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Abstract: Untargeted metabolomics is a promising tool for identifying novel disease biomarkers
and unraveling underlying pathomechanisms. Nuclear magnetic resonance (NMR) spectroscopy is
particularly suited for large-scale untargeted metabolomics studies due to its high reproducibility
and cost effectiveness. Here, one-dimensional (1D) 1H NMR experiments offer good sensitivity at
reasonable measurement times. Their subsequent data analysis requires sophisticated data prepro-
cessing steps, including the extraction of NMR features corresponding to specific metabolites. We
developed a novel 1D NMR feature extraction procedure, called Bucket Fuser (BF), which is based
on a regularized regression framework with fused group LASSO terms. The performance of the BF
procedure was demonstrated using three independent NMR datasets and was benchmarked against
existing state-of-the-art NMR feature extraction methods. BF dynamically constructs NMR metabo-
lite features, the widths of which can be adjusted via a regularization parameter. BF consistently
improved metabolite signal extraction, as demonstrated by our correlation analyses with absolutely
quantified metabolites. It also yielded a higher proportion of statistically significant metabolite
features in our differential metabolite analyses. The BF algorithm is computationally efficient and it
can deal with small sample sizes. In summary, the Bucket Fuser algorithm, which is available as a
supplementary python code, facilitates the fast and dynamic extraction of 1D NMR signals for the
improved detection of metabolic biomarkers.

Keywords: NMR metabolomics; data preprocessing; feature extraction

1. Introduction

Untargeted metabolomics, which is the comprehensive study of all metabolites that
are detectable in one biological specimen, is a promising tool for identifying novel disease
biomarkers and gaining deeper insights into underlying disease pathomechanisms. The
two main analytical methods that are employed for untargeted metabolomics are hyphen-
ated mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. The latter
approach is particularly suited for large-scale studies that involve hundreds to thousands of
samples due to its high reproducibility across measurement time and instruments, minimal
sample pretreatment processes, and cost effectiveness. Here, one-dimensional (1D) 1H
NMR experiments, which simultaneously detect all proton-containing metabolites present
at sufficient concentrations in a sample, offer good sensitivity at reasonable measurement
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times. Numerous studies have already demonstrated the ability of 1D 1H NMR to reveal
novel biomarkers, e.g., in the context of kidney [1–4] and heart diseases [5,6], as well as
all-cause mortality [7,8].

However, the subsequent analysis of 1D 1H NMR spectra requires sophisticated data
preprocessing strategies. Prior to any statistical evaluation, NMR signals that correspond
to specific metabolites need to be extracted from the spectra. Each extracted NMR signal or
feature should ideally represent the same metabolite across the complete sample cohort.
This requirement, which is of paramount importance for subsequent statistical and bioin-
formatic data analyses, is challenged by the fact that NMR signal positions can vary across
specimens due to differences in sample pH, ionic strength, and measurement temperature,
as well as metabolite–protein interactions. Potentially the most popular NMR feature
extraction method that is used to compensate for NMR signal shifts across sets of spectra is
equidistant bucketing or binning. Each spectrum is split into buckets/bins of equal size
and the signals within each bucket are summed or integrated. This method is able to sub-
stantially reduce the high dimensionality of 1D 1H NMR spectral data and can thus lower
both the burden of multiple tests and the problem of overfitting in the subsequent statistical
hypothesis testing and machine learning data analysis. However, this method is not able to
resolve strongly overlapping NMR signals in crowded regions, which are typically present
in the 1D 1H NMR spectra of complex biofluids, such as urine or plasma. Over recent years,
several more sophisticated methods for 1D 1H NMR metabolic feature extraction have
been proposed, including Gaussian binning [9], adaptive binning [10], adaptive intelligent
binning [11], and dynamic adaptive binning [12], as well as the statistical recoupling of
variables (SRV) [13] and the pJRES binning algorithm (JBA) [14]. Especially the latter two
approaches, which perform clustering of adjacent spectral regions based on covariance to
correlation ratios, are computationally feasible even in the case of large metabolomics data
sets [14].

In this study, we developed the Bucket Fuser (BF) algorithm, which is a novel 1D 1H
NMR feature extraction procedure that is based on a regularized regression framework,
which uses fused group Least-Absolute Shrinkage and Selection (LASSO) terms. BF dy-
namically constructs NMR features, which predominantly comprise the same NMR signals
across one dataset. We demonstrated its performance using three different NMR datasets
and benchmarked it against existing state-of-the-art NMR feature extraction methods, in-
cluding equidistant binning, SRV, and JBA. Extensive performance evaluations were carried
out via hypothesis testing and correlation analyses using absolutely quantified metabolite
concentrations, including a thorough investigation of sample size dependence. The BF
algorithm is freely available as a python implementation.

