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Bayesian discrete conditional transformation models
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Abstract: We propose a novel Bayesian model framework for discrete ordinal and count data based on
conditional transformations of the responses. The conditional transformation function is estimated from
the data in conjunction with an a priori chosen reference distribution. For count responses, the result-
ing transformation model is novel in the sense that it is a Bayesian fully parametric yet distribution-free
approach that can additionally account for excess zeros with additive transformation function specifi-
cations. For ordinal categoric responses, our cumulative link transformation model allows the inclusion
of linear and non-linear covariate effects that can additionally be made category-specific, resulting in
(non-)proportional odds or hazards models and more, depending on the choice of the reference distribu-
tion. Inference is conducted by a generic modularMarkov chainMonte Carlo algorithm wheremultivari-
ate Gaussian priors enforce specific properties such as smoothness on the functional effects. To illustrate
the versatility of Bayesian discrete conditional transformation models, applications to counts of patent
citations in the presence of excess zeros and on treating forest health categories in a discrete partial pro-
portional odds model are presented.
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1 Introduction

Discrete data commonly occur in almost every scientific area. In this article, we focus on the two
relevant cases of count data and ordinal data as special instances of discrete response structures.
Before the advent of generalized linear models (GLM, Nelder and Wedderburn, 1972), the pe-
culiarities of count data were either ignored or treated simply by log transformations (Sokal and
Rohlf, 1981). Then, the standard modeling approach for count data Y ∈ {0, 1, 2, . . .} became Pois-
son regression, Y|x ∼ Po(λx). Since the Poisson distribution often turned out to be too simplistic
for many applications, more advanced regression models were introduced as described, for exam-
ple, by Cameron and Trivedi (1998), Winkelmann (2008) and Hilbe (2011) for negative binomial
regression, Y|x ∼ NB(λx, ν) accounting for potential overdispersion. Generalized additive models
(GAM, Hastie and Tibshirani, 1990) unify these model types into one framework and drop the
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linearity assumption for the regression predictor. They require a fixed response distribution that
belongs to the exponential family.

Similar to counts, ordered categorical data Y ∈ {1, . . . , c + 1} occur in a manifold of scientific
disciplines such as medicine or the social sciences. A researcher in medicine, for example, may want
to distinguish between different kinds of infection grades, while an ecologist could be interested in
measuring forest health in terms of defoliation categories. Exploiting the natural ordering in these
kinds of data is firmly established in the statistical community by cumulative link models as shown
in McCullagh (1980). Prominent versions are the discrete proportional odds model and the discrete
proportional hazards model (Tutz, 2011). In its simplest form, the cumulative link model is given by
πr = P(Y = r ) = F(γr − xTβ) − F(γr−1 − xTβ), r = 1, . . . , c + 1 with some pre-specified cumula-
tive distribution function F or equivalently P(Y ≤ r ) = F(γr − xTβ) = π1 + π2 + . . . + πr , where∑c+1

r=1 πr = 1 is required and the ordering −∞ ≡ γ0 < . . . ,< γc+1 ≡ ∞ needs to be obliged. It is
possible to include category-specific regression effects xTβr , resulting in a (linear) non-proportional
odds (Peterson and Harrell, 1990) or the non-proportional hazards model, depending on the choice
of F .

The dissemination of Markov chain Monte Carlo (MCMC) simulation techniques led to the
development of Bayesian analogues for established models in the form of Bayesian GLMs (Dey
et al., 2000) with many extensions, for example, by Frühwirth-Schnatter and Wagner (2006),
Frühwirth-Schnatter et al. (2009) , Rodrigues (2003) and the Bayesian GAM (Brezger and Lang,
2006). Ghosh et al. (2006) describe a Bayesian treatment of zero-inflated regression models, and
Klein et al. (2015a) introduce zero-inflated and overdispersed count data to the framework of
Bayesian structured additive distributional regression (Klein et al., 2015b). In a non-transformation
environment, Lavine and Mockus (1995) and Dunson (2005), among others, apply a (strictly) iso-
tonic regression function for count responses on the basis of a Dirichlet process mixture prior.

To bridge the gap between discrete ordinal and count regression models, we consider count data
as ordinal categorical data with a very high number of intercept thresholds that, however, are not
estimated but rather are fixed by design at all non-negative integers. Methodologically, both ap-
proaches are unified by the idea of a direct parametrization of the transformation function. Simi-
lar to Siegfried and Hothorn (2020), we treat the smooth parametrization of the thresholds as the
defining element of the count transformation approach used in this article. While overdispersion
is absorbed by the smooth transformation of the counts, we supplement the model with a second
component that explicitly accounts for eventual zero inflation. For a discussion of the connection
between (binary) regression and transformation models, see Doksum and Gasko (1990).

To summarize, in this article, we aim to do the following:

� Propose a Bayesian approach for count transformation models based on flexible transforma-
tion functions that are inferred from the data, which–in its simplest form with linear covariate
shift effects–results in a distribution-free yet interpretable model framework for count data that
automatically accounts for over- and underdispersion in the response distribution,

� Account for excess zeros in two-component mixtures models,
� Propose a Bayesian approach for cumulative link transformation models with Bayesian pro-
portional odds and proportional hazards models as special cases,

� Allow for the inclusion of category-specific effects, resulting in non-proportional transforma-
tion model types,
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� Combine bothmodel types into the class of Bayesian discrete conditional transformationmod-
els (BDCTM) and establish it as an extension of Bayesian conditional transformation models
(BCTM) for continuous responses,

� Supplement all models with non-linear, possibly high-dimensional covariate effects and inter-
actions, and

� Illustrate BDCTM’s capability in the presence of count and categoric data in two applications.

