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00752?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00752?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c00752?fig=fig5&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00752?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


to be robust with regard to the initial conditions. When starting
with disparate ligand selections from localized chemically similar
molecule clusters, the final models converge to comparable final
predictions (Figure S9). This is encouraging, as in practical
applications it may be convenient to initialize the AL cycle from
the chemically similar congeneric series of compounds with
experimentally readily measured affinities. The recall of the AL
approach appears to be robust and independent of the exact
number of actives in the set (Figure S10), thus making it an
appealing candidate for large scale prospective studies.

4.2. Predicted Weak Binders. While we have already
inspected the chemistry of the predicted high affinity
compounds (Figure 7), it is also interesting to understand
what molecules were identified by the models as particularly
weak binders. It appears that, in the prospective study (Part II), a

large fraction of molecules predicted as low affinity binders
contained sulfonyl groups (Figure 6C). Although alchemical
calculations did not find any of the sulfonyl containing ligands to
be strong binders, some did reach medium binding affinities of
−15 kcal/mol. Thus, sulfonyl should not necessarily be a
disqualifying factor for ligand affinity to PDE2. Yet, why does
this chemical group dominate the predicted low affinity ligands?

4.3. Molecular Composition Bias. We identified this
tendency to be largely due to use of inverse-frequency
weighting,62 which scales the impact of the ligands on the
model based on the inverse probability of their reference free
energy in the training set (SI Figure S7). While this technique
was intended to compensate for bias due to increasing number
of active compounds in the greedy and narrowing selections, it
also has a side-effect causing ligands from poorly sampled
regions of the ΔG spectrum to have a larger impact on the loss
function. Inverse-frequency weighting does not significantly
change the free energy distribution of sulfonyl containing
ligands. Instead it makes other ligands less likely to be classified
as weak binders. Therefore, while compensating for bias due to
the free energy distribution of the training set, inverse-frequency
weighting also exposes bias due to ligand composition.

One approach to control the molecular composition bias in
ligand selection for model training is to use ligand
representations that do not rely directly on molecular
composition but instead on physical interactions between the
ligand and the protein. Examples of such representations are
interaction energies computed using molecular mechanics force
fields (MDenerg) or protein−ligand interaction fingerprints
(PLEC). In the current study, however, none of these
representations were able to outperform simple 2D_3D ligand
based descriptors. More generally, training models on ligand-
only information leads to memorization of ligand features,63

even across different host proteins.64 A wishful thought is for the
model to learn the underlying physics by providing protein−
ligand interaction descriptors as input. In practice, though, doing
so hardly improves the accuracies of the models in question,64 at
least not without extensive sampling of the model applicability
space in the training set.65 Furthermore, many lead optimization
data sets such as that used here exhibit 2D bias as the molecules

Figure 6.Metrics of model accuracy (A, B) in active learning on the prospective ligand library and a comparison of the predicted and reference binding
free energies used in its sixth iteration (C). Predictions for validation ligands are compared to experimental binding affinities, while for all other ligands
free energies from simulations are used as the reference. Vertical dotted lines in (A) and (B) represent the switch from using models from multiple
ligand representations to a single one. For regressionmodels, a true positive rate can only be determined relative to a threshold. Here we use a threshold
of −13.29 kcal/mol, equal to the experimental binding free energy of the best binding validation ligand and depicted as dotted lines in panel (C). The
gray region indicates absolute unsigned errors of up to 1 kcal/mol. Error bars represent standard errors of the mean and for RMSE and TPR are
determined via bootstrapping.

Figure 7. Strongest binding ligands found, their calculated binding free
energies, and binding poses sampled with molecular dynamics.
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were often designed and synthesized iteratively based on
underlying 2D chemical similarity principles.

4.4. Further Improvements for the AL in Chemical
Space Exploration. Drawing ligand selections from a variety of
models built on different representations was expected to help
active learning more uniformly sample the chemical space in the
early iterations. However, since only the best predicted binders
were selected from every model, the narrowing scheme performs
similarly to the simple greedy protocol, which relies on a single
ligand representation (Figure 2). Both approaches are efficient
at quickly exploring a narrow branch of the chemical space to
identify potent binders. Interestingly, the uncertainty-driven
protocol performs well in an overall description of the chemical
library. It sacrifices the ability to quickly identify high affinity
binders, but includes a broad range of ligands in the training set,
thus providing a more accurate global description of the ligand
set. For future investigations, it might be a promising avenue to
combine uncertain and greedy protocols either into a narrowing-
style scheme, where the first few iterations are handled with the
uncertain selection rule and later iterations by the greedy one, or a
modified mixed scheme, where the ratio of the most uncertain to
most strongly binding predictions is changed at each iteration to
smoothly transition from the uncertain to greedy selection during
active learning.

Reliance on MD calculations for the ground truth to train the
active learning models allows one to perform ligand
optimization completely in silico. While docking would be a
faster alternative, MD calculations provide a much more
accurate measure of the binding free energy, one that explicitly
takes entropic contributions into account. Nevertheless, MD
still suffers biases due to force field errors and uncertainties from
incomplete sampling of phase space. While this approach can
eliminate the need for effort intensive ligand synthesis and
experimental affinity measurements during the course of the
ligand optimization process, affinities of the final ligand
selections still need to be experimentally validated.

5. CONCLUSION
In the current work we have developed an approach for lead
optimization combining active learning and alchemical free
energy calculations. In the first part of the investigation, we
calibrated the machine learning procedure on a large data set of
PDE2 inhibitors using experimentally measured affinities.
Subsequently, in the second part of the work we have used the
approach in a prospective manner relying on the calculated
binding affinities as an oracle in the active learning cycle.

All in all, we demonstrate that the active learning approach
can be combined with alchemical free energy calculations for an
efficient chemical space exploration, navigating toward high
affinity binders. The iterative training of machine learning
models on an increasing amount of data allows the number of
compounds to be evaluated with the more computationally
expensive methods to be significantly reduced. An active
learning procedure can be tuned to capture different character-
istics of the chemical library: in the current work we demonstrate
how to quickly identify themost potent binders, while sacrificing
the quality of the overall description of the chemical library. This
objective, however, can be altered by the particular choices
within the active learning loop.
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