2. Methods

Let Y be a n× p matrix with NMR metabolic fingerprints yi = (yi1, yi2, . . . , yip) in its
rows, where i = 1, . . . , n indicates the different spectra and yi1 to yip are the corresponding
log2-transformed spectral intensities from position 1 to p, respectively. In this study, we
used the log2-transformed spectra to account for the large dynamic range and heteroscedas-
ticity of the data. Since the logarithmic transformation can not deal with negative values,
which occasionally occur in 1D 1H NMR spectra due to baseline distortions, we replaced
the corresponding numbers by their absolute values. This procedure is not unique, but
it only affects regions that do not contain clear metabolite signals. We modeled the data
matrix Y using a penalized linear regression model:

B̂ = arg min
B

{
||Y− B||2F + λ

√
n

p−1

∑
j=1
||B·j − B·j+1||2

}
(1)

where ||.||F is the Frobenius norm and ||.||2 is the l2 norm, B is the parameter matrix that
is fitted to the observed data Y, B̂ is the corresponding estimate, and B·j indicates the jth

column of B. The penalty term λ
√

n ∑
p−1
j=1 ||B·j − B·j+1||2 [15] was added to segment the
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data into equal segments across all spectra, which could be understood as follows. Firstly,
when we use a limit of n = 1, the penalty becomes λ ∑

p−1
j=1 |B1j− B1,j+1|, which is a standard

fused LASSO regularization, as introduced by [16] and as used for data smoothing or hot
spot detection in array comparative genomic hybridization (CGH) data, for example [17].

Secondly, a group penalty term ∑j

√
||β(j)||22 = ∑j

√
β2

1(j) + . . . + β2
nj(j) [18] is used to

penalize parameter groups j, which consist of nj parameters, and as a consequence, either
all of the parameters of a group become zero or they are all determined to be unequal

zero. The penalty λ
√

n ∑
p−1
j=1 ||B·j − B·j+1||2 = λ

√
n ∑

p−1
j=1

√
∑n

i=1(Bij − Bi,j+1)2 combines
both aspects, i.e., it enforces the sparseness of the parameter differences between adjacent
spectral positions and enforces this sparseness simultaneously across all spectra i. Note
that the coefficient λ

√
n ensures that λ does not scale with n.

2.1. Algorithm

The optimization problem that is shown in Equation (1) is a convex optimization problem
that can be straightforwardly solved using the alternating direction method of multipliers
(ADMM) [19]. This algorithm solves convex optimization problems by breaking them into
smaller pieces. For this, we constructed the augmented Lagrangian:

Lρ(B, G, U) = ||Y− B||2F + λ
√

n
p−1

∑
j=1

√
n

∑
i=1

G2
ij

+Tr
[
UT · (B · D− G)

]
+

ρ

2
||B · D− G||2F , (2)

where:

Dij =

{ 1 for i = j
−1 for i = j + 1
0 else

,

for i = 1, . . . , p and j = 1, . . . , p − 1, in which we introduced the auxiliary parameter
ρ > 0 and the auxiliary parameter matrices U and G ∈ Rn×p−1. ADMM then yielded the
update scheme:

B(k) = arg min
B

Lρ(B, G(k−1), U(k−1)) ,

G(k) = arg min
G

Lρ(B(k), G, U(k−1)) ,

U(k) = U(k−1) + ρ(B(k) · D− G(k)) ,

for the parameters at iteration k. Here, B(k) and G(k) have closed analytical solutions, which
can be efficiently computed. The final update scheme then reads:

B(k) =
(

Y +
ρ

2
(G(k−1) −U(k−1)/ρ)DT

)(
1 +

ρ

2
DDT

)−1
,

G(k)
·j = R λ

√
n

ρ

(B(k) · D)·j +
U(k−1)
·j
ρ

, for j = 1, . . . , p− 1,

U(k) = U(k−1) + ρ(B(k) · D− G(k)) ,

where:

Rt(x) =
(

1− t
||x||2

)
+
x ,

where Rt(x) is the proximal operator of the group LASSO regularization and A·j indicates
the jth column of matrix A. The step-size was defined as ρ. For initialization, we chose
matrices B(0), G(0), and U(0) with zeros at all positions. The BF algorithm is available as a
python implementation from File S1 in the Supplementary Materials and details about the
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definition of the hyperparameter λ, as well as our convergence analyses of the BF algorithm,
can be found in Sections S5 and S6 in the Supplementary Materials.