The rest of this article is structured as follows: Section 2 introduces the model class we refer to
as BDCTM with a preliminary discussion of its building blocks. Section 3 contains a description of
posterior estimation. A simulation study evaluatingBDCTM’s performance in a count data setting is
presented in Section 4. Section 5 features an application on patent citation counts and an application
on forest health categories. We conclude in Section 6.

2 Bayesian discrete conditional transformation models

Inwhat follows,we introduce BDCTMas amodel class that represents a novel approach to the direct
estimation of the conditional distribution function FY|X=x(y|x) based on an independent sample of
discrete responses Y1, . . . ,Yn conditional on covariates x1, . . . , xn . We broadly distinguish between
cases of count data and ordered categorical data with a finite sample space, which have to be ad-
dressed by different assumptions on the sampling distribution and different basis functions.

Let y be an observation of a count or ordered categorical response variable Y and let xT =
(x1, . . . , xq) be a vector of observed explanatory variables. Moreover, let FZ be the cumulative dis-
tribution function of an a priori chosen reference distribution, linking a discrete and monotonically
increasing transformation function h(y|x) to the conditional distribution function FY|X=x(y|x) via
the connection

FY|X=x(y|x) = P(Y ≤ y|x) = FZ(h(y|x)). (2.1)

The responses are transformed towards the reference distribution conditionally on x by means of
the transformation function h(y|x). Through allowing different complexities of the transformation
function h(y|x), BDCTM is able to resemble and expand on established models for count and or-
dinal data without requiring a fixed response distribution. The encompassing goal of all models
described in this article is to obtain an estimate of the distribution function FY|X=x by means of esti-
mating h(y|x). In contrast to Bayesian CTMs for continuous responses, the transformation function
will no longer be bijective since a continuous reference distribution is linked to the CDF of a discrete
response variable.

We proceed with discussing each of the components of a BDCTM in more detail. Section 2.1 in-
troduces the basic structure assumed for the transformation functions. Sections 2.2 and 2.3 present
model variants for count data and ordinal responses, respectively, while Section 2.4 discusses a
generic basis function representation for the transformation functions. Section 2.5 introduces the
corresponding prior assumptions, Section 2.6 discusses partial contributions to the transformation
function, and Section 2.7 contemplates on the relevance of the choice of the reference distribution.
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2.1 Transformation functions
Similar to Hothorn et al. (2014), we assume an additive decomposition on the scale of the transfor-
mation function into J partial transformation functions

h(y|x) =
J∑
j=1

h j (y|x), (2.2)

where h j (y|x) are response-covariate interactions that are monotone only in direction of y. We de-
note partial transformation functions that depend only on the covariates simply by h(x). A simple
transformation model, for example, is obtained by setting h1(y|x) = hY(y) and h2(y|x) = h(x). We
explicitly allow the inclusion of linear and non-linear covariate effects, that is,

h(x) = zTβ + f1(ν) + . . . + fL(ν), (2.3)

where in x = (zT, νT)T , z contains all covariates associated with linear effects and ν contains covari-
ates with assumed non-linear effects f1, . . . , fL.

2.2 Count transformation models
We distinguish between two related model types for count data: simple shift count transformation
models that are able to deal with overdispersion and two-componentmixture transformationmodels
that can additionally deal with excess zeros.

Mean-shift count transformation models: Regular count transformation models are defined by
shifts of the non-linear baseline transformation function hY:

FY|X=x(y|x) = FZ(hY(�y�) − h(x)) (2.4)

where �y� denotes the floor function returning the greatest integer less than or equal to y. Since
all moments besides the conditional mean (which is shifted by h(x)) are captured solely by hY(�y�),
independently of the covariates, the resulting model is not affected by over- or underdispersion.
Model (2.4) is similar to a regular linear transformation model, but the application of the floor
function leads to jumps at the respective integers, such that the transformation function hY(y) is
only evaluated at the distinctive response values y ∈ {0, 1, 2, . . .} and, as a consequence, the overall
transformation is no longer invertible. The likelihood-based version of this model type restricted to
linear covariate shifts was discussed in detail in Siegfried and Hothorn (2020).

Two-component mixture count transformation models: Besides over- and underdispersion, count
data often come with an excess number of zeros, which needs to be accomodated in the model. One
possibility is to add a second component to the linear transformation function that captures zeros
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(Hothorn et al., 2018). A transformation function in that vein can be depicted as:

FY|X=x(y|x) = FZ(hY(�y�) − h(x) + 1(y = 0)(β0 − h0(x̃))), (2.5)

where h0(x̃) and h(x) can consist of different linear and non-linear effects of different sets of
covariates.–This two component mixture transformationmodel resembles a hurdle model with hur-
dle at zero, where the probability of an excess zero is perceived as the mean-shifted deviation from
a regular count transformation model at y = 0:

P(Y = 0|X = x) = FZ(hY(0) − h(x) + (β0 − h0(x̃))). (2.6)

The process generating non-zeros in this case is not explicitly truncated but stems from a transfor-
mation function that excludes the zeros.

All count transformation functions of this type have in common that they act on the floor
function �y�, resulting in step functions in direction of y and thus the desired discrete distribu-
tion functions. Comparing this to the ordinal response models discussed in the next section, count
data transformation models can also be considered as introducing a latent, continuous scale, im-
plicitly determined by the transformation function, with a large number of pre-specified thresholds
corresponding to the non-negative integers.

2.3 Cumulative link transformation models
For ordered categorical data, we distinguish between cumulative models with and without category-
specific shifts. From a transformation perspective, the latter are modeled in terms of response-
covariate interactions that can be linear or non-linear in direction of the respective covariate.

Proportional models: The simplest cumulative transformation model is:

FY|X=x(yr |x) = FZ(hY(yr ) − h(x)), (2.7)

where the term h(x), which is independent of the category r , constitutes the log-odds ratio to h(0) or
the log-hazard ratio in model types (2.4) and (2.7), depending on the choice of reference distribution.

Non-proportional models: Models of type (2.7) can be generalized by a category-specific shift
resulting in the following model:

FY|X=x(yr |x) = FZ(hY(yr ) + hr (x)), (2.8)

where hr (x) induces the category-specific shifts, resulting in linear or non-linear non-proportional
odds or hazards models depending on FZ and on whether hr (x) consists of linear or non-linear
effects. Partial proportional models as shown in the application in Section 5.2 consist of a mixture
of proportional and non-proportional effects. The reparameterization illustrated in the following
section guarantees that the implied probabilities P(Y = r ) = FZ(γr − hr (x)) − FZ(γr−1 − hr−1(x))
are always positive.
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2.4 A generic joint basis
We assume that each of the J partial transformation functions can be approximated by a linear
combination of basis functions c j such that

h j (y|x) = c j (y, x)Tγ j ,

where γ j is a vector of basis coefficients. Based on the additivity assumption in (2.2), the complete
conditional transformation function can be denoted as

h(y|x) = c(y, x)Tγ (2.9)

with joint basis

c(y, x) = (c1(y, x)T, . . . , cJ(y, x)T)T

and γ contains all partial basis coefficient vectors,

γ = (γ T
1 , . . . , γ T

J )
T. (2.10)

This allows us to write all discrete conditional transformation models treated in this article in the
general form:

FY|X=x(y) = FZ(c(y, x)Tγ ). (2.11)

We call models of type (2.11) Bayesian discrete transformation models (BDCTM). They can be
conceived as extensions of the versatile model class of BCTM for continuous responses that were
introduced by Carlan et al. (2020), taking the additional challenges arising from discrete responses
into account. In this tradition, a BDCTM is fully specified by a reference distribution FZ, the joint
basis c(y, x) and a vector of basis coefficients γ together with suitable priors, which are introduced
in the next section. The rest of this section discusses the generic basis that is used by the BDCTM
in greater detail.

Let a j denote a basis transformation of ywith dimension D1, collecting evaluated basis functions
Bj1d1 (y), d1 = 1, . . . , D1, and let b j denote a basis transformation of xwith dimension D2 collecting
evaluated basis functions Bj2d2 (x), d2 = 1, . . . , D2. The resulting effects are approximated by the
following linear combinations:

h j (y) =
D1∑
d1=1

γ j1d1Bj1d1 (y) = a(y)Tγ j1, h j (x) =
D2∑
d2=1

γ j2d2Bj2d2 (x) = b j (x)Tγ j2,

where γ j1 = (γ j11, . . . , γ j1D1 )
T and γ j2 = (γ j21, . . . , γ j2D2 )

T are partially reparameterized versions
of the vectors of corresponding basis coefficients β j1 and β j2. The conditional transformation
approach commonly involves response-covariate interactions (e.g., model types (2.6) and (2.8)),

Statistical Modelling xxxx; xx(x): 1–23



Bayesian discrete conditional transformation models 7

which is why we parametrize each partial transformation function generically as

h j (y|x) = c j (y, x)Tγ j = (a j (y)T ⊗ b j (x)T)Tγ j

=
D1∑
d1=1

D2∑
d2=1

γ j,d1d2Bd1 (y)Bd2 (x),
(2.12)

where the Kronecker product forms parametric interactions between the evaluated basis functions,
and γ j is a basis vector of dimension D = D1D2. A collection of special cases can be found in Section
2.6.

We require all transformation functions to be strictly monotonically increasing solely in the direc-
tion of y but not in direction of the explanatory variables such that FY|X=x(yj |x) < FY|X=x(yj+1|x)
for all yj < yj+1. This property needs to be accomodated in the basis. For this, we adopt the ap-
proach of Pya and Wood (2015) for monotonically increasing smooth functions. The vector γ j is
reparameterized as γ j = � j β̃ j , where � j = �D1 ⊗ ID2 and �D1 is given by the lower triangular ma-
trix of size D1 such that �D1,kl = 0 if k < l and �D1,kl = 1 if k ≥ l. The vector β̃ j of dimension
D = D1D2 contains a mixture of unexponentiated and exponentiated β-coefficients given by

β̃ j = (β j,11, . . . , β j,1D2 , exp(β j,21), . . . exp(β j,2D2), . . . , exp(β j,D1D2 ))
T. (2.13)

and ID2 is an identity matrix of size D2. An unconditional transformation function hY(y) is obtained
by setting D2 = 1 and a function of type h(x) is obtained by setting D1 = 1.

The vector of basis coefficients for the whole conditional transformation function h(y|x) is given
by γ = �β̃, where β̃ = (β̃T

1 , . . . , β̃T
J )

T is based on β = (βT
1 , . . . ,βT

J )
T. Matrix � is block diagonal

with � j as diagonal elements.
Of course, other basis specification could be employed to set up BDCTMs, as long as mono-

tonicity along y is ensured. For example, the increasing splines considered in continuous ordinal
regression (Manuguerra and Heller, 2010) would be a potential alternative. We rely on Bayesian P-
splines and their tensor product interactions since these have been extensively studied in Bayesian
structured additive regression and enable efficient and stable computations.