2.2. Metabolomic Data Acquisition and Processing
2.2.1. Datasets

We assessed the performance of our algorithm using three 1D 1H NMR metabolic
datasets, all of which were acquired using a 600 MHz Bruker Avance III spectrometer
(Bruker BioSpin GmbH, Rheinstetten, Germany) that was equipped with a cryogenic
probe head and an automatic cooled sample changer. The first dataset consisted of 1D
1H NMR spectra from 106 urine specimens that were collected from patients 24 h after
cardiac surgery with cardiopulmonary bypass (CPB) use [1]. Of these 106 patients, 34 were
diagnosed with postoperative acute kidney injury (AKI). 400 µL of each urine specimen
were mixed with 200 µL of 0.1 mol/L phosphate buffer, pH 7.4, and 50 µL of 29.02 mmol/L
3-trimethylsilyl-2,2,3,3,-tetradeuteropropionate (TSP) dissolved in deuterium oxide as
internal standard (Sigma-Aldrich, Taufkirchen, Germany), and the 1D 1H NMR spectra
were acquired using a 1D nuclear Overhauser enhancement (NOESY) pulse sequence with
solvent signal suppression by presaturation during relaxation and mixing time [20]. The
NMR spectra are available via the publicly accessible MetaboLights database at https:
//www.ebi.ac.uk/metabolights/ (accessed on 21 October 2012; accession ID: MTBLS24).

The second dataset comprised 1D 1H NMR spectra from 85 EDTA plasma specimens
that were collected from patients 24 h cardiac surgery with CPB use, who were a subcohort
of the 106 patients mentioned above [2]. Out of these 85 patients, 33 were diagnosed with
postoperative AKI. Each EDTA plasma specimen was subjected to 10 kDa cut-off filtration
to remove macromolecules and subsequent sample preparation, as well as NMR spectral
data acquisition, which was performed as described above.

The third dataset consisted of 1D 1H NMR spectra from 223 EDTA plasma specimens
that were collected at the baseline time point of the German Chronic Kidney Disease
(GCKD) study [3,21]. For this dataset, 400 µL of each unfiltered EDTA plasma specimen
were mixed with 200 µL of 0.1 mol/L phosphate buffer, pH 7.4, 50 µL of 0.75% (w/v) TSP
that was dissolved in deuterium oxide, and 10 µL of 81.97 mmol/L formic acid (Sigma-
Aldrich, Taufkirchen, Germany), which served as the internal standard for referencing and
quantification. The 1D 1H NMR spectra were acquired using a Carr–Purcell–Meiboom–Gill
(CPMG) pulse sequence to suppress unspecific macromolecular signals. The absolute
concentrations of 25 unique metabolites were quantified from these 1D 1H NMR spectra,
according to the method in [22] and using the Chenomx software suite (Chenomx Inc.,
Edmonton, AB, Canada). The NMR signals were identified through comparison to reference
spectra from pure compounds, which were available from the Chenomx software suite.
The NMR spectra are available from the MetaboLights database at https://www.ebi.ac.uk/
metabolights/ (accessed on 26 June 2019; accession ID: MTBLS798).

2.2.2. Feature Extraction

The initial feature extraction for all three datasets was performed via equidistant bin-
ning (with a bin width of 0.001 ppm) using Amix 3.9.13 (Bruker BioSpin GmbH, Rheinstet-
ten, Germany), followed by data import into R version 3.6.0, https://cran.r-project.org [23]
(accessed on 27 July 2022).

The spectral region from 9.5 to −0.5 ppm of the AKI urine 1D 1H NMR dataset was
split into 9999 even bins. The spectral regions from 6.5 to 4.5 ppm, which corresponded
to the remaining water and broad urea signals, and the TSP region from 0.5 to −0.5 ppm
were excluded, which resulted in a total of 7000 bins. A probabilistic quotient normaliza-
tion (PQN) [24] was applied to reduce sample-to-sample variations that were caused by
differences in fluid intake.

For the AKI plasma 1D 1H NMR dataset, the spectral region from 9.5 to −0.5 ppm
was split into 9999 even bins (the raw bucket table has been published in [25]). The spectral
intensities were normalized to the internal standard TSP to correct for variations in spec-

https://www.ebi.ac.uk/metabolights/
https://www.ebi.ac.uk/metabolights/
https://www.ebi.ac.uk/metabolights/
https://www.ebi.ac.uk/metabolights/
https://cran.r-project.org
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trometer performance [2]. The spectral region from 6.2 to 4.6 ppm, which corresponded
to the remaining water and broad urea signals, and the TSP region from 0.5 to −0.5 ppm
were excluded, which resulted in a total of 7400 bins. After the application of the differ-
ent binning methods, the regions of 3.82–3.76 ppm, 3.68–3.52 ppm, 3.23–3.20 ppm, and
0.75–0.72 ppm, which corresponded to filter residues and free EDTA, were excluded prior
to further statistical analysis.

The GCKD 1D 1H NMR spectra were referenced and normalized to the internal
standard formic acid to correct for variations in spectrometer performance [3,21]. The
spectral region from 9.5 to 0.5 ppm was evenly split into 9000 bins and the spectral region
from 6.0 to 4.5 ppm, which corresponded to the remaining water and broad urea signals,
was excluded, which resulted in a total of 7499 bins.

Each of the three datasets was subjected to seven different binning approaches to
yield the following datasets: three different BF datasets that corresponded to the three
penalization parameters λ = 1, λ = 2.5, and λ = 5; two different equidistant binning
datasets with bucket widths of 0.01 ppm and 0.02 ppm, which were created by summing
the individual spectral intensity values of 10 or 20 adjacent buckets with 0.001 ppm widths
into one bucket, respectively; one SRV dataset employing the R package mQTL [26] with
rectangular binning, which corresponded to the default settings; one JBA dataset employing
the R package MWASTools [27]. To ensure method comparability, the minimum bucket size
was set to a width of 0.003 ppm (i.e., three bins with 0.001 ppm widths) and the spectral
intensity values were summed using the SRV, JBA, and BF algorithms.

3. Results
3.1. Bucket Fuser Dynamically Constructs NMR Metabolite Features

In this first subsection, we discuss the output that was generated by BF. BF relies on a
single positive parameter, λ, which is the regularization parameter of the penalized linear
regression problem in Equation (1). Note that for λ = 0, BF returns the input matrix Y
since every entry of Yij is described by an individual parameter Bij, i.e., the residual sum of
squares ||Y− B||2F becomes zero. When we increase the value of λ, the fit parameters Bij

become increasingly penalized by the regularization term λ
√

n ∑
p−1
j=1

√
∑n

i=1(Bij − Bi,j+1)2.
First, we applied BF to the urinary AKI data (dataset 1) and produced results for three
ad-hoc λ values (λ = 1, λ = 2.5, and λ = 5) for demonstration purposes.

Figure 1a,b show the spectral region that ranged from 4.0 to 3.5 ppm for two exemplary
AKI urine spectra for parameters λ = 2.5 and λ = 5, respectively. The corresponding fit
for λ = 1 is shown in Figure S1 in the Supplementary Materials. This region covered, for
example, signals from D-mannitol, which was administered to all patients during cardiac
surgery, and myo-inositol. In all three figures, the fitted spectra are shown as black dotted
lines that follow the observed spectra, which are shown as thin blue and red lines. From
these figures, we could observe three general properties of BF:

(1) BF fits plateaus, as shown by the thick blue and red lines;
(2) The plateaus start and end at the same position for all spectra;
(3) The regularization parameter λ calibrates the plateau width: λ = 5 yields larger

plateaus than λ = 2.5 and λ = 2.5 yields larger plateaus than λ = 1.

The plateaus are consensus regions that define the variables for the subsequent data
analysis. The regions in which no plateaus are built can be either neglected from further
analysis or included as additional spectral features. The bottom panels of Figures 1a,b
and S1 show the consensus regions in cyan and the non-consensus regions in yellow. For
the analyses that are presented in this article, we retained both the cyan and yellow regions,
i.e., we retained both the plateau regions and non-plateau regions. Of these regions, we
neglected those with widths≤0.002 ppm, which are plotted as white blocks, to be consistent
with the minimal bin width that was used in SRV and JBA. Note that λ→ ∞ builds a single
plateau that covers the whole spectrum, i.e., one single consensus region is returned. In
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contrast, λ = 0 does not build any plateaus and again, a single consensus region is returned.

Figure 1. (a,b) Exemplary NMR spectral regions that ranged from 4 ppm to 3.5 ppm, together with
their corresponding BF fits for λ = 2.5 and λ = 5, respectively. The thin blue and red lines show
the spectral intensities of two exemplary NMR spectra from the urinary AKI dataset. The black
dotted lines show the corresponding BF fits, along which the plateaus of the fits are additionally
highlighted as thick blue and red lines. The ticks in the middle of the figures correspond to the
standard equidistant binning with bin sizes of 0.01 ppm, 0.02 ppm, and 0.04 ppm (from top to bottom,
respectively). The lower parts of the figures display the detected consensus plateaus in cyan, which
start and end at the same positions for all included spectra. The yellow blocks represent the regions
that did not correspond to plateaus but were also retained for subsequent analysis. For both the
yellow and cyan regions, we neglected those with widths ≤0.002 ppm, which are plotted as white
blocks. The inserted figures show these dotted regions in detail.
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3.2. Bucket Fuser Improved Signal Extraction

In this subsection, we present our comparison of the extracted NMR metabolite
features and the absolutely quantified metabolite concentrations in plasma samples from
223 patients who were included in the German Chronic Kidney Disease (GCKD) study. In
total, quantified values were available for 25 metabolites.

We compared seven different methods for signal extraction: BF using the penalty
parameters λ = 1, λ = 2.5, and λ = 5; JBA, which is one of the most recent adaptive
binning approaches [14]; SRV, which is one of the most frequently used adaptive binning
methods; two standard equidistant binning methods with bin sizes of 0.01 ppm and
0.02 ppm. Table 1 lists the number of metabolite features that were extracted using each
of these methods. The number of extracted features ranged from 375 (equidistant binning
with a 0.02 ppm bin size) to 808 (BF with λ = 5). Note that using a higher penalty parameter
λ for BF did not necessarily return fewer metabolite features. However, the average width
of the plateau regions grew with λ: for BF with λ = 1, we obtained an average plateau
width of 0.0038 ppm; for λ = 2.5, we obtained an average plateau width of 0.0057 ppm;
for λ = 5, we obtained an average plateau width of 0.0064 ppm. We further observed that
the plateau widths remained stable with respect to the number of samples n for λ = 1
(dotted line), λ = 2.5 (dashed line), and λ = 5 (solid line), as shown in Figure S2 in the
Supplementary Materials.