2.5 Priors
We adopt the principle of Bayesian P-splines (Lang and Brezger, 2004) and assume partially im-
proper multivariate Gaussian priors for the unconstrained vectors β j1 and β j2 (the reparameterized
vectors γ j1 and γ j2 are based on) such that

p(β j1|τ 2
j1) ∝

(
1

τ 2
j1

) rk(K j1)

2τ2j1

exp

(
− 1

2τ 2
j1

βT
j1K j1β j1

)
,

p(β j2|τ 2
j2) ∝

(
1

τ 2
j2

) rk(K j2)

2τ2j2

exp

(
− 1

2τ 2
j2

βT
j2K j2β j2

)
,

(2.14)
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where τ 2
j1 and τ 2

j2 aremarginal smoothing variances, rk(·) is the rank of amatrix, and K j1 and K j2 are
potentially rank deficient prior precision matrices. The generic formulation of the precision matrix
associated with γ j is given by

K j = 1

τ 2
j1

(K j1 ⊗ ID2 ) + 1

τ 2
j2

(ID1 ⊗ K j2),

where precision matrices K j1 and K j2 control the penalty in the direction of y and x respectively. For
unconditional transformation functions or pure covariate functions, K j1 and K j2 are respectively
set to 0 such that only the prior precision of the corresponding effect is used. Specific choices are
discussed in the next section. The model precision matrix K is given as the block diagonal matrix
with matrices K j as diagonal elements.

The smoothing variances τ 2
j1 and τ 2

j2 are associatedwith inverse gammapriors, τ 2
j1 ∼ IG(a j1, b j1)

and τ 2
j2 ∼ IG(a j2, b j2). All model parameters are collected in ϑ = (β1, . . . ,βJ , τ

2
11, τ

2
12 . . . , τ 2

J1, τ
2
J2)

T

with joint prior p(ϑ)

2.6 Partial transformations
We start this section by introducing the two types of basis functions we use in a, depending on
whether Y is a count variable or discrete ordinal followed by a brief discussion of choices for b
together with suitable precision matrices.

Smooth basis for count transformations: In case of a count response Y ∈ {0, . . .}, a consists of
B-spline basis functions Bd1 i.e. a j (y) = (B1(y), . . . , BD1 (y))

T. It may be useful to parametrize the
transformation function on the log-scale, i.e a j (log(y)) or a j (log(y+ 1)), where especially the latter
can be beneficial numerically if there are many small and some large counts. Smooth monotonic
effects of a count transformation subject to the reparameterization in (2.13) are supplemented with
a penalty matrix K j1 = DT

1 D1 based on a (D1 − 2) × D1 partial first-difference matrix D1 that is
zero except that Di,i+1 = −Di,i+2 = 1 for i = 1, . . . , D1 − 2 to achieve shrinkage towards a straight
line (Pya and Wood, 2015).

Discrete basis for ordinal categorical data For ordered categorical responses, Y ∈ {1, . . . , c + 1}
we assign one parameter to each category except for the reference category c + 1 (Hothorn et al.,
2018). As a basis, we use the unit vector ec of length c, i.e. a j (yr ) = ec(r ), where

Y = r ⇐⇒ ec(r ) = (0, . . . , 1, . . . , 0)T, r = 1, . . . , c. (2.15)

The corresponding precision matrix is K j1 = 0.

Bases for covariates effects For covariate effects we allow linear bases b j (z) = (z1, . . . , zp)T

together with precision matrix K j2 = 0 and B-spline bases for non-linear effects b j (ν) =
Statistical Modelling xxxx; xx(x): 1–23
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(B1(ν), . . . , BD2 (ν))
T with a second order random-walk precision matrix K j2. All bases involving

B-spline basis functions can be centered around zero for identification purposes.
Transformation random effects h j (x) = βg are based on the grouping indicator g ∈ {1, . . . ,G}.

The corresponding G-dimensional basis vector b j (g) has entry one if x belongs to group g and zero
otherwise. We set K j = IG for i.i.d. random effects. Regular non-monotonic tensor splines as used
in the forest health application in Section 5.2 can be retrieved by using the specification in (2.12) and
setting γ j = β j .

2.7 Reference distribution
In the context of discrete conditional transformationmodels, the reference distribution function FZ
plays the role of the inverse link function controlling the interpretational scale of the impact of the
explanatory variables. While it can be chosen arbitrarily in theory, we concentrate on distributions
with log-concave densities for FZ to guarantee uniqueness of the maximum likelihood estimate,
which usually will also imply unimodality of the posterior. Furthermore, it is advised to consider
characteristics such as right-skewness or the support of the count data distribution in the selection
process. Prominent choices for FZ are

� FSL(z) = (1 + exp(−z))−1, that is, the standard logistic distribution,
� 	(z), that is, the standard normal distribution, and
� FMEV(z) = 1 − exp(− exp(z)), that is, the minimum extreme value distribution

This results in logit, probit or cloglog interpretations of the covariate effects. Setting FZ = FSL, for
example, results in the discrete proportional odds model and FZ = FMEV results in the proportional
hazards model, with h(x) becoming the log-odds ratio or the log-hazard ratio to h(0), respectively
(Hothorn et al., 2018).

To reflect specific properties of the data-generating process, other link functions that have been
considered in the context of GLM, such as skew-logistic or t-distributed link functions to reflect
strong asymmetry or heavy tails, may be considered. However, given the flexibility of the transfor-
mation function, we do not expect large gains from such specifications since both asymmetry and
tail behaviour should be taken up by the transformation function, leaving only a small potential for
improving the fit via the link function. We therefore suggest to stick to the defaults and to select the
reference distribution according to preferences on model interpretation.

2.8 Transformation probability mass functions
In this section, we introduce the transformation probability mass functions (PMFs) resulting from
the different sampling assumptions that comewith count and ordinal categoric data as well as the re-
sulting transformation likelihoods. To emphasize that γ are partially non-linear reparameterizations
of β, we write γ (β). Following Hothorn et al. (2018), the log-transformationPMFof a conditionally
independent (count) response Y with unbounded support Y ∈ {0, 1, . . . , } is given by

log( fZ(y|β)) =
{
log[FZ(c(yk, x)Tγ (β))] k = 1
log[FZ(c(yk, x)Tγ (β)) − FZ(c(yk−1, x)Tγ (β)] k > 1.

(2.16)
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In case of an ordinal categorical response with bounded supportY ∈ {y1, . . . , yc+1}, the correspond-
ing conditional distribution function needs to take the additional constraint for the reference cat-
egory c + 1, P(Y ≤ yc+1|X = x) = FZ(h(yc+1|X = x)) = 1 into account. The transformation PMF
is then given by

fZ(y|β) =

⎧⎪⎨
⎪⎩
[FZ(c(yk, x)Tγ (β)))] k = 1
[FZ(c(yk, x)Tγ (β)) − FZ(c(yk−1, x)Tγ (β))] k = 2, . . . , c
[1 − FZ(c(yc, x)Tγ (β))] k = c + 1.

(2.17)

With the convention FZ(h(y0)) = FZ(h(−∞)) = 0 and FZ(h(yc+1)) = FZ(h(∞)) = 1, the conditional
PMF simplifies to

fZ(yk|β) = FZ(c(yk, x)Tγ (β) − FZ(c(yk−1, x)Tγ (β)) (2.18)

encompassing count and ordered categoric models in a unified framework (Hothorn et al.,
2018). Based on (2.18), the transformation log-likelihood for independent observations (yi , xi ), i =
1, . . . , n is given by

l(β) =
n∑
i=1

log(FZ(c(yi , xi )Tγ (β)) − FZ(c(yi − 1, xi )Tγ (β))).

The likelihood is chosen according to the discrete response structure only, while the transformation
function determines whether excess zeros are accounted for or if the category-specific effects are
included, for example. With all building blocks in mind, a BDCTM can be fully specified by the
set {ϑ|FZ, c, πϑ (·)} of unknown model parameters ϑ , given a choice for the basis c, the reference
distribution FZ and the joint prior πϑ (Carlan et al., 2020).

3 Posterior inference

For Bayesian inference, we rely onMCMC simulation techniques. We sketch the most relevant parts
of the algorithm in this section.

Update of the basis coefficients: The log-full conditional of the basis coefficients (up to an additive
constant) is given by

log(p(β|·)) ∝ l(β) − 1
2
βTKβ,

Statistical Modelling xxxx; xx(x): 1–23
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where the second termarises from themultivariateGaussian prior. The gradient of the unnormalized
log-posterior is needed for inference and is given by

s(β) =
n∑
i=1

fZ(c(yi , xi )T�β̃)c(yi , xi )T�C − fZ(c(yi − 1, xi )T�β̃)c(yi − 1, xi )T�C

FZ(c(yi , xi )T�β̃) − FZ(c(yi − 1, xi )T�β̃)
− Kβ,

where C is a diagonal matrix of size D with entries

Cdd =
{
1 if β̃d = βd

exp(βd), otherwise.

Strong dependencies among the variables (which are partly due to the monotonicity restriction)
complicate the sampling from the posterior distribution. This is further impeded by themixed linear-
non-linear dependence of the transformation function on β and β̃, respectively. Therefore, we use
the No-u-turn sampler (NUTS, Hoffman and Gelman, 2014) with dual averaging (Nesterov, 2009)
for efficient exploration of the target distribution. The adaptive and dynamic nature of NUTS en-
ables a streamlined estimation process that abolishes the need for costly preliminary tuning runs
(needed for setting the number of leapfrog steps and the step size parameter) at the expense of some
computation time per iteration. In the following, we distinguish between the burn-in period, which
determines the number of samples that gets thrown out at the beginning of a Markov chain, and
the warm-up period, which controls the length of the adaptive phase of the algorithm. Due to the
high dependence between parameter blocks, all basis coefficients are updated in one step, followed
by successive updates of the smoothing variances.

Update of the smoothing variances: In the univariate case, updating the smoothing variance is
straightforward by using the full-conditional:

τ 2
j |· ∼ IG

(
a j + rk(K j)

2
, b j + 1

2
βT
j K jβ j

)
,

where K j is specified as shown in Section 2.6. However, in case of tensor splines based on a multi-
variate Gaussian prior with precision matrix,

1

τ 2
j1

(K j1 ⊗ ID2 ) + 1

τ 2
j2

(ID1 ⊗ K j2), (3.1)

we need to consider the generalized determinant of (3.1) when updating the smoothing variances.
This aggravates sampling, which is why we introduce an anisotropy parameter ω j ∈ (0, 1), resulting
in an alternative representation of the precision given by

1

τ 2
j

K j = 1

τ 2
j

[
ω j (K j1 ⊗ ID2 ) + (1 − ω j )(ID1 ⊗ K j2)

]
,
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where ω j controls howmuch prior information is assigned to each of the two covariates of the tensor
spline. For the BDCTM, we consider a discrete prior for ω j , which allows to pre-compute a finite
set of generalized determinants that can be used within the MCMC simulations (see Kneib et al.,
2019) for a detailed explanation of this approach).

In the following, the hyperparameters of the inverse gamma prior are set to a j1 = a j2 = 1, b j2 =
b j2 = 0.001, resulting in good and stable performance in all investigated cases.