Table 1. The number of metabolite features that were extracted from the 1D 1H NMR spectra of
223 plasma samples from the GCKD cohort using different binning approaches. The BF results
are presented in the form “number of plateau regions + number non-plateau regions = number
of features”.

BF
(λ = 1)

BF
(λ = 2.5)

BF
(λ = 5) SRV JBA EB

(0.01 ppm)
EB

(0.02 ppm)

360 + 261 = 621 398 + 234 = 632 507 + 301 = 808 531 538 749 375

Next, we tested the associations between the metabolite features and the absolute
metabolite concentrations from the complete GCKD dataset. For this purpose, we selected,
for each quantified metabolite, the binned metabolite feature which correlates best, where
we used Spearman’s correlation to properly deal with outlier values. The correlations for
all seven methods are listed in Table 2.

For several metabolites, the performance of the binning approaches deviated substan-
tially, including pyruvate (for which the correlations ranged from r = 0.692 (equidistant
binning with a bin width of 0.02 ppm) to r = 0.968 (BF with λ = 2.5)) and betaine (for which
the correlations ranged from r = 0.221 (equidistant binning with a bin width of 0.02 ppm)
to r = 0.689 (JBA)). Generally, there was not a single extraction method that consistently
worked best for all quantified metabolites. However, by comparing all seven methods,
we observed that BF (λ = 1) extracted metabolite features with the highest correlations
for 7 of the 25 quantified metabolites. BF (λ = 2.5) returned the highest correlations for
eight metabolites, BF (λ = 5) returned the highest correlations for five metabolites, JBA
returned the highest correlations for five metabolites, SRV returned the highest correlations
for a single metabolite, equidistant binning with a 0.01 ppm bin size returned the highest
correlations for one metabolite, and equidistant binning with a 0.02 ppm bin size did not
return the highest correlations for any metabolite. For 3-hydroxybutyrate and acetoacetate,
BF with λ = 1 and JBA performed the best and thus, we highlighted these two methods.
Next, we repeated this analysis but instead individually compared BF with different reg-
ularization parameters to the other selected methods. These results are summarized in
Table 3 and show that the BF approaches delivered superior performance for all selected
regularization parameters, followed by JBA, SRV, and the equidistant binning method. The
corresponding scatter plots for each of the quantified metabolites using each of the seven
binning methods are shown in Figures S3–S9 in the Supplementary Materials, respectively.
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Table 2. The Spearman’s correlations to the absolutely quantified metabolite concentrations using
BF with λ = 1, BF with λ = 2.5, BF with λ = 5, JBA, SRV, and the equidistant binning method
with bin sizes of 0.01 ppm and 0.02 ppm. The highest correlations for each of the 25 metabolites are
highlighted in bold.

BF
(λ = 1)

BF
(λ = 2.5)

BF
(λ = 5) JBA SRV EB

(0.01 ppm)
EB

(0.02 ppm)

3-Hydroxybutyrate 0.768 0.720 0.689 0.768 0.600 0.547 0.498
Acetate 0.757 0.983 0.968 0.966 0.908 0.946 0.892

Acetoacetate 0.670 0.664 0.610 0.670 0.611 0.614 0.603
Acetone 0.528 0.748 0.568 0.530 0.472 0.455 0.350
Alanine 0.680 0.927 0.947 0.722 0.915 0.926 0.905

Asparagine 0.685 0.662 0.635 0.563 0.698 0.683 0.659
Betaine 0.509 0.637 0.480 0.689 0.481 0.630 0.221

Carnitine 0.678 0.419 0.427 0.692 0.412 0.444 0.445
Creatine 0.929 0.907 0.584 0.909 0.842 0.763 0.626

Creatinine 0.772 0.893 0.881 0.443 0.749 0.703 0.619
Dimethylamine 0.895 0.649 0.649 0.598 0.684 0.587 0.592

Glucose 0.990 0.990 0.989 0.987 0.989 0.990 0.988
Glutamine 0.873 0.870 0.905 0.612 0.779 0.897 0.878

Glycine 0.838 0.808 0.741 0.332 0.778 0.655 0.543
Histidine 0.548 0.764 0.523 0.453 0.571 0.558 0.631

Isobutyrate 0.845 0.793 0.568 0.445 0.687 0.618 0.522
Isoleucine 0.866 0.911 0.808 0.735 0.762 0.792 0.790

Lactate 0.988 0.989 0.989 0.979 0.983 0.990 0.985
Phenylalanine 0.850 0.874 0.888 0.819 0.818 0.810 0.800

Proline 0.754 0.937 0.699 0.676 0.871 0.680 0.609
Pyruvate 0.884 0.968 0.941 0.884 0.931 0.857 0.692

Threonine 0.494 0.502 0.490 0.426 0.472 0.490 0.474
TMAO 0.282 0.401 0.403 0.449 0.279 0.400 0.231

Tyrosine 0.931 0.941 0.947 0.816 0.935 0.939 0.924
Valine 0.811 0.947 0.961 0.725 0.924 0.952 0.952

Table 3. The three different BF approaches (with λ = 1, λ = 2.5, and λ = 5) individually compared
to JBA, SRV, and the equidistant binning method. The numbers indicate how often each method was
selected as the “best performing”.

BF
(λ = 1)

BF
(λ = 2.5)

BF
(λ = 5) JBA SRV EB

(0.01 ppm)
EB

(0.02 ppm)

BF (λ = 1) 11 - - 7 3 5 1
BF (λ = 2.5) - 14 - 6 2 3 0
BF (λ = 5) - - 11 6 5 2 1

3.3. Metabolite Identification

We further evaluated the identities of the metabolite features with the highest cor-
relations to the absolutely quantified metabolite concentrations, which are presented in
Table S1 in the Supplementary Materials. The signals of some metabolites (e.g., trimethy-
lamine N-oxide, asparagine, and threonine) could not be correctly extracted by any of the
selected methods. This issue occurred when the metabolite signals under consideration
appeared in crowded regions of the spectrum or overlapped completely with other signals.
Small molecules with chemically equivalent protons that resulted in only one singlet were
especially susceptible to this effect, such as trimethylamine N-oxide. This gave rise to a
singlet signal at approximately 3.27 ppm, which was overlaid by a singlet of betaine and a
glucose multiplet (Figure S10 in the Supplementary Materials). Absolute quantification
circumvented this problem by deconvoluting overlapping signals; however, the metabolite
feature extraction methods did not employ spectral deconvolution and thus, only yielded
rather small correlation coefficients for trimethylamine N-oxide, even when the best as-
sociated metabolite feature was trimethylamine N-oxide (i.e., when using BF (λ = 1), BF
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(λ = 2.5), BF (λ = 5), and JBA). On the other hand, the signals of other metabolites (such
as glucose, lactate, and tyrosine) were extracted with high Spearman’s correlations by all
selected methods. These metabolites often give rise to multiple signals with characteristic
chemical shifts and hardly any overlap with signals of other metabolites. Considering
all 25 metabolites that were investigated in this study, BF (λ = 2.5) correctly identified
the largest number with 21 metabolites, followed by BF (λ = 1) and BF (λ = 5) with 19
each, and equidistant binning with a bin width of 0.01 ppm with 18 correctly identified
metabolites. The lowest number of correct assignments was accomplished by equidistant
binning with a bin width of 0.02 ppm as it only identified 13 metabolites correctly.

3.4. The Bucket Fuser Can Deal with Small Sample Sizes

The equidistant binning method cuts the spectrum into regions of equal width and
thus, defines the same regions regardless of the provided spectra. In contrast, BF, JBA,
and SRV construct metabolic features from the data; thus, they extract spectral regions
that inherently depend on the provided spectra. In this part of the study, we repeated
the comparison to the absolutely quantified metabolite concentrations for 25 metabolites,
as shown previously, but systematically reduced the number of training samples in a
subsampling approach. Thus, we investigated how both the choice of training samples and
the number of training samples influenced feature extraction.

We performed the following experiment. We repeatedly drew n ∈ {5, 10, 20, 40, 80, 160}
from the 223 plasma samples from the GCKD cohort and used them to train a spectral
binning algorithm. These binning methods were then applied to the remaining samples
to evaluate the binning performance. This was validated by comparing the results to the
absolutely quantified metabolite concentrations using Spearman’s correlation, as before.
Figure S11 in the Supplementary Materials summarizes the binning performance for each
of the 25 quantified metabolites as a function of the number of training samples n using BF
with λ = 1 (dotted blue lines), λ = 2.5 (dashed blue lines), λ = 5 (solid blue lines), and JBA
(solid red lines). The corresponding results for SRV (solid purple lines) and the equidistant
binning method with bin sizes of 0.01 ppm (green solid lines) and 0.02 ppm (green dashed
lines) are shown in Figure S12 in the Supplementary Materials. The dots represent the me-
dian values that were obtained from 50 subsampling runs and the whiskers correspond to
the upper and lower quartiles.

We observed that the equidistant binning method, JBA, and SRV were barely affected
by the number of training samples. In fact, JBA even showed a better performance with
smaller sample sizes, which was evident by the n versus r plots for creatinine and glu-
tamine, for example. The BF approaches were affected by sample size for some of the
25 metabolites. Metabolites that showed a stronger sample-size dependence included crea-
tinine, dimethylamine, and histidine. However, for all three λ values, BF still performed
better than JBA, even with sample sizes as small as n = 5. The strongest dependence
on sample size was observed for histidine, for which the binning performance increased
substantially with training sample size.