Numerical stability: Klein et al. (2015a) observed numerical problems if zero-inflation was wrong-
fully assumed when in fact, for example, a simple Poisson model was due. One reason is that the
estimated predictor for the probability of an extra zero tends towards minus infinity in log-space.
This is usually not an issue in models of type (2.5) as the coefficients that are related to the zero
component are not exp-transformed. In cumulative models with category-specific effects, however,
flat sections can lead to divergent transitions in which case weakly identified coefficients have to be
dropped from the model (Pya and Wood, 2015). This issue can be remedied by adding ε = 10e−6

to the diagonal of the precision matrix in this case. Moreover, the target acceptance rate can be
increased to up to .99 to keep transitions in check.

Software: All computations were carried out in R version 4.1.0 (R Core Team, 2020). To improve
computation time, likelihoods and score functions were implemented via the package Rcpp (Eddel-
buettel et al., 2011). The mass matrix adaption scheme was adopted from adnuts (Monnahan and
Kristensen, 2018).

4 Simulation study

In this section, we present a simulation experiment that highlights the possible advantages of the
count transformation approach in general and that compares our Bayesian approach with the
likelihood-based linear count transformation model by Siegfried and Hothorn (2020).

Count transformation models can mimic most well-known models for count data. There-
fore, a meaningful simulation study in this setting needs to consider the sensitivity of the flexible
transformation function with respect to the true data-generating process. In other words, it needs
to investigate to what extent the flexible transformation function is able to accommodate eventual
overdispersion and other characteristics of possibly complex data generating processes.

Simulation design: We use a similar simulation design to Siegfried and Hothorn (2020) with the
following properties:

� One covariate is generated via z ∼ U[0, 1].
� Conditional on z, we consider five different count data generating processes (DGPs)
– Poisson with mean and variance E(Y|z) = V(Y|z) = exp(1.2 + 0.8z),
– Negative Binomial withE(Y|z) = exp(1.2 + 0.8z) and varianceV(Y|z) = E(Y|z) + E(Y|z)2/3,
and

– Three different count data-generating processes according to FZ(a(8)(log(y+ 1))Tγ − zβ),
β = 0.8 with the reference functions FZ = FSL (logit ), FZ = 	 (probit ), FZ = FMEV (cloglog).
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Figure 1 Comparison of count data-generating processes on basis of centered out-of-sample log-likelihoods
obtained from the respective model. Larger out-of-sample log-likelihoods indicate a better performance of the
corresponding model.

� Each dataset was estimated by their corresponding true (oracle) models, that is, a Poisson
GLM (mp), a negative binomial GLM (mnb), BDCTMs (bmlo denotes the logistic model,
bmpr denotes the probit model and bmcll denotes the cloglog model) and a frequentist count
transformation model (Siegfried and Hothorn, 2020) implemented in the R-package cotram
(Siegfried and Hothorn, 2021), where mlo stands for the logistic model, mpr stands for the
probit model and mcll for the cloglog model. Each model type was estimated for each DGP,
resulting in 5 × 8 = 40 models in total.

� Training and validation sample sizes are set to 250 and 750, respectively.
� The simulation experiment was repeated in 100 replications with a total iteration number of
2,000 and a burn-in and warm-up phase of length 1,000, such that 1,000 iterations are being
used for computing the estimates.

Eachmodel fit is quantified bymeans of the centered out-of-sample log-likelihood resulting from
the difference between the out-of-sample log-likelihoods of the models and the out-of-sample log-
likelihoods of the true data-generating processes evaluated on a hold-out sample, taking a predictive
perspective that implicitly controls for differenes in complexity between the models. The results pre-
sented in Figure 1 confirmmost of the findings of Siegfried andHothorn (2020) regarding themerits
of the count transformation approach.
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Based on these results, we can make the following statements:

� The Poisson model, being the most rigid model, shows the worst performance with respect to
the out-of-sample log-likelihood, if misspecified.

� As expected, the negative binomial model performs well for the Poisson and the overdispersed
case, but shows inferior performance in the remaining scenarios.

� The fit of both the BDCTMand the cotrammodel is robust for all consideredDGPs, effectively
redeeming the promise of providing a flexible model framework for count data that is applicable
in many situations.

� The BDCTM seems to perform better than cotram in the more complicated scenarios and
worse especially in settings where a simple Poisson model would be due; this may be less sur-
prising considering BDCTM’s spline-based nature in comparison to cotram’s use of Bernstein
polynomials.

The simulation study confirms the robustness of the BDCTM in the presence of different data-
generating processes. Its fit is satisfactory in all investigated cases and highly competitive in the
more complicated scenarios. While the Poisson distribution only works well in simple scenarios, the
negative binomial distribution also works quite well for most scenarios (except the Poisson case).
Still, BDCTMs outperform negative binomial regression uniformly over all but the Poisson and the
negative binomial scenario.

5 Applications

We illustrate possible applications of the BDCTM in this section. For better readability, we add
the number of basis functions to the basis, for a(q). Code required for reproducing the following
applications is openly accessible.*

5.1 Patent citations with excess zeros
Similar to an author of a scientific publication, an inventor who applies for a patent has to cite
all existing patents their work is based on. We analyze the citation number (ncit : y) of patents
granted by the European Patent Office (EPO). The considered dataset includes five dummys and
three continuous variables. The available continuous covariates are the grant year (year ), the number
of the designated states (ncountry) and the number of patent claims (nclaims). (For a full description
of the explanatory variables in the data set of n = 4,805 observations, see Jerak andWagner 2006).A
high rate of zeros (≈ 46%) and a big spread ncit ∈ {0, . . . , 40} hint on the presence of zero-inflation
and overdispersion. A rigorous investigation of this presumption has to consider whether this is
holds conditional on the covariates. We let the sampler run for 2,000 iterations with a burn-in and
warm-up phase of length 1,000 such that 1,000 iterations are obtained for inference.