In summary, we observed that BF depended more on sample size than the other
methods that were investigated in this study; however, even for very small sample sizes,
BF still outperformed the other methods for the majority of the metabolites.

3.5. The Bucket Fuser Improved the Detection of Metabolic Biomarkers for Acute Kidney Injury
after Cardiac Surgery

In the next step, we assessed the performance of different feature extraction meth-
ods using differential metabolite analysis. Differences in either the urine or plasma
metabolomes of adults who had undergone cardiac surgery with CPB use, who did or did
not experience a subsequent acute kidney injury (AKI) event, were investigated using a
two-sample unequal variance t-test. Note that binning methods are designed to extract
meaningful metabolic variables and as such, are expected to increase the number of metabo-
lite variables that contain true biological signals compared to variables that just contain
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noise. Consequently, we expected that the p-value distributions at low p-values would
peak stronger for better binning performances. Figures 2 and 3 depict the distributions of
the raw p-values for the urinary and plasma AKI datasets, respectively, using the seven
different feature binning approaches. For BF, we show the p-value distributions for plateau
(cyan) and non-plateau (yellow) regions separately. For each investigated method, the
numbers of metabolite features that were extracted from the two datasets are presented in
Table S2 in the Supplementary Materials.

For both datasets, the BF method with λ = 1 obtained the p-value distribution with the
highest density for raw p-values between 0 and 0.05, taking into account the predominantly
uniform raw p-value distribution between 0.05 and 1. This effect was even more pronounced
for the plateau regions (cyan). This result was followed by BF with λ = 2.5 and equidistant
binning with a 0.02 ppm bucket width for the urinary AKI dataset and by BF with λ = 2.5
and JBA for the plasma AKI dataset. BF λ = 5 was inferior compared to BF with λ = 1 and
λ = 2.5 and delivered a performance that was similar to that of SRV and the equidistant
binning method. The uniform raw p-value distributions were obtained for all binning
methods following random class label permutation, as depicted in Figures S13 and S14 in
the Supplementary Materials.

Finally, we analyzed the performance of the different binning approaches in the context
of multivariate data analysis (MVA), namely the classification of “yes” versus “no” for
AKI after cardiac surgery with CPB use. It is worth mentioning that it is not clear a priori
whether superior binning performance also results in improved classification performance
as classification performance can be determined by small sets of bins and their extraction
from data. However, as shown in this subsection, BF can be used to systematically improve
prediction performance for MVA.

We applied binomial zero-sum LASSO regression, which is a multivariate normal-
ization invariant classification approach that is based on the binomial LASSO regression
augmented by an additional constraint on the regression parameters, i.e., the so-called
zero-sum constraint [28,29]. This approach turned out to be particularly suited for NMR
spectroscopic data since it could compensate for the systematic errors from sample dilution
and normalization [25]. We used the implementation that was available in the R package
zeroSum from https://github.com/rehbergT/zeroSum (accessed on 15 August 2022), using
the standard parameters. We directly extracted the minimum leave-one-out cross-validation
error (binomial deviance) for the different binning methods and the results are shown in Fig-
ure 4a,b for the plasma and urinary AKI data, respectively (see Figures S15a–g and S16a–g
in the Supplementary Materials for the corresponding hyperparameter calibration). We
observed that for the plasma data, the EB (0.01 ppm) performed best with a binomial
deviance of 0.80± 0.10, followed closely by Bucket Fuser (λ = 1) with a binomial deviance
of 0.83± 0.14. For the urinary AKI data, BF (λ = 1) performed best with 0.77± 0.20, closely
followed by EB (0.01 ppm) with 0.82± 0.15. The remaining methods performed worse,
with binomial deviances between 0.92± 0.10 (EB (0.02 ppm)) and 1.16± 0.12 (SRV) for the
plasma data and between 0.89± 0.11 (SRV) and 1.12± 0.13 (BF (λ = 2.5)) for the urine data.
Thus, for MVA, we did not observe a single best-performing binning strategy and the per-
formance depended on the parameter choice, i.e., λ for BF and bin size for the equidistant
binning method. To substantiate this finding, we systematically analyzed how classification
performance depended on the choice of λ and the results are shown in Figure 5a,b for
the plasma and urinary AKI data, respectively, from which we extracted the minimum
binomial deviances using internal leave-one-out cross-validation for λ ∈ {0.25, 0.5, . . . , 7}.
We observed that the performance could be improved for both datasets, with a minimum
binomial deviance of 0.79± 0.12 using λ = 4 for the plasma dataset and 0.69± 0.11 using
λ = 6.25 for the urinary dataset.

https://github.com/rehbergT/zeroSum
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Figure 2. The p-value distributions of AKI versus non-AKI patients after cardiac surgery in urine
specimens: (a–g) the different binning approaches (BF with λ = 1, BF with λ = 2.5, BF with λ = 5,
JBA, SRV, equidistant binning with a bin size of 0.01 ppm, and equidistant binning with a bin size of
0.02 ppm, respectively). For the BF method, the same color-coding was applied as that in Figure 1,
for example. Note that the light green bars correspond to the overlapping regions of the cyan and
yellow bars.
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Figure 3. The p-value distributions of AKI versus non-AKI patients after cardiac surgery in plasma
specimens: (a–g) the different binning approaches (BF with λ = 1, BF with λ = 2.5, BF with λ = 5,
JBA, SRV, equidistant binning with a bin size of 0.01 ppm, and equidistant binning with a bin size of
0.02 ppm, respectively). For the BF method, the same color-coding was applied as that in Figure 1,
for example. Note that the light green bars correspond to the overlapping regions of the cyan and
yellow bars.
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Figure 4. The binomial deviances (y-axis) from the leave-one-out cross-validation using the different
binning approaches (x-axis) for the plasma (a) and urinary (b) AKI data. The dotted horizontal lines
correspond to the best method for the plasma (EB (0.01 ppm)) and urine (BF (λ = 1)) data. The error
bars correspond to ±1 standard deviation.
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4. Discussion and Conclusions

We developed Bucket Fuser as an alternative method for extracting metabolic fea-
tures from 1D 1H NMR metabolic data. We compared the developed method to other
state-of-the-art approaches and demonstrated its superior performance using absolutely
quantified metabolite concentrations. Moreover, we studied two realistic applications in
which metabolite concentrations in urine and blood from individuals who suffered an AKI
event after cardiac surgery were compared to the metabolite concentrations in samples from
patients who did not develop AKI. From this comparison, the p-value distributions also
indicated the superior performance of BF compared to the other state-of-the-art methods.
In this context, it was interesting to observe that the p-value distributions of the plateau
regions showed the strongest peaks. The peaks were less pronounced for non-plateau
regions. This finding was not surprising since BF predominantly built consensus plateau
regions around peaks that occurred at the same position across multiple spectra. Thus, a
plateau that was determined by BF also provided additional evidence of consistent signals
within this region across multiple spectra. BF depends on a single parameter, i.e., the
regularization parameter λ. Similarly, the equidistant binning method depends on bin
size and JBA and SRV depend on correlation thresholds, which are both chosen by the
user. To improve the usability of BF, the regularization parameter was defined so that it
yielded stable plateau widths for different sample sizes. Consequently, the regularization
parameter might not need to be recalibrated for new datasets. In practice, we observed
that values around the order of ∼1 performed reasonably well for an initial bin width of
0.001 ppm.

BF was implemented using a highly efficient algorithm that is based on the alternating
direction method of multipliers (ADMM). For smaller datasets and reasonable regulariza-
tion parameters (∼100 samples and λ = 1–5), BF could be run within minutes on ordinary
desktop computers. However, it is based on a high-dimensional regression setup with
p× n parameters and complex group LASSO regularization terms. Other methods, such
as JBA and SRV, are usually computationally more efficient and the computation time
restricts the hyperparameter tuning of BF, i.e., hyperparameter tuning is only an option
for expert users with optimized computing resources. The BF procedure in its current
implementation could be further optimized computationally and does not entirely exploit
state-of-the-art computing resources, such as graphical processing units. Moreover, there
have been algorithmic advances, such as accelerated alternating direction method of multi-
pliers (A2DM2) [30]. The integration of both of these improvements in future research could
substantially increase the computation speed. We further emphasize that the application of
the BF algorithm is not restricted to the analysis of 1D 1H NMR spectroscopic data as there
are numerous data types that require segmentation steps for analyses (e.g., array CGH
data). BF could be straightforwardly applied to such data and offers the additional benefit
that data segmentation would be chosen consistently across all measurements, which could
be particularly valuable for machine learning applications. Moreover, BF could be modified
to account for 2D data, which could be a promising future direction of research, e.g., for the
analysis of 2D NMR spectroscopic data.

It is worth mentioning that Bucket Fuser, as well as all of the other methods that were
considered in this study, works in the frequency domain of NMR spectra. Alternative
approaches to NMR feature extraction have been developed in the time domain, e.g., the
complete reduction to amplitude frequency table (CRAFT) approach [31]. A thorough
benchmarking of both frequency- and time-domain methods warrants future work. Like-
wise, the combination of Bucket Fuser and a time-domain feature extraction method, such
as CRAFT, was beyond the scope of this manuscript but could enhance the performance of
both methods.

In summary, BF is a new and promising approach for the extraction of metabolic
features from NMR metabolic data. It could improve the resolution of metabolic features
and has the potential to extract new metabolic features that are not captured by current
state-of-the-art methods.
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