1Source code available at https://github.com/manucarl/bdctm showcase.
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Figure 2 Patent citations. Rootograms of the linear Poisson, the linear negative binomial and the simple linear
BDCTM model.

We start our investigation with the simple linear transformation model (BDCTMlin):

FSL(a8(log(�y+ 1�))Tγ − zTβ), (5.1)

where the linear predictor zTβ contains all available covariates. As a first in-sample assessment
of the practical capabilities of our transformation approach, we want to inspect to what extend
the observed frequencies obsr = ∑n

i=1 1(yi = r ) in the data set match the expected frequencies
expr = ∑n

i=1(r ; γ̂i ) derived from the model. Figure 2 displays the rootograms as introduced by
Kleiber and Zeileis (2016) obtained from the model in Equation (5.1), from a Poisson and from
a negative binomial GLM with all covariates included in the predictors. Rootograms make use of a
horizontal reference line (at zero) to highlight the discrepancies between observed and expected
frequencies. The Poisson model clearly underfits the zeros and exhibits an undulating pattern,
overpredicting counts between 1 and 4, and underpredicting the rest, which is a sign of sub-
stantial overdispersion. The flexible transformation function of BDCTM is able to emulate the
overdispersion-robust negative binomial model, which is reflected in the bars being closely aligned
with the x-axis.

In summary, this first visual inspection of the goodness-of-fit confirms that BDCTM is able to
ameliorate the impact of overdispersion on the model fit.

We also want to pursue the assumption of excess zeros. For this, we consider a two-component
model (BDCTMhurdle-lin) in the vein of (2.5) with h(x) = h0(x) = zTβ:

FSL(a8(log(�y+ 1�))Tγ − zTβ + 1(y = 0)(β0 − zTβ)),

where, again, z contains all explanatory variables in the data set. As GLM analogues, we consider
the zero-inflated versions of the Poisson and of the negative binomial models. Previous analyses
of the data set revealed that assuming non-linear relationships for the continuous covariates
can improve the estimation results (Klein et al., 2015a). This does not automatically hold for
BDCTM, because the explanatory variables impact the response on a different scale (the scale of
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16 Manuel Carlan and Thomas Kneib

Figure 3 Patent citations. Posterior mean estimates of the effects of nclaims, ncountry and year on the
log-odds ratio, together with 95% credible intervals. Remaining covariates are held constant at their mean or
are set to zero in case of dummy variables. Estimates belong to BDCTMnl.

the transformation). Therefore, we estimated models of type (2.4) and (2.5), while replacing the co-
variate functions with additive functions of type (2.3), that is, h(x) = h0(x) = zTβ + f (ncountry) +
f (year) + f (nclaims), where z now only contains the discrete covariables. In what follows, we refer
to these partially non-linear models as BDCTMnl and BDCTMhurdle-nl, respectively. Figure 3 shows
the estimated non-linear effects of ncountry, year and nclaims on the log-odds ratio from model
BDCTMnl.

In the next step, we compared all models in terms of randomized quantile residuals as pro-
posed by Rigby et al. (2008). For every observation yi , we computed residuals r̂i = 	−1(ui ) where
	−1 is the quantile function of the standard normal distribution and ui is randomly drawn from
U(F(yi − 1)|γ̂ ), F(yi |γ̂ )) with plugged in estimates γ̂ . F(·|γ̂ ) is the estimated conditional distribu-
tion function. Residuals obtained from the true model follow a standard normal distribution, which
is why deviations can be checked by quantile-quantile plots. Figure 4 shows theQ-Q plots of the con-
sidered models. Again, the Poisson model reveals a lack of fit represented by the strong deviations
from the normal line, which also holds true for its zero-inflated counterpart to a somewhat lesser
extend. The negative binomial models provide a considerably better fit but seem to be surpassed by
the BDCTMs, which indicate the best aptitude for infering the distribution of patent citations while
at the same time providing a flexible ‘sans souci’ approach, abolishing the need to search for the
‘right’ count distribution in general.

For amore rigorous assessment of the out-of-sample performance,we conclude our analysis with
an evaluation based on proper scoring rules. Originally proposed by Gneiting and Raftery (2007),
they serve as summary measures for the predictive power of a model. Based on data y1, . . . , yR
in a validation sample and estimated probabilities p̂r = ( p̂r0, p̂r1, . . .) obtained from the predictive
distribution p̂rk = f (yr = k|γ̂ ), scores are computed by taking the sum of the individual score con-
tribution S= ∑R

r=1 S( p̂r , yr ). We consider the three most prominent scores:

� Brier score: S( p̂r , yr ) = −∑
k(1(yr = k) − p̂rk)2,

� Logarithmic score: S( p̂r , yr ) = log( p̂r yr ) (out-of-sample likelihood), and
� Spherical score: S( p̂r , yr ) = p̂ryr√∑

k p̂
2
rk

.
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Figure 4 Patent citations. Comparison of quantile residuals obtained by BDCTM models with and without
addititional zero component with various generalized linear and zero-inflated models.

The probabilistic forecasts collected in p̂r for the responses yr are assessed by 10-fold cross-
validation. Table 1 shows the score sums obtained from the four BDCTMmodels introduced in this
section, together with the Watanabe Information Criterion for Bayesian models (WAIC, Watanabe
(2010)). The cotrammodel is specified equivalently to BDCTMlin, which is why their similar perfor-
mance in terms of quadratic and spherical score is not surprising. Note that the logarithmic score
considers only one probability of the predictive distribution and is therefore vulnerable to outliers
and extreme observations, which could explain the better performance of BDCTMlin in that regard.
Both, considering excess zeros and non-linear effects, come with improved predictive power, cul-
minating in the BDCTMhurdle-nl’s dominating performance across all measures besides the WAIC
where the zero component did not lead to improvements. The scores could be further improved by
a model selection procedure as shown in Klein et al. (2015a).

Table 1 Patent citations. Score sums of all models obtained via 10-fold cross-validation.
Calculation of the WAICs on basis of the whole data set. Best results are depicted in bold font

Model Logarithmic Quadratic Spherical WAIC

BDCTMlin −8119.67 −3444.53 2530.84 6257.85
BDCTMhurdle-lin −8091.47 −3438.87 2534.39 6224.634
BDCTMnl −8110.94 −3440.52 2533.98 6040.573

BDCTMhurdle-nl −8044.69 −3427.77 2543.44 6184.174
cotram −8174.92 −3443.07 2531.23 -
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Figure 5 Forest health: estimated non-linear category-specific effect of canopy, “no defoliation” in red,
“severe defoliation” in blue, together with 95%-credible intervals.

5.2 A partial proportional odds model for forest health assessment
This short analysis involving non-linear category-specific effects is based on data from the forest of
Rothenbuch (Spessart) over the years 1982–2004. Every year, the health status is evaluated and cat-
egorized by the response variable defol measuring defoliation grades. Since data is sparse in some
of the original nine categories (0%, 12.5%, . . . , 100%), we aggregated them into the three defolia-
tion grades: 1 = no (0%), 2 = weak (12.5%− 37.5%) and 3 = severe (≥ 50%). Among others, the
dataset comes with the covariates canopy (canopy density in percentage), x, y (x- and y-coordinates
of location) and id (tree location identification number.). (Check Fahrmeir et al. (2013) for a full de-
scription of the dataset). The goal of this analysis is to determine the effect of the covariates on the
degree of defoliation. Since the forest data is notorious for confounding and high autocorrelation,
we let the sampler run for 10,000 iterations with a burn-in and warm-up phase of length 1000.

For this, we set up the partial proportional odds model

FY|X=x(yr ) = FSL(e(defol )Tγ1 + (e(defol )T ⊗ b(10)(canopy)T)Tγ2

− b(id )Tβ3

− (b(10)(x)T ⊗ b(10)(y)T)Tβ4),

where we assume non-linear category-specific shifts of canopy , a transformation random effect for
the tree location groups and a spatial non-linear effect on the basis of a tensor spline for the coor-
dinates x and y. Figure 5 shows the estimated non-linear category-specific effect for canopy . The
section for 0 ≤ canopy ≤ 25 displays almost parallel curves, which then vary more and more indi-
vidually until they even cross. The variance of the estimated random effect for id is 2.42, and the
standard deviation is 1.55. Figure 6 shows the estimated random intercepts. In a preliminary run, we
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Figure 6 Forest health: median-sorted estimated random intercepts for tree location groups.

observed the same problems with confounding in location-specific effects as Fahrmeir et al. (2013),
which could be improved to some extend by adding the spatial effect. It is displayed in Figure 7.

6 Discussion

With the BDCTM, we present a novel Bayesian model framework for discrete data that combines
cumulative link models with models for count data through directly modeling the conditional dis-
tribution function. Approaching these discrete data structures from the transformation perspective
allows us to unify models that are usually treated seperately under the same umbrella. The BDCTM
is flexible in the sense that it permits the user to control interpretability by means of choosing a
reference distribution in conjunction with an additive transformation function. Estimating the con-
ditional distribution function directly makes deriving distributional aspects such as the conditional
quantiles straightforward by numerical inversion of FZ(h(y|x) (Siegfried and Hothorn, 2020). Fur-
thermore, our Bayesian inferential procedure lets us obtain credible intervals and other quantities
of interest without having to rely on large sample approximations. All high-dimensional effects are
joined with suitable prior specifications, resulting in smooth effects across the board.

We demonstrate BDCTM’s ability to handle under- or overdispersion in an adaptive fashion
without restrictive distributional assumptions in Sections 4 and 5. A short investigation of a non-
linear non-proportional odds model highlights the versatility of our approach. In a model selection
context, the unifying scope of the transformation function turns out to be a valuable simplification
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Figure 7 Forest health: estimated two-dimensional spatial effect with triangles indicating observed tree
locations based on 2nd order penalties.

because there is just one “predictor” that has to be constructed. Though not shown in this article,
it is possible to establish a relationship between overdispersion and the covariate effects by includ-
ing full non-linear interactions between the count response and the respective explanatory variable.
Constructing the conditional transformation function can be difficult as informed decisions about
which effects to include and to interact with the response are required. Therefore, it would be desir-
able to develop an effect selection strategy via spike and slab priors in the spirit of Klein et al. (2021)
for the BDCTM that could effectively tell the user what kind of effect is impacting the regular count
process, the zero component or overdispersion.

As demonstrated in Section 5.2, our cumulative link transformation approach can be supple-
mented with category-specific linear or non-linear effects by modeling them as response-covariate
interactions. This way, popular models such as (non-)proportional odds or hazards models can be
retrieved simply by specifying the reference distribution. Both the count and the ordinalmodel could
be supplemented with a more flexible link function as proposed by Aranda-Ordaz (1983), that is,

F(h) = 1 − (λ exp(h) + 1)−λ−1
,

which depends on an auxiliary parameter λ ∈]0,∞[, mitigating between the log-log link for λ → 0
and the logistic link when λ → 1. Horowitz (2001) avoided specifying the link function entirely. A
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Bayesian version would entail prior distributions on the space of nonparametric continuous refer-
ence distribution.

To conclude, we believe that in this article, the BDCTM is established as a flexible, modular
modeling framework in the world of discrete data that is competitive in many modern scenarios.
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Supplementary material is available online.